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Chapter 1

The Real Number Systems

1.1 Natural Numbers N

Definition 1.1.1 (Peano Axioms (Peano Postulates)). The properties of the set of natural numbers,
denoted N, are as follows:

(i) 1 belongs to N.

(ii) If n belongs to N, then its successor n` 1 belongs to N.

(iii) 1 is not the successor of any element in N.

(iv) If n,m P N have the same successor, then n “ m.

(v) A subset of N which contains 1, and which contains n` 1 whenever it contains n, must equal
to N.

Remark. The last axiom is the basis of mathematical induction. Let P1, P2, P3, . . . be a list of
propositions that may or may not be true. The principle of mathematical induction asserts all the
statements P1, P2, . . . are true provided

• P1 is true. (Basis for induction)

• Pn ùñ Pn`1. (Induction step)

1.2 Rational Numbers Q

Definition 1.2.1 (Rational Numbers). The set of rational numbers, denoted Q, is defined by

Q “
!m

n
| n,m P Z, n ‰ 0

)

,

which supports addition, multiplication, subtraction, and division.
Remark. Q is a very nice algebraic system. However, there is no rational solution to equations like
x2 “ 2.
Definition 1.2.2 (Algebraic Number). A number is called an algebraic number if it satisfies a
polynomial equation

cnx
n ` cn´1x

n´1 ` ¨ ¨ ¨ ` c1x` c0 “ 0
where c0, . . . , cn are integers, cn ‰ 0 and n ě 1.
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Remark. Rational numbers are always algebraic numbers.

Theorem 1.2.3 (Rational Zeros Theorem). Suppose c0, c1, . . . , cn are integers and r is a rational
number satisfying the polynomial equations

cnx
n ` cn´1x

n´1 ` ¨ ¨ ¨ ` c1x` c0 “ 0

where n ě 1, cn, c0 ‰ 0. Let r “ c
d where gcdpc, dq “ 1. Then c | c0 and d | cn. In simpler

terms, the only rational candidates for solutions to the equation have the form c
d where c is a

factor of c0 and d is a factor of cn.

Proof. Plug in r “ c
d to the equation, we get

cn

´ c

d

¯n
` cn´1

´ c

d

¯n´1
` ¨ ¨ ¨ ` c1

´ c

d

¯

` c0 “ 0.

Then we multiply by dn on both sides and get

cnc
n ` cn´1c

n´1d` ¨ ¨ ¨ ` c1cd
n´1 ` c0d

n “ 0.

Solving for c0d
n, we obtain

c0d
n “ ´c

`

cnc
n ` cn´2

n´1 ` ¨ ¨ ¨ ` c2cd
n´2 ` c1d

n´1˘ .

Then it follows that c | c0d
n. Since gcdpc, dq “ 1, c can only divide c0.

Now let’s instead solve for cncn, then we have

cnc
n “ ´d

`

cn´1c
n´1 ` cn´2c

n´2d` ¨ ¨ ¨ ` c1cd
n´2 ` c0d

n´1˘ .

Thus d | cncn, which implies d | cn because gcdpc, dq “ 1.

Corollary 1.2.4. Consider

xn ` cn´1x
n´1 ` ¨ ¨ ¨ ` c1x` c0 “ 0,

where c0, c1, . . . , cn´1 are integers and c0 ‰ 0. Any rational solution of this equation must be
an integer that divides c0.

Proof. Since the Rational Zeros Theorem states that d must divide cn, which is 1 in this case, r is
an integer and it divides c0.

Example 1.2.5.
?

2 is not a rational number.

Proof. Using Corollary 5, if r “
?

2 is rational, then
?

2 must be an integer, which is a contradiction.
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1.3 Real Numbers R

1.3.1 The Completeness Axiom

Definition 1.3.1 (Maximum/minimum). Let S be a nonempty subset of R.

(i) If S contains a largest element s0(i.e., s0 P S, s ď s0@s P S), then s0 is the maximum of S,
denoted s0 “ maxS.

(i) If S contains a smallest element, then it is called the minimum of S, denoted as minS.

Remark.

• If s1, s2 are both maximum of S, then s1 ě s2, s2 ě s1, which implies that s1 “ s2. Thus the
maximum is unique if it exists.

• However, the maximum may not exist (e.g. S “ R).

• If S Ă R is a finite subset, then maxS exists.

Definition 1.3.2 (Upper/Lower bound). Let S be a nonempty subset of R.

(i) If a real number M satisfies s ď M for all s P S, then M is an upper bound of S and S is
said to be bounded above.

(i) If a real number m satisfies ď s for all s P S, then m is a lower bound of S and S is said to
be bounded below.

(i) S is said to be bounded if it is bounded above and bounded below. Thus S is bounded if there
exist real numbers m and M such that S Ă rm,M s.

Definition 1.3.3 (Supremum/Infimum). Let S be a nonempty subset of R.

• If S is bounded above and S has a least upper bound, then it is called the supremum of S,
denoted by supS.

• If S is bounded below and S has a greatest lower bound, then it is called the infimum of S,
denoted by infS.

Remark. If S has a maximum, then maxS “ supS. Similarly, if S has a minimum, then minS “
infS. Also note that supS and infS need not belong to S.
Example 1.3.4. Suppose we have S “ t1´ 1

n | n P Nu. Then maxS does not exist and supS “ 1.

Proof. Suppose for contradiction that it exists. Then it must be of the form 1´ 1
n0

for some n0 P N.
However,

1´ 1
n0 ` 1 ą 1´ 1

n0
,

and 1´ 1
n0`1 P S. Hence a contradiction.

Theorem 1.3.5 (Completeness Axiom). Every nonempty subset S Ă R that is bounded above
has a least upper bound. In other words, supS exists and is a real number.
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Corollary 1.3.6. Every nonempty subset S Ă R that is bounded below has a greatest lower
bound infS.

Proof. Consider the set ´S “ t´s | s P Su. Since S is bounded below there exists an m P R such
that m ď s for all s P S. This implies ´m ě ´s for all s P S, so ´m ě u for all u P ´S. Thus, ´S
is bounded above by ´m. The Completeness Axiom applies to ´S, so sup ´ S exists.
Now we show that infS “ ´sup ´ S. Let s0 “ sup ´ S, we need to prove

´s0 ď s for all s P S,

and if t ď s for all s P S, then t ď ´s0. The first inequality will show that ´s0 is a lower bound
while the second inequality will show that ´s0 is the greatest lower bound, i.e., ´s0 “ infS. The
proofs of the two claims are left as an exercise.

Theorem 1.3.7 (Archimedean Property). If a, b ą 0, then na ą b for some positive integer n.

Proof. Suppose the property fails for some pair of a, b ą 0. That is, for all n P N, we have na ď b,
meaning that b is an upper bound for the set S “ tna | n P Nu. Using the Completeness Axiom,
we can let s0 “ supS. Since a ą 0, we have s0 ´ a ă s0, so s0 ´ a cannot be an upper bound for
S. It follows that s0 ´ a ă n0a for some n0 P N, which then implies that s0 ă pn0 ` 1qa. Since
pn0 ` 1qa is in S, s0 is not an upper bound for S, which is a contradiction.

Theorem 1.3.8 (Denseness of Q). If a, b P R and a ă b, then there is a rational r P Q such
that a ă r ă b.

Proof. We need to show that a ă m
n ă b for some integers m and n where n ‰ 0. Equivalently, we

want
an ă m ă bn.

Since b´ a ą 0, the Archimedean property shows that there exists an n P N such that

npb´ aq ą 1 ùñ bn´ an ą 1.

Now we need to show that there is an integer m between an and bn.

1.4 `8 and ´8
We adjoint `8 and ´8 to R and extend our ordering to the set R Y t´8,`8u. Explicitly, we
have ´8 ď a ď `8 for all a P RY t´8,`8u.
Remark. `8 and ´8 are not real numbers. Theorems that apply to real numbers would not work.
We define

supS “ `8 if S is not bounded above

and
infS “ ´8 if S is not bounded below.
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1.5 Reading (Rudin’s)

1.5.1 Ordered Sets

Definition 1.5.1 (Order). Let S be a set. An order on S is a relation, denoted by ă, with the
following two properties:

• If x P S and y P S, then one and only one of the statements
s ă y, x “ y, , y ă x

is true.

• If x, y, z P S, if x ă y and y ă z, then x ă z.

Definition 1.5.2 (Ordered Set). An ordered set is a set S in which an order is defined.
For example, Q is an ordered set if r ă s is defined to mean that s´r is a positive rational number.

1.5.2 Fields

Definition 1.5.3 (Field). A field is a set F with two operations: addition and multiplication, which
satisfy the following field axioms:

(A) Axioms for addition

(A1) If x, y P F , then x` y P F .
(A2) (Commutativity) @x, y P F , x` y “ y ` x.
(A3) (Associativity) @x, y, z P F , px` yq ` z “ x` py ` zq.
(A4) (Identity) @x P F , 0` x “ x.
(A5) (Inverse) @x P F , there exists a corresponding ´x P F such that

x` p´xq “ 0.

(M) Axioms for multiplication

(M1) If x, y P F , then xy P F .
(M2) (Commutativity) @x, y P F , xy “ yx.
(M3) (Associativity) @x, y, z P F , pxyqz “ xpyzq.
(M4) (Identity) @x P F , 1x “ x.
(M5) (Inverse) @x P F , there exists a corresponding 1

x P F such that

x

ˆ

1
x

˙

“ 1.

(D) The distributive law

@x, y, z P F, xpy ` zq “ xy ` xz.

Definition 1.5.4 (Ordered Field). An ordered field is a field F which is also an ordered set, such
that

(i) if y ă z and x, y, z P F , x` y ă x` z,

(i) if x, y ą 0 and x, y P F , xy ą 0.
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Chapter 2

Sequences

2.1 Limits of Sequences
Definition 2.1.1 (Sequence). A sequence is a function whose domain is a set of the form tn P Z |
n ě mu where m is usually 1 or 0.

One may wonder why do we care about sequence, and the answer is that sequences are useful
for approximation.
Definition 2.1.2. A sequence tsnu of real numbers is said to converge to the real number s if
@ε ą 0, DN ą 0 such that for all positive integers n ą N , we have

|sn ´ s| ă ε.

If tsnu converges to s, we write limnÑ8 sn “ s, or simply sn Ñ s, where s is called the limit of
the sequence. A sequence that does not converge to some real number is said to diverge.

2.2 Proofs of Limits
Example 2.2.1. Prove limnÑ8

1
n2 “ 0.

Scratch. For any ε ą 0, we want
ˇ

ˇ

ˇ

ˇ

1
n2 ´ 0

ˇ

ˇ

ˇ

ˇ

ă ε ðñ
1
n2 ă ε ðñ

1
ε
ă n2 ðñ

1
?
ε
ă n.

Thus, we can just take N “ 1?
ε
.

Proof. Let ε ą 0 and N “ 1?
ε
. Then n ą N implies n ą 1?

ε
which implies n2 ą 1

ε and hence ε ą 1
n2 .

Thus n ą N implies
ˇ

ˇ

1
n2 ´ 0

ˇ

ˇ ă ε. This proves our claim.

Example 2.2.2. Prove limnÑ8
3n`1
7n´4 “

3
7 .

Scratch. @ε ą 0, we need
ˇ

ˇ

ˇ

3n`1
7n´4 ´

3
7

ˇ

ˇ

ˇ
ă ε, which implies that

ˇ

ˇ

ˇ

ˇ

21n` 7´ 21n` 12
7p4n´ 4q

ˇ

ˇ

ˇ

ˇ

ă ε ùñ

ˇ

ˇ

ˇ

ˇ

19
7p7n´ 4q

ˇ

ˇ

ˇ

ˇ

ă ε.
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Since 7n´ 4 ą 0, we can remove the absolute value sign and have

19
7ε ă 7n´ 4 ùñ

19
49ε `

4
7 ă n.

Thus, we have N “ 19
49ε `

4
7 .

Proof. Let ε ą 0 and let N “ 19
49ε `

4
7 . Then n ą N implies n ą 19

49ε `
4
7 , hence 7n ą 19

7ε ` 4, which
gives us 19

7p7n´4q ă ε, and thus
ˇ

ˇ

ˇ

3n`1
7n´4 ´

3
7

ˇ

ˇ

ˇ
ă ε. Then we are done.

Example 2.2.3. Prove limnÑ8 1` 1
np´1qn “ 1.

Scratch. @ε ą 0, we want n large enough, such that

|an ´ 1| ă ε ðñ

ˇ

ˇ

ˇ

ˇ

1` 1
n
p´1qn ´ 1

ˇ

ˇ

ˇ

ˇ

ă ε ðñ

ˇ

ˇ

ˇ

ˇ

1
n
p´1qn

ˇ

ˇ

ˇ

ˇ

ă ε ðñ
1
n
ă ε ðñ n ą

1
ε
.

Just take α “ 1
ε , then n ą N Ñ |an ´ 1| ă ε

2.3 Limit Theorems for Sequences
Definition 2.3.1 (Bounded). A sequence tsnu of real numbers is said to be bounded if the set
tsn | n P Nu is a bounded set, i.e., if there exists a constant M such that |sn| ďM for all n.

Theorem 2.3.2. Convergent sequences are bounded.

Proof. Let tsnu be a convergent sequence and let s “ limnÑ8 sn. Let ε ą 0 be fixed. Then by
convergence of the sequence, there exists an number N P N such that

n ą N ùñ |sn ´ s| ă ε.

By the triangle inequality we see that n ą N implies |sn| ă |s| ` ε. Define M “ max t|s| `
ε, |s1|, . . . , |sN |u. Then |sn| ďM for all n P N, so tsnu is a bounded sequence.

Theorem 2.3.3. Let tsnu and ttnu be sequences in R such that sn Ñ s and tn Ñ t. Let k P R
be a constant. Then

(i) ksn Ñ ks.

(ii) psn ` tnq Ñ s` t.

(iii) sntn Ñ st.

(iv) If sn ‰ 0 for all n, and if s ‰ 0, then 1
sn
Ñ 1

s .

(v) If sn ‰ 0 and s ‰ 0 for all n, then tn
sn
Ñ t

s .
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Proof of (i). Since the case where k “ 0 is trivial, we assume k ‰ 0. Let ε ą 0 and we want to
show that |ksn ´ ks| ă ε for large n. Since limnÑ8 “ s, there exists N such that

n ą N ùñ |sn ´ s| ă
ε

|k|
.

Then
n ą N ùñ |ksn ´ ks| ă ε.

Proof of (ii). Let ε ą 0. We need to show

|sn ` tn ´ ps` tq| ă ε for large n.

Using triangle inequality, we have |sn` tn´ ps` tq| ď |sn´ s| ` |tn´ t|. Since sn Ñ s, there exists
N1 such that

n ą N1 ùñ |sn ´ s| ă
ε

2 .

Similarly, there exists N2 such that

n ą N2 ùñ |tn ´ t| ă
ε

2 .

Let N “ max tN1, N2u. Then clearly

n ą N ùñ |sn ` tn ´ ps` tq| ď |sn ´ s| ` |tn ´ t| ă
ε

2 `
ε

2 “ ε.

Proof of (iii). We use the identity

sntn ´ st “ psn ´ sq ptn ´ tq ` s ptn ´ tq ` t psn ´ sq .

Given ε ą 0, there are integers N1, N2 such that

n ą N1 ùñ |sn ´ s| ă
?
ε

n ą N2 ùñ |tn ´ t| ă
?
ε

If we take N “ max tN1, N2u , n ě N implies

|psn ´ sq ptn ´ tq| ă ε

which implies that
lim
nÑ8

psn ´ sq ptn ´ tq “ 0.

Applying (i) and (ii), we get
lim
nÑ8

psntn ´ stq “ 0.

11
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Proof of (iv). Choosing m such that |sn ´ s| ă 1
2 |s| if n ě m, we see that

|sn| ą
1
2 |s| pn ě mq.

Given ε ą 0, there is an integer N ą m such that n ą N implies

|sn ´ s| ă
1
2 |s|

2ε.

Hence, for n ě N
ˇ

ˇ

ˇ

ˇ

1
sn
´

1
s

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

sn ´ s

sns

ˇ

ˇ

ˇ

ˇ

ă
2
|s|2

|sn ´ s| ă ε.

Proof of (v). Using (iv), we have 1
sn
Ñ 1

s , and by (iii), we get

lim
nÑ8

tn
sn
“ lim

nÑ8

1
sn
¨ tn “

1
s
¨ t “

t

s
.

Theorem 2.3.4.

(i) limnÑ8
1
np “ 0 for p ą 0.

(ii) limnÑ8 a
n “ 0 if |a| ă 1.

(iii) limnÑ8 n
1
n “ 1.

(iv) limnÑ8 a
1
n “ 1 for a ą 0.

Proof of (i). Let ε ą 0 and let N “
`1
ε

˘
1
p . Then n ą N implies np ą 1

ε and thus ε ą 1
np . Since

1
np ą 0, this shows n ą N implies

ˇ

ˇ

1
np ´ 0

ˇ

ˇ ă ε.

Proof of (ii). The case for a “ 0 is trivial. Suppose that a ‰ 0. Since |a| ă 1, we can write
|a| “ 1

1`b where b ą 0. By the binomial theorem, we have p1` bqn ě 1` nb ą nb, then

|an ´ 0| “ |an| “ 1
p1` bqn ă

1
nb
.

Consider ε ą 0 and let N “ 1
εb . Then n ą N implies n ą 1

εb and thus |an ´ 0| ă 1
nb ă ε.

Proof of (iii). Let sn “ n
1
n ´ 1. Then sn ě 0 and by the binomial theorem,

n “ p1` snqn ě
npn´ 1q

2 s2
n.

Hence,

0 ď sn ď

c

2
n´ 1 ùñ sn Ñ 0.

12
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Proof of (iv). Suppose a ą 1. Let sn “ a
1
n ´ 1. Then sn ą 0, and by the binomial theorem,

1` nsn ď p1` snqn “ a,

so that
0 ă sn ď

p´ 1
n

.

Hence, sn Ñ 0. The case for a “ 1 is trivial, and if 0 ă p ă 1, the result is obtained by taking
reciprocals.

2.3.1 Upper and lower limits

Definition 2.3.5. Let tsnu be a sequence of real numbers with the property that for every real M
there is an integer N such that n ě N implies sn ěM . We then write

sn Ñ `8.

Similarly, if for every real M there is an integer N such that n ě N implies sn ďM , we write

sn Ñ ´8.

2.4 Monotone Sequences and Cauchy Sequences
Definition 2.4.1 (Monotone sequence). A sequence tsnu of real numbers is called an increasing
sequence if sn ď sn`1 for all n, and tsnu is called a decreasing sequence if sn ě sn`1 for all n. If
tsnu is increasing, then sn ď sm whenever n ă m. A sequence that is increasing or decreasing will
be called a monotone sequence or a monotonic sequence.

Theorem 2.4.2. All bounded monotone sequences converge.

Proof. Let tsnu be a bounded increasing sequence, Let “ ts | n P Nu and let u “ supS, Since S is
bounded, u represents a real number. We show sn Ñ u. Let ε ą 0. Since u ´ ε is not an upper
bound for S, there exists N such that sN ą u´ ε.Since tsnu is increasing, sN ď sn for all n ě N .
Of course sn ď u for all n, so n ą N implies u ´ ε ă sn ď u, which implies |sn ´ u| ă ε. Hence
sn Ñ u. The proof for bounded decreasing sequences is left as an exercise.

Theorem 2.4.3.

(i) If tsnu is an unbounded increasing sequence, then sn Ñ `8.

(ii) If tsnu is an unbounded decreasing sequence, then sn Ñ ´8.

Corollary 2.4.4. If tsnu is a monotone sequence, then the sequence either converges, diverges
to `8, or ´8. Thus lim sn is always meaningful for monotone sequences.

Proof. Simply apply the previous two theorems.

13
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Definition 2.4.5. Let tsnu be a sequence in R. We define

lim sup sn “ lim
NÑ8

sup tsn | n ą Nu

and
lim inf sn “ lim

NÑ8
inf tsn | n ą Nu

Theorem 2.4.6. Let tsnu be a sequence in R.

(i) If lim sn is defined (real, or ˘8), then

lim inf sn “ lim sn “ lim sup sn.

(ii) If lim inf sn “ lim sup sn, then lim sn is defined and

lim sn “ lim inf sn “ lim sup sn.

Definition 2.4.7 (Cauchy sequence). A sequeunce tsnu of real numbers i called a Cauchy seque-
unce if for each ε ą 0 there exists a number N such that

m,n ą N ùñ |sn ´ sm| ă ε.

Lemma 2.4.8. Convergent sequences are Cauchy sequences.

Proof. Suppose lim sn “ s. Since the terms sn are close to s for large n, they must also be close to
each other; indeed

|sn ´ sm| “ |sn ´ s` s´ sm| ď |sn ´ s| ` |s´ sm|.

Let ε ą 0. Then there exists N such that

n ą N ùñ |sn ´ s| ă
ε

2 .

Clearly we can also write
m ą N ùñ |sm ´ s| ă

ε

2 ,
so

m,n ą N ùñ |sn ´ sm| ď |sn ´ s| ` |s´ sm| ă
ε

2 `
ε

2 “ ε.

Thus tsnu is a Cauchy sequence.

Lemma 2.4.9. Cauchy sequences are bounded.

Proof. Let ε “ 1. By definition, we have N in N such that

m,n ą N ùñ |sn ´ sm| ă 1.

In particular, |sn ´ sN`1| ă 1 for n ą N , so |sn| ă |sN`1| ` 1 for n ą N . If M “ max t|sN`1 `
1, |s1|, |s2|, . . . , |sN |u, then |sn| ďM for all n P N.

14
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Theorem 2.4.10. A sequence is a convergent sequence if and only if it is a Cauchy sequence.

Proof. Earlier we have shown one direction in a lemma. We now only need to show that Cauchy
sequences are convergent sequences. Consider a Cauchy sequence tsnu and it is bounded by previous
lemma. We now need to show that

lim inf sn “ lim sup sn.

Let ε ą 0. Since tsnu is a Cauchy sequence, there exists N so that

m,n ą N ùñ |sn ´ sm| ă ε.

In particular, sn ă sm` ε for all m,n ą N . This shows sm` ε is an upper bound for tsn | n ą Nu,
so vN “ sup tsn | n ą Nu ď sm ` ε for m ą N . This, in turn, shows vN ´ ε is a lower bound for
tsm | m ą Nu, so vN ´ ε ď inf tsm | m ą Nu “ uN . Thus

lim sup sn ď vN ď uN ` ε ď lim inf sn ` ε.

Since this holds for all ε ą 0, we have lim sup sn ď lim inf sn. Since lim sup sn ě lim inf sn always
holds, we are done.

2.4.1 Subsequences

Definition 2.4.11 (Subsequence). Suppose tsnunPN is a sequence. A subsequence of this sequence
is a sequence of the form ttkukPN

Theorem 2.4.12. Every sequence tsnu has a monotonic subsequence.

Proof. We say that the n-th term is dominant if sm ă sn for all m ą n. There are two cases:
Case 1: Suppose there are infinitely many dominant terms, and let tsnku be any subsequence

consisting solely of dominant terms. Then snk`1 ă snk
for all k, so tsnk

u is a decreasing sequence.
Case 2: Suppose there are only finitely many dominant terms. Select n1 so that sn1 is beyond

all the dominant terms of the sequence. Then given N ě n1, there existsm ą N such that sm ě sN .

Theorem 2.4.13 (Bolzano-Weierstrass Theorem). Every bounded sequence has a convergent
subsequence.

Proof. Using previous theorem, we have a monotonic subsequence. Since monotonic bounded
sequence are convergent, we are done.

Alternative proof. Suppose that tsnu is bounded. Then there exists M ą 0 such that |sn| ăM for
all n P N. Let A1 “ tn P N | sn P r0,M su, B1 “ tn P N | sn P r´M, 0su. Since A1 Y B1 “ N is an
infinite set, hence at least one of A1, B1 is infinite. WLOG assume that A1 is infinite. We then cut
r0,M s into two halves, and repeat the same procedure, then at least one of r0,M{2s and rM{2,M s
contains infinitely many points of the sequence. Then, we get a nested sequence of closed intervals,

I1 Ą I2 Ą ¨ ¨ ¨ , |In`1| “
1
2 |In|.

15
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One can pick subsequence tsnku such that for all k, snk is in Ik, and nk`1 ą nk. Then this
subsequence is Cauchy, hence is convergent.

Definition 2.4.14 (Subsequential limit). A subsequential limit is any real number or symbol ˘8
that is the limit of some subsequence of tsnu.
Example 2.4.15. Consider tsnu where sn “ n2p´1qn. The subsequence of even terms diverges to
`8 where as that of odd terms diverges to ´8. Hence, the set t´8,`8u is the set of subsequential
limits of tsnu.
Example 2.4.16. Consider trnu, a list of all rational numbers. Every real number is a subsequential
limit of trnu as well as ˘8. Thus, RY t´8,`8u is the set of subsequential limits of trnu.

Theorem 2.4.17. Let tsnu be any sequence. There exists a monotonic subsequence whose limit
is lim sup sn and there exists a monotonic subsequence whose limit is lim inf sn.

Proof. If tsnu is not bounded above, then a monotonic subsequence of tsnu has limit lim sup sn “
`8. Similarly, if tsnu is not bounded below, a monotonic subsuquence has limit lim inf sn.
Consider the case that it is bounded above. Let t “ lim sup sn, and consider ε ą 0. There exists
N0 so that for N ě N0,

sup tsn | n ą Nu ă t` ε.

In particular, sn ă t` ε for all n ą N0. We now claim

tn P N | |sn ´ t| ă εu is infinite.

Otherwise, there exists N1 ą N0

Theorem 2.4.18. Let tsnu be any sequence in R, and let S denote the set of subsequential
limits of tsnu.

(i) S is non-empty.

(ii) supS “ lim sup sn and infS “ lim inf sn.

(iii) lim sn exists if and only if S has exactly one element, namely lim sn.

Proof. (i) is an immediate consequence of the previous theorem.
To prove (ii), consider any limit t of a subsequence tsnku of tsnu. By the

2.5 lim sup’s and lim inf’s
Let tsnu be any sequence of real numbers, and let S be the set of subsequential limits of tsnu.
Recall the following definition:

lim sup sn “ lim
NÑ8

sup sn | n ą N “ supS

and
lim inf sn “ lim

NÑ8
inf sn | n ą N “ infS.

16
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Claim.
lim inf sn ď lim sup sn.

Proof. We know that
sup nąNsn ě inf nąNsn.

Then take limit N Ñ8.

Claim. If tsnk
u is a subsequence, then

lim sup snk
ď lim sup sn.

Theorem 2.5.1. If tsnu Ñ s ą 0 and ttnu is any sequence, then

lim sup sntn “ s ¨ lim sup tn.

Here we allow the conventions s ¨ p˘8q “ ˘8 for s ą 0.

Proof.

Question. If tsnk
¨ tnk

u converges, does that imply ttnk
u converges?

Answer. Yes. (Why?)

Theorem 2.5.2. Let tsnu be any sequence of nonzero real numbers. Then we have

lim inf
ˇ

ˇ

ˇ

ˇ

sn`1
sn

ˇ

ˇ

ˇ

ˇ

ď lim inf |sn|1{n ď lim sup |sn|1{n ď lim sup
ˇ

ˇ

ˇ

ˇ

sn`1
sn

ˇ

ˇ

ˇ

ˇ

.

Question. If tsnu is a bounded positive sequence, is sn`1
sn

a bounded sequence?

Answer. No. Consider 0 ă a, b ă 1, and take a “ 1
2 and b “ 1

n , then
a
b “

n
2 .

Claim. If tsnu is bounded and monotone, then the ratio sn`1
sn

eventually converges to 1.

Proof. Since tsnu is bounded and monotone, it must converge to some limit s. Then

lim sn`1
sn

“
lim sn`1
sn

“
s

s
“ 1.

Question. Is it possible to have sn to be bounded, but sn`1
sn

unbounded?
Answer. Yes. Consider

sn “

#

1 n is even;
1
n n is odd.

Question. If tsnu is positive and bounded, is it possible that sn`1
sn

Ñ 0?

Answer. Yes. Consider sn “ 1
n! . Then

lim sn`1
sn

“ lim
nÑ8

1
n` 1 “ 0.

17



Chapter 3

Metric Spaces and Topology

3.1 Metric Spaces
Definition 3.1.1 (Metric Space). A set X, containing elements called points, is said to be a metric
space if with any two points p and q of X there is associated a real number dpp, qq, called the
distance from p to q, such that

(i) dpp, qq ą 0 if p ‰ q; dpp, pq “ 0;

(ii) dpp, qq “ dpq, pq;

(iii) dpp, qq ď dpp, rq ` dpr, qq, for any r P X.

Any function with these three properties is called a distance function, or a metric.
Definition 3.1.2 (Induced Metric). Let pX, dq be a metric space, and let S Ă X. Then, pS, d|Sq is
a metric space, where d|S is the induced metric, which is the metric d when restricted to S.

3.1.1 Topological Definitions

Definition 3.1.3 (Topology). A topology on a set X is a collection T of subsets of X having the
following properties:

(i) ∅ and X are in T .

(ii) The union of the elements of any subcollection of T is in T .

(iii) The intersection of the elements of any finite subcollection of T is in T .

A set X for which a topology T has been specified is called a topological space.
Definition 3.1.4 (Open). If X is a topological space with topology T , we say that a subset U Ă X
is an open set of X if U belongs to the collection T . Hence, a topological space is a set X together
with a collection of open subsets of X, such that:

(i) H and X are both open;

(ii) arbitrary unions of open sets are open;

(iii) finite intersections of open sets are open.

18
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Definition 3.1.5 (Open/Closed Balls). Let pX, dq be a metric space. The open ball of radius ε at
x is defined by:

Bεppq :“ tx P X | dpp, xq ă εu

and the closed ball is defined by:

B̄εppq :“ tx P X | dpp, xq ď εu.

Sometimes we also use the neighborhood of p to represent any open ball of any radius centered
at p.
Definition 3.1.6 (Limit Point). A point p P E is a limit point if every open ball of p contains a
point q ‰ p such that q P E, i.e., for every δ ą 0,

Bxδ ppq X E ‰ H.

Definition 3.1.7 (Dense). E Ă X is dense in X if every points of X is a limit point of E or a point
of E, i.e., E “ X.
Definition 3.1.8 (Interior Point). Let pX, dq be a metric space, and E Ă X. A point p P E is called
an interior point of E if there is a open ball B of p such that B Ă E.

Definition 3.1.9 (Open Sets). A subset U Ă X is open if and only if for any p P U , there exists
δ ą 0 such that the open ball

Bδppq “ tx P X | dpp, xq ă δu Ă U.

In other words, U is open if every point of U is interior.
Definition 3.1.10 (Closed Sets). A subset E Ă X is closed if every limit point of E is a point
of E. Equivalently, E is closed if and only if for any point x P Ec, there exists δ ą 0, such that
Bδpxq X E “ H.

Theorem 3.1.11 (Open/Closed). A set E is open if and only if its complement Ec is closed.
Similarly, it is closed if and only if its complement is open.

Definition 3.1.12 (Closure). Let X be a metric space, if E Ă X, the closure of E is the set
E “ E Y E1, where E1 is the set of all limit points of E. In other words, the closure of E is the
intersection of all closed sets containing E, i.e., it is the smallest closed set containing E.

Theorem 3.1.13. If X is a metric space and E Ă X, then

(i) the closure E is closed;

(ii) E “ E if and only if E is closed;

(iii) E Ă F for every closed set F Ă X such that E Ă F .

3.1.2 Compact Sets

Definition 3.1.14 (Open Cover). An open cover of a set E in a metric space X is a collection tUiu
of open subsets of X such that E Ă

Ť

i Ui.
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Definition 3.1.15 (Compact Set). Let K Ă S. K is compact if every open cover of K contains a
finite subcover. More explicitly, the requirement is that if tGαu is an open cover of K, then there
are finitely many indices α1, . . . , αn such that

K Ă Gα1 Y ¨ ¨ ¨ YGαn .

Remark. Every finite set is compact. R is not compact.

Theorem 3.1.16. Compact subsets of metric spaces are closed.

Theorem 3.1.17. Closed subsets of compact sets are compact.

Corollary 3.1.18. If F is closed and K is compact, then F YK is compact.

Theorem 3.1.19 (Heine-Borel Theorem). A subset E Ă Rk is compact if and only if it is closed
and bounded.

Theorem 3.1.20. If E Ă X is compact, then E is a closed and bounded subset of X.

Theorem 3.1.21 (Weierstrass). Every bounded infinite subset of Rk has a limit point in Rk.

Definition 3.1.22 (Convergence of Metric Space). A sequence tsnu in a metric space pS, dq con-
verges to s P S if limnÑ8 dpsn, sq “ 0. The sequence is a Cauchy sequence if for each ε ą 0, there
exists an N such that

m,n ą N ùñ dpsm, snq ă ε.

Lemma 3.1.23. If tsnu converges to s, then sn is Cauchy.

Proof. For any ε ą 0, there exists N ą 0 such that for all n ą N

dpsn, sq ă
ε

2 .

Thus, for all n,m ą N , we have

dpsn, smq ď dpsn, sq ` dpsm, sq

ă
ε

2 `
ε

2 “ ε.

Definition 3.1.24 (Completeness). The metric space pS, dq is complete if every Cauchy sequence
in S converges to some element in S.
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Example 3.1.25 (Non-complete Metric Spaces).

1. S “ Rzt0u.

2. S “ Q.

Lemma 3.1.26. A sequence txpnqu P Rk converges iff for each j “ 1, 2, . . . , k, the sequence pxnj q
converges in R. A sequence txpnqu in Rk is a Cauchy sequence iff each sequence txpnqj u is a
Cauchy sequence in R.

Theorem 3.1.27. Euclidean k-space Rk is complete.

Theorem 3.1.28 (Bolzano-Weierstrass Theorem). Every bounded sequence in Rk has a conver-
gent subsequence.

Theorem 3.1.29. Let tFnu be a decreasing sequence (F1 Ě F2 Ě ¨ ¨ ¨ ) of closed bounded
nonempty sets in Rk. Then F “

Ş8
n“1 Fn is also closed, bounded and nonempty.

Definition 3.1.30 (Open Cover). Let E Ă S. An open cover of E is a collection tGαuof open
subsets of S such that E Ă

Ť

αGα.
Remark. Every finite set is compact. R is not compact.

Theorem 3.1.31 (Heine-Borel Theorem). A subset E of Rk is compact iff it is closed and
bounded.

Proof. Suppose E Ă S is compact. Then pick some point p P S and consider tBnppq | n P Nu,
which covers S and thus covers E as well:

E Ă S “
ď

nPN
Bnppq.

Since E is compact, there is a finite subcover such that

E Ă
M
ď

i“1
Bnippq.

We can order the indices such that n1 ă n2 ă ¨ ¨ ¨ , nM then

E Ă BnM ppq,

which implies that E is bounded. In particular, for any points x, y P E,

dpx, yq ď dpx, pq ` dpy, pq ď 2 ¨ nM .

The remaining of the proof is left as an exercise.
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Theorem 3.1.32. Every k-cell F in Rk is compact.

3.2 Connected Sets
Definition 3.2.1 (Separated). Two subsets A,B of a metric space X are separated if both AXB
and AXB are empty, i.e
Definition 3.2.2 (Connected Sets). A set E Ă X is connected if E is not a union of two nonempty
separated sets.

Theorem 3.2.3. A subset E of R is connected if and only if x, y P E and z P px, yq implies
z P E.
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Chapter 4

Series

4.1 Series
In this section we are interested in convergence of series, thus we use

ř

an to denote
ř8
i“1 ai.

Definition 4.1.1 (Convergence/Divergence). The n-th partial sum of a sequence tanu is defined as
sn “

řn
i“1 ai. We say that

ř

an converges iff the sequence of partial sums tsnu converges to a
real number. Otherwise, we say that the series diverges.
Definition 4.1.2 (Absolute Convergence). The series

ř

an converges absolutely if
ř

|an| con-
verges.
Definition 4.1.3 (Geometric Series). A series of the form

ř8
n“0 ar

n for constants a and r is a
geometric series. For r ‰ 1,

n
ÿ

k“0
ark “

ap1´ rn`1q

1´ r .

For |r| ă 1, since limnÑ8 r
n`1 “ 0, using the formula above gives

8
ÿ

k“0
ark “

a

1´ r .

If a ‰ 0 and |r| ě 1, then the sequence tarnu does not converge to 0, so the series diverges.
Definition 4.1.4 (Cauchy Criterion). A series

ř

an satisfies the Cauchy criterion if its sequence
tsnu of partial sums is a Cauchy sequence, i.e., for each ε ą 0, there exists N P N such that

n ě m ą N ùñ

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“m

ai

ˇ

ˇ

ˇ

ˇ

ˇ

ă ε.

Theorem 4.1.5. A series converges iff it satisfies the Cauchy criterion.

Corollary 4.1.6. If a series
ř

an converges, then lim an “ 0.

Proof. By Cauchy criterion, take n “ m. Then for ε ą 0, there exists N such that n ą N implies
|an| ă ε. Thus, lim an “ 0.
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Remark. The converse is not true. Consider
ř 1

n “ `8.

Theorem 4.1.7 (Comparison Test). Let
ř

an be a series where an ě 0 for all n.

(i) If
ř

an converges and |bn| ď an for all n, then
ř

bn converges.

(ii) If
ř

an “ `8 and bn ě an for all n, then
ř

bn “ `8.

Proof of (i). For n ě m, by the triangle inequality, we have
ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“m

bk

ˇ

ˇ

ˇ

ˇ

ˇ

ď

n
ÿ

k“m

|bk| ď
n
ÿ

k“m

ak.

Since
ř

an converges, it satisfies the Cauchy criterion. It follows from the above that
ř

bn also
satisfies the Cauchy criterion, and so

ř

bn converges.

Proof of (ii). Let tsnu and ttnu be the sequences of partial sums for
ř

an and
ř

bn respectively.
Since bn ě an for all n, we have tn ě sn for all n. Since lim sn “ `8, lim tn “ `8, and so
ř

bn “ `8.

Theorem 4.1.8 (Ratio Test). A series
ř

an of nonzero terms

1. converges absolutely if lim sup
ˇ

ˇ

ˇ

an`1
an

ˇ

ˇ

ˇ
ă 1;

2. diverges if lim inf
ˇ

ˇ

ˇ

an`1
an

ˇ

ˇ

ˇ
ą 1.

3. Otherwise lim inf
ˇ

ˇ

ˇ

an`1
an

ˇ

ˇ

ˇ
ď 1 ď lim sup

ˇ

ˇ

ˇ

an`1
an

ˇ

ˇ

ˇ
and the test gives no information.

Theorem 4.1.9 (Root Test). Let
ř

an be a series and let α “ lim sup |an|
1
n . The series

ř

an

(i) converges absolutely if α ă 1;

(ii) diverges if α ą 1.

(iii) Otherwise, the test gives no information if α “ 1.

4.2 Alternating Series

Theorem 4.2.1.
ř 1

np converges iff p ą 1.

Proof. If p ą 1, then
n
ÿ

k“1

1
kp
ď 1`

ż n

1

1
xp
dx “ 1` 1

p´ 1

ˆ

1´ 1
np´1

˙

ă 1` 1
p´ 1 “

p

p´ 1 .
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Hence,
8
ÿ

n“1

1
np
ď

p

p´ 1 ă `8.

If 0 ă p ď 1, then 1
n ď

1
np for all n. Since

ř 1
n diverges,

ř 1
np diverges as well by the Comparison

Test.

Theorem 4.2.2 (Integral Tests). Suppose that fpxq ą 0 and is decreasing on the infinite interval
rk,8q (for some k ě 1) and that an “ fpnq. Then the series

ř8
n“1 an converges if and only if

the improper integral
ş8

1 fpxqdx converges.

Theorem 4.2.3 (Alternating Series Theorem). If a1 ě a2 ě ¨ ¨ ¨ ě an ě ¨ ¨ ¨ ě 0 and lim an “
0, then the alternating series

ř

p´1qn`1an converges. Moreover, the partial sums sn “
řn
k“1p´1qk`1ak satisfy |s´ sn| ď an for all n.

Proof. Define sn “
řn
j“1 aj . The subsequence ts2nu is increasing because s2n`2 ´ s2n “ ´a2n`2 `

a2n`1 ě 0, Similarly, the subsequence ts2n´1u is decreasing.
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Chapter 5

Continuity

5.1 Limits of Functions
Definition 5.1.1 (ε-δ limit). Let X,Y be metric spaces, and E Ă X, and p a limit point of E. We
write the limit

lim
xÑp

fpxq “ fppq

if there exists fpqq P Y such that for every ε ą 0 there exists a δ ą 0 such that

0 ă dXpx, pq ă δ ùñ dY pfpxq, fppqq ă ε.

Theorem 5.1.2.
lim
xÑp

fpxq “ q

if and only if
lim
nÑ8

f ppnq “ q

for every sequence tpnu such that pn ‰ p (for all n) and pn Ñ p.

5.1.1 Continuous Functions

Definition 5.1.3 (Continuity). Let X and Y be metric spaces. A function f : X Ñ Y is continuous
at p P X if for any ε ą 0, there exists δ ą 0 such that for every x P X,

dXpx, pq ă δ ùñ dY pfpxq, fppq ă ε.

Or equivalently, for every ε ą 0, there is a δ ą 0 such that

f pBδppqq Ă Bεpfppqq.

Theorem 5.1.4. If p is a limit point of E. Then f is continuous at p if and only if limxÑp fpxq “
fppq.
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Theorem 5.1.5 (Preimage of open subset is open). Let X and Y be metric spaces. A function
f : X Ñ Y is continuous if and only if for every open subset U Ă Y , f´1pUq is open.

Theorem 5.1.6 (Composition of continuous functions is continuous). If f : X Ñ Y and g : Y Ñ
Z are continuous, then

g ˝ f : X Ñ Z is continuous.

Theorem 5.1.7. Let f, g be complex continuous functions on metric space X. Then f ` g, fg,
and f |g are continuous on X.

5.2 Continuity and Compactness
Definition 5.2.1. A function f : X Ñ Y is bounded if there exists M P R such that |fpxq| ď M
for all x P X.

Theorem 5.2.2 (Compactness is preserved under continuity). If f is a continuous mapping of a
compact metric space X into a metric space Y . Then fpXq is compact.

Theorem 5.2.3. Suppose f is a continuous real function on a compact metric space X, and

M “ sup pPXfppq, m “ inf pPXfppq

Then there exist points p, q P X such that fppq “M and fpqq “ m.

5.3 Uniform Continuity
Definition 5.3.1 (Uniformly Continuous). Let f be a mapping of a metric space X into a metric
space Y . We say that f is uniformly continuous on X if for every ε ą 0 there exists δ ą 0 such
that p15q

dY pfppq, fpqqq ă ε

for all p and q in X for which dXpp, qq ă δ

Theorem 5.3.2. Let f be a continuous mapping of a compact metric space X into a metric
space Y . Then f is uniformly continuous on X.

5.4 Continuity and Connectedness
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Theorem 5.4.1 (Connectedness is preserved under continuity). If f is a continuous mapping of
metric space X to metric space Y and if E is a connected subset of X, then fpEq is connected.

Theorem 5.4.2 (Intermediate Value Theorem). Let f be a continuous real function on ra, bs. If
fpaq ă fpbq and if c P pfpaq, fpbqq, then there exists a point x P pa, bq such that fpxq “ c.

Proof. Since ra, bs is connected, fpra, bsq is also connected subset of R, which implies that rfpaq, fpbqs Ă
fpra, bsq.
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Chapter 6

Differentiation

6.1 The Derivative of a Real Function
Definition 6.1.1 (Derivative). Let f : ra, bs Ñ R be a real valued function. We say f is differen-
tiable at a point p P ra, bs if the following limit exists:

f 1ppq “ lim
xÑp

fpxq ´ fppq

x´ p
px P ra, bsztpuq

f 1 is called the derivative of f .

Theorem 6.1.2. If f is differentiable at p P ra, bs, then f is continuous at p.

Proof. We simply show that limxÑp fpxq “ fppq, or limxÑppfpxq ´ fppqq “ 0. Since f 1ppq exists,
we have

lim
xÑp

pfpxq ´ fppqq “ lim
xÑp

ˆ

fpxq ´ fppq

x´ p
¨ px´ pq

˙

“

ˆ

lim
xÑp

fpxq ´ fppq

x´ p

˙

¨

ˆ

lim
xÑp

x´ p

˙

“ f 1ppq ¨ 0
“ 0.

Remark. It is not true that if f is differentiable at p, then f is continuous in a neighborhood of p.
Consider

fpxq “

#

x2 x P Q
´x2 x R Q.

f is both continuous and differentiable only at x “ 0.
Remark. Consider

fpxq “

#

x2 sin
` 1
x

˘

x ‰ 0
0 x “ 0.
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f 1p0q does not exist because

lim
xÑ0

fpxq ´ fp0q
x´ 0 “ lim

xÑ0
sin

ˆ

1
x

˙

does not exist.
Question. If f : RÑ R is a continuous function, and f 1pxq exists at all x P R. Is f 1 continuous?
Answer. No. Consider

fpxq “

#

x2 sin
` 1
x

˘

x ą 0
0 x ď 0.

Since f 1p0`q “ f 1p0´q “ 0, f 1p0q “ 0. For x ą 0, limxÑ0` f
1pxq ‰ 0.

Theorem 6.1.3. Let f, g : ra, bs Ñ R and assume f, g are differentiable at p. Then

(i) pf ` gq1ppq “ f 1ppq ` g1ppq;

(ii) pf ¨ gq1ppq “ f 1ppqgppq ` fppqg1ppq;

(iii) if gppq ‰ 0, then

pf{gq1ppq “
f 1g ´ fg1

g2 .

Proof of (ii).

lim
xÑp

fpxqgpxq ´ fppqgppq

x´ p
“ lim

xÑp

fpxqgpxq ´ fpxqgppq ` fpxqgppq ´ fppqgppq

x´ p

“ lim
xÑp

fpxq ¨
gpxq ´ gppq

x´ p
` lim
xÑp

fpxq ´ fppq

x´ p
¨ gppq

“ fppqg1ppq ` f 1ppqgppq.

Theorem 6.1.4 (Chain Rule). Let f : ra, bs Ñ R be differentiable at x0 P ra, bs, and g : I Ñ R
where fpra, bsq Ă I, and g is differentiable at fpx0q. If

hpxq “ gpfpxqq px P ra, bsq,

then h is differentiable at x0 and

h1px0q “ g1pfpx0qqf
1px0q.

Proof. Let y “ fpxq and y0 “ fpx0q.

lim
xÑx0

hpxq ´ hpx0q

x´ x0
“ lim

xÑx0

gpyq ´ gpy0q

x´ x0
.

Since f 1px0q exists, there exist functions u, v such that

fpxq “ fpx0q ` px´ x0qpf
1px0q ` upxqq;
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gpyq “ gpy0q ` py ´ y0qpg
1py0q ` vpyqq,

and limxÑx0 upxq “ 0 ,limyÑy0 vpyq “ 0. Then

gpfpxqq ´ gpfpx0qq “ pfpxq ´ fpx0qqpg
1pfpx0qq ` vpfpxqqq

“ px´ x0qpf
1px0q ` upxqqpg

1pfpx0qq ` vpfpxqqq.

Hence,

lim
xÑx0

gpfpxqq ´ gpfpx0qq

x´ x0
“ lim

xÑx0
pf 1px0q ` upxqqpg

1pfpx0qq ` vpfpxqqq

“ f 1px0qg
1pfpx0qq.

6.2 Mean Value Theorem
Definition 6.2.1 (Local Maximum). A point p is a local maximum of f if there exists a δ ą 0
such that fppq “ max fpBδppqq. Likewise for local minimum.
Remark. If f is locally constant at p, then p is both a local maximum and local minimum.

Lemma 6.2.2. Let f : ra, bs Ñ R. If f has a local maximum or local minimum at p P pa, bq,
and if f 1ppq exists, then f 1ppq “ 0.

Proof. Suppose f has a local maximum at p. Then there exists δ ą 0 such that fppq ě fpxq for
x P pp´ δ, p` δq. The derivative is

f 1ppq “ lim
xÑp

fpxq ´ fppq

x´ p
.

This limit is ě 0 when x ď p and ď 0 when xp. Since f 1ppq exists, then by squeeze theorem we
must have f 1ppq “ 0.

Remark. The conditions that p P pa, bq and f 1ppq exists are required since the endpoints a, b can be
local maxima but the slopes there are not zero. In addition, there can be cases where p is a local
maximum but f 1ppq does not exist, consider fpxq “ ´|x|.

Theorem 6.2.3 (Rolle’s Theorem). Let f : ra, bs Ñ R be continuous, and suppose f is differen-
tiable on pa, bq, and fpaq “ fpbq. Then there exists some c P pa, bq such that f 1pcq “ 0.

Remark. Note that ra, bs Ă R is compact, and so fpra, bsq is also compact.

Proof. Consider the following cases:

• if fpra, bsq is a single point, then f is a constant function, any c P pa, bq has f 1pcq “ 0.

• if max pfpra, bqs ‰ fpaq, then let p P pa, bq such that fppq “ max pfpra, bsq. Then by the above
lemma, we have f 1ppq “ 0, where we let c “ p.

• if min pf ra, bsqq ‰ fpaq, then similar argument shows f 1ppq “ 0.
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Theorem 6.2.4 (Generalized Mean Value Theorem). Let f, g : ra, bs Ñ R be continuous and
differentiable in pa, bq. Then there exists c P pa, bq such that

rfpbq ´ fpaqsg1pcq “ rgpbq ´ gpaqsf 1pcq.

Proof. Take hpxq “ rfpbq ´ fpaqsgpxq ´ rgpbq ´ gpaqsfpxq. Then we have hpaq “ hpbq. Hence, by
Rolle’s theorem, there exists c P pa, bq such that h1pcq “ 0 as desired.

Theorem 6.2.5 (Mean Value Theorem). If f : ra, bs Ñ R is continuous and differentiable on
pa, bq, then there exists c P pa, bq such that

fpbq ´ fpaq “ pb´ aqf 1pcq.

Proof. Use the generalized Mean Value Theorem by taking gpxq “ x.

Corollary 6.2.6. Let f be differentiable on pa, bq. Then for all x P pa, bq,

(i) if f 1pxq ě 0, then f is strictly increasing;

(ii) if f 1pxq “ 0, then f is constant;

(iii) if f 1pxq ď 0, then f is strictly decreasing.

Proof of (i). Let x ă y be in pa, bq. Then applying Mean Value Theorem to rx, ys, there exists
some c P px, yq such that

f 1pcq “
fpyq ´ fpxq

y ´ x
ě 0.

Hence, we have fpyq ě fpxq. Similar arguments apply to the other two claims.

Corollary 6.2.7. Suppose f : RÑ R is continuous and differentiable everywhere on R. Suppose
there exists M ą 0 such that |f 1pxq| ďM for all x P R. Then f is uniformly continuous.

Proof. For any ε ą 0, take δ “ ε
M . Then for any x ‰ y, with |x´y| ă δ, there exists some c P px, yq

such that

fpyq ´ fpxq “ py ´ xqf 1pcq,

which implies

|fpyq ´ fpxq| “ |y ´ x| ¨ |f 1pcq|

ă δ ¨M “ ε.

32



MATH 104: Real Analysis Kelvin Lee

Theorem 6.2.8 (Intermediate Value Theorem for Derivatives). Let f : ra, bs Ñ R be differentiable
such that f 1paq ă f 1pbq. Then for any λ P pf 1paq, f 1pbqq, there exists some c P pa, bq such that
f 1pcq “ λ.

Remark. This is not an immediate application of the intermediate value theorem as the derivatives
of continuous functions may not be continuous.

Proof. Let gpxq “ fpxq ´ λx. Our goal is to show that g has a root in pa, bq. Since g1paq “
f 1paq ´ λ ă 0, and g1pbq “ f 1pbq ´ λ ą 0. Let c P ra, bs such that c “ min gpra, bsq. Since g1paq ă 0
and g1pbq ą 0, a, b are not global minimum, which implies that there exists some c P pa, bq that is
a global minimum. Then using the previous lemma, we know that g1pcq “ f 1pcq ´ λ “ 0 and so
f 1pcq “ λ.

6.3 L’Hospital’s Rule

Theorem 6.3.1 (L’Hospital’s Rule). Suppose f, g : ra, bs P R are differentiable in pa, bq and
g1pxq ‰ 0 for all x P pa, bq, where ´8 ď a ă b ď `8. Suppose

lim
xÑa

f 1pxq

g1pxq
“ L P RY t`8,´8u

and one of the following holds:

(i) limxÑa fpxq “ limxÑa gpxq “ 0;

(ii) limxÑa |gpxq| “ limxÑa |fpxq| “ `8.

Then we have
lim
xÑa

fpxq

gpxq
“ L.

Proof. TODO.

Example 6.3.2.

lim
xÑ8

ˆ

1` 1
x

˙x

“ lim
xÑ8

ex log p1` 1
xq

“ elimxÑ8 x logp1` 1
xq

“ e.

6.4 Derivatives of Higher Order
Definition 6.4.1. If f 1pxq is differentiable at x0, then the second derivative is defined as f2px0q “
pf 1q1px0q. Similarly, if the pn ´ 1q-th derivative f pn´1q exists and is differentiable at x0, then the
n-th derivative is defined as f pnqpx0q “ pf

pn´1qq1px0q.
Definition 6.4.2 (Smoothness). fpxq is a smooth function on pa, bq if for any x P pa, bq, f pkqpxq
exists for all k P N. We also say that f is infinitely differentiable.
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6.5 Taylor’s Series
Definition 6.5.1 (Power Series). Given a sequence tcnuně0. A power series is defined by

8
ÿ

n“0
cnpx´ x0q

n.

Proposition 6.5.2. Given a power series

fpzq “
8
ÿ

n“0
cnz

n.

Let α “ lim sup n
a

|cn| and R “ 1
α . Then fpzq converges for |z| ă R and diverges for |z| ą R

(equality gives no info), where R is the radius of convergence.

Proof. Use root test for absolute convergence. If |z| ă R, then |cnzn|1{n “ |cn|1{n|z|. Hence,

lim
nÑ8

sup |cnzn|1{n “ α|z| ă 1.

Thus,
ř

n |cnz
n| is convergent, which implies that

ř

n cnz
n is convergent (absolute convergence

implies convergence). If |z| ą R, one can show that |cnzn| does not converge to 0.

Definition 6.5.3 (Taylor Series). Let f be a smooth function for which all higher derivatives exist
at α. Then the Taylor series of f at α is defined as the power series

Tαpxq “
8
ÿ

k“0

f pkqpαq

k! px´ αqk.

Remark. The series may not converge. Even if it converges, the limit may not be fpxq.

Theorem 6.5.4 (Taylor’s Theorem). Let f : ra, bs Ñ R, f pn´1q exists and is continuous on ra, bs
and f pnq exists on pa, bq. Let α, β P ra, bs be distinct points and define

Pαpxq “
n´1
ÿ

k“0

f pkqpαq

k! px´ αqk.

Then for any β P pa, bq, if β ‰ α, there exists γ P rα, βs such that

fpβq “ Pαpβq `
f pnqpγq

n! pβ ´ αqn.

Intuition: Given a smooth function f , we can approximate fpxq near α of different levels:

(i) 0-th order:
Pα,0 “ fpαq.

(ii) 1-th order:
Pα,1pxq “ fpαq ` f 1pαqpx´ αq.
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(iii) 2-nd order

Pα,2pxq “ fpαq ` f 1pαqpx´ αq `
f2pαq

2! px´ αq2.

Taylor’s theorem is all about the error term fpxq ´ Pα,n´1pxq.
Remark. If n “ 1, then Pαpxq “ fpαq. The statement then becomes there exists γ P pα, βq such
that

fpβq ´ fpαq “ f 1pγqpβ ´ αq,

which is the Mean Value Theorem. In general, the theorem shows that f can be approximated by
a polynomial of degree n´ 1, and we can estimate the error, if we know bounds on |f pnqpxq|.

Proof. Let P pxq .“ Pαpxq for simplicity and let M be the number defined by

fpβq ´ P pβq “ pβ ´ αqnM.

Define
gpxq “ fpxq ´ P pxq ´Mpx´ αqn.

Then gpβq “ fpβq ´ P pβq ´Mpβ ´ αqn “ 0 by the choice of M and gpαq “ fpαq ´ P pαq ´ 0 “ 0.
We want to show that M “

f pnqpγq
n! for some γ P pα, βq. By definition of g,

gpnqpxq “ f pnqpxq ´ n!M (P pxq is degree n´ 1 polynomial in X).

Now our goal is to show that for any x P pa, bq there exists γ P pα, βq such that gpnqpγq “ 0.
Since we have gpαq “ gpβq “ 0, by Rolle’s there exists some γ1 P pα, βq such that g1pγ1q “ 0.

In addition, we have gpkqpαq “ 0 for k P t1, . . . , n ´ 1u. Since g1pαq “ 0 and g1pγ1q “ 0, by
Rolle’s there exists γ P pα, γ1q such that g2pγ2q “ 0. Then we repeat the argument and get
γn P pα, γn´1q such that gpnqpγnq “ 0. Let γ “ γn, then gpnqpγq “ 0.

Definition 6.5.5 (Analytic function). If a smooth function fpxq satisfies the condition that for any
x0 P pa, bq there exists γ0 ą 0 such that

fpxq “ Tx0pxq, @|x´ x0| ă γ0,

then we say fpxq is a (real) analytic function.
Remark. sinpxq, cospxq, ex, polynomials, and combinations of any of them are real analytic func-
tions.
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Chapter 7

The Riemann-Stieltjes Integral

7.1 Definition and Existence of the Integral
Definition 7.1.1 (Partition). A partition P of ra, bs Ă R is a finite set of points txiuni“0 where
a “ x0 ď x1 ď ¨ ¨ ¨ ď xn´1 ď xn “ b, i.e.,

ra, bs “
n´1
ď

i“0
rxi, xi`1s

Define
∆xi “ xi ´ xi´1, @i P N.

Let f : ra, bs Ñ R be real and bounded for the remaining of this section.

Definition 7.1.2 (Upper/lower Darboux sums). Given f and a partition P of ra, bs, the upper and
lower Darboux sums are defined by

UpP, fq “
n
ÿ

i“1
Mi∆xi where Mi “ sup tfpxq | x P rxi´1, xisu,

LpP, fq “
n
ÿ

i“1
mi∆xi where mi “ inf tfpxq | x P rxi´1, xisu.

Definition 7.1.3 (Upper/lower Darboux integrals). The upper and lower Darboux integrals are
defined by

Upfq
.
“

ż b

a
fpxqdx “ infUpP, fq,

Lpfq
.
“

ż b

a
fpxqdx “ supLpP, fq.

Definition 7.1.4 (Riemann Integral). If Upfq “ Lpfq, then the common value is denoted by
ż b

a
fdx, or

ż b

a
fpxqdx,

which is the Riemann integral of f over ra, bs and f is said to be Riemann-integrable on ra, bs
and we write f P R (set of Riemann-integrable functions).
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Since f is bounded, there exists m,M P R such that m ď fpxq ď M over ra, bs. Hence, for every
P ,

mpb´ aq ď LpP, fq ď UpP, fq ďMpb´ aq.

Remark. This shows that the upper and lower integrals are defined for every bounded function f .

Theorem 7.1.5. Suppose f : ra, bs Ñ R is bounded. Then f P R if and only if for each ε ą 0
there exists a partition P of ra, bs such that

UpP, fq ´ LpP, fq ă ε.

Let α : ra, bs Ñ R be a monotonically increasing weight function. Define

∆αi “ αpxiq ´ αpxi´1q.

Then define

UpP, f, αq “
n
ÿ

i“1
Mi∆αi,

LpP, f, αq “
n
ÿ

i“1
mi∆αi,

and

Upf, αq
.
“

ż b

a
fdα “ infUpP, f, αq,

Lpf, αq
.
“

ż b

a
fdα “ supLpP, f, αq,

Definition 7.1.6 (Riemann-Stieltjes integral). If Upf, αq “ Lpf, αq, then the common value is de-
noted by

ż b

a
fdα, or

ż b

a
fpxqdαpxq,

which is the Riemann-Stieltjes integral of f with respect to α over ra, bs. f is also said to be
integrable with respect to α, and write f P Rpαq on ra, bs.
Remark. By taking αpxq “ x, the Riemann integral is seen to be a special case of the Riemann-
Stieltjes integral.
Remark. Similarly as above, since f is bounded, we have the following inequalities:

mpαpbq ´ αpaqq ď LpP, f, αq ď UpP, f, αq ďMpαpbq ´ αpaqq.

Definition 7.1.7 (Refinement). Let P,Q be two partitions of ra, bs, where

P “ ta “ x0 ď x1 ď x2 ď ¨ ¨ ¨ ď xn “ bu

Q “ ta “ y0 ď y1 ď y2 ď ¨ ¨ ¨ ď ym “ bu.

Q is a refinement of P if Q Ą P . Further, any two partitions P and Q have a common
refinement P YQ.
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Lemma 7.1.8. If Q is a refinement of P , then

LpP, f, αq ď LpQ, f, αq ď UpQ, f, αq ď UpP, f, αq.

In simpler terms, the refinement of partition improves the approximation.

Proof. It suffices to prove the case that Q has one more point than P . Let that point be x˚ such
that x˚ P pxi´1, xiq. Then let

w1 “ inf tfpxq | x P rxi´1, x
˚su

w2 “ inf tfpxq | x P rx˚, xisu.

Clearly w1 ě mi and w2 ě mi, where as before

mi “ inf tfpxq | x P rxi´1, xisu.

Hence,

LpQ, f, αq ´ LpP, f, αq “ w1rαpx
˚q ´ αpxi´1s ` w2rαpxiq ´ αpx

˚qs ´mirαpxiq ´ αpxi´1s

“ pw1 ´miqrαpx
˚q ´ αpxi´1qs ` pw2 ´miqrαpxiq ´ αpx

˚qs

ě 0.

Similar argument applies to the second inequality.

Theorem 7.1.9.
Lpf, αq ď Upf, αq.

Proof. For any partitions P1, P2 with common refinement Q “ P1 Y P2, we have

LpP1, f, αq ď LpQ, f, αq ď UpQ, f, αq ď UpP2, f, αq.

Then taking the sup over P1 and the inf over P2 gives

Lpf, αq ď Upf, αq.

Theorem 7.1.10 (Cauchy Criterion). f P Rpαq on ra, bs if and only if for every ε ą 0 there
exists a partition P such that

UpP, f, αq ´ LpP, f, αq ă ε.

Proof. By definition of sup and inf, for every partition P , we have

LpP, f, αq ď Lpf, αq ď Upf, αq ď UpP, f, αq,

which implies
0 ď Upf, αq ´ Lpf, αq ď UpP, f, αq ´ LpP, f, αq.
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Since for every ε there exists a partition P such that

UpP, f, αq ´ LpP, f, αq ă ε.

Hence for every ε ą 0, we have
0 ď Upf, αq ´ Lpf, αq ă ε,

which implies that Upf, αq “ Lpf, αq, that is, f P Rpαq.
Conversely, suppose f P Rpαq, and let ε ą 0 be given. Since

ż

fdα “ sup PLpP, f, αq “ inf PUpP, f, αq,

there exists P1, P2 such that
ż

fdα´ LpP1, f, αq ă
ε

2

UpP2, f, αq ´

ż

fdα ă
ε

2 .

Now let P “ P1 Y P2 be the common refinement. Then we have
ż

fdα´ LpP, f, αq ă
ε

2

UpP, f, αq ´

ż

fdα ă
ε

2 ,

which implies
UpP, f, αq ´ LpP, f, αq ă ε.

Theorem 7.1.11. Let UP “ UpP, f, αq and LP “ LpP, f, αq.

(i) If UP ´ LP ă ε, then for any Q, refinement of P , we have

UQ ´ LQ ă ε.

(ii) If UP ´ LP ă ε, and let si, ti P rxi´1, xis, then
n
ÿ

i“1
|fpsiq ´ fptiq|∆αi ă ε.

(iii) If f P Rpαq, and UP ´ LP ă ε, si P rxi´1, xis, then
ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1
fptiq∆αi ´

ż b

a
fdα

ˇ

ˇ

ˇ

ˇ

ˇ

ă ε.
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Proof of (ii). Since |fpsiq ´ fptiq| ďMi ´mi, we have
n
ÿ

i“1
|fpsiq ´ fptiq|∆αi ď

n
ÿ

i“1
pMi ´miq∆αi

“ UP ´ LP

ă ε.

Theorem 7.1.12. If f is continuous on ra, bs, then f P Rpαq on ra, bs.

Proof. Let ε ą 0 be given. Since f is continuous on a compact set, f is uniformly continuous.
Hence, for every η ą 0, there eixsts δpηq ą 0 such that |x´ y| ă δpηq implies |fpxq ´ fpyq| ă η.

Take a partition P where ∆xi ă δpηq so that

Mi ´mi ď η.

Hence,

UpP, f, αq ´ LpP, f, αq “
n
ÿ

i“1
pMi ´miq∆αi

ď

n
ÿ

i“1
η∆αi

“ ηpαpbq ´ αpaqq.

Choose η such that ηpαpbq ´ αpaqq ă ε.

Theorem 7.1.13. If f is monotonic on ra, bs and α is also monotonic and continuous on ra, bs,
then f P Rpαq.

Proof. Let ε ą 0. For any n P N, choose a partition P such that

∆αi “
αpbq ´ αpaq

n
.

This is possible by the continuity of α and intermediate value theorem. Then

UpP, f, αq ´ LpP, f, αq “
n
ÿ

i“1
pMi ´miq∆αi

“

n
ÿ

i“1
rfpxiq ´ fpxi´1qs ¨

αpbq ´ αpaq

n

“
αpbq ´ αpaq

n
¨ pfpbq ´ fpaqq.

Then n large enough so that UP ´ LP ă ε.
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Theorem 7.1.14. Suppose f is bounded on ra, bs, f has only finitely many points of disconti-
nuity on ra, bs and α is continuous at every points at which f is dicontinuous. Then f P Rpαq.

Proof. Fix ε ą 0. Let E “ tc1 ă c2 ă ¨ ¨ ¨ ă cmu be the set of discontinuities for f . WLOG, assume
E Ă pa, bq. Since α is continuous at ci, we have

αpciq “ lim
tÑc´i

αptq “ lim
tÑc`i

αptq.

Hence we can take pui, viq around ci such that

αpviq ´ αpciq ď
ε

2m,

αpciq ´ αpuiq ď
ε

2m.

Then we have
αpuiq ´ αpviq ď

ε

m
,

which implies that
m
ÿ

i“1
αpuiq ´ αpviq ď ε.

Let K “ ra, bsz
Ťm
j“1pui, viq, a finite disjoint union of closed interval. Since f is continuous on K

and K is compact, f is uniformly continuous on K. Hence there exists δ ą 0 such that for any
x, y P K, |x´ y| ă δ implies |fpxq ´ fpyq| ă ε.

Now let P be a partition of ra, bs satisfying

(i) rui, vis are intervals in P (jump interval or bad interval),

(ii) If Ii “ rxi´1, xis is not a jump interval (good interval), i.e., Ii Ă K, then |xi ´ xi´1| ă δ.

Then

UpP, f, αq ´ LpP, f, αq “
n
ÿ

i“1
pMi ´miq∆αi

“
ÿ

Ii:good
pMi ´miq∆αi `

ÿ

Ii:bad
pMi ´miq∆αi

ď
ÿ

Ii:good
ε∆αi `

ÿ

Ii:bad
pM ´mq∆αi

ď εrαpbq ´ αpaqs ` pM ´mqε

“ εrαpbq ´ αpaq `M ´ms.

Since ε is arbitrary, by the Cauchy criterion, we have f P Rpαq.

Theorem 7.1.15. Suppose f P Rpαq on ra, bs, where m ď f ď M , and φ is continuous on
rm,M s, and h “ φ ˝ f on ra, bs. Then h P Rpαq on ra, bs.
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Proof. Fix ε ą 0. Since φ is uniformly continuous, there exists δ ą 0 such that for any x, y P rm,M s,
|x´ y| ă δ implies |φpxq ´ φpyq| ă ε. Let K “ sup |φpxq| for any x P rm,M s.

Since f P Rpαq, there exists partition P of ra, bs such that

UpP, f, αq ´ LpP, f, αq ă δ2.

Let Mi “ sup Iifpxq, mi “ inf Iifpxq, where Ii “ rxi´1, xis. Similarly, let M˚
i “ sup Iihpxq,

m˚i “ inf Iihpxq. Divide into two classes:

1. i P G if Mi ´mi ă δ,

2. i P B if Mi ´mi ě δ.

For i P G, our choice of δ implies M˚
i ´m

˚
i ď ε. For i P B, M˚

i ´m
˚
i ď 2K. Then we have

δ2 ě UpP, fαq ´ LpP, f, αq

ě
ÿ

iPB

pMi ´miq∆αi

ě
ÿ

iPB

δ∆αi.

Hence,
ÿ

iPB

∆αi ď δ.

Thus,

UpP, h, αq ´ LpP, h, αq “
ÿ

iPG

pM˚
i ´m

˚
i q∆αi `

ÿ

iB

pM˚
i ´m

˚
i q∆αi

ď εrαpbq ´ αpaqs ` 2Kδ
ă εrαpbq ´ αpaq ` 2Ks.

Since ε is arbitrary, by Cauchy criterion, we have h P Rpαq.

7.2 Properties of the Integral
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Theorem 7.2.1 (Properties of integrals). The integration operation has the following properties

(i) If f1, f2 P Rpαq on ra, bs and for any constant c, then

f1 ` f2 P Rpαq, cf P Rpαq,

ż b

a
pf1 ` f2qdα “

ż b

a
f1dα`

ż b

a
f2dα,

ż b

a
cfdα “ c

ż b

a
fdα.

(ii) If f1pxq ď f2pxq on ra, bs, then
ż b

a
f1dα ď

ż b

a
f2dα.

(iii) If f P Rpαq on ra, bs and if a ă c ă b, then f P Rpαq on ra, cs and on rc, bs, and
ż c

a
fdα`

ż b

c
fdα “

ż b

a
fdα.

(iv) If f P Rpαq and if |fpxq| ďM on ra, bs, then
ˇ

ˇ

ˇ

ˇ

ż b

a
fdα

ˇ

ˇ

ˇ

ˇ

ďM rαpbq ´ αpaqs.

(v) If f P Rpα1q and f P Rpα2q, then f P Rpα1 ` α2q and
ż b

a
fdpα1 ` α2q “

ż b

a
fdα1 `

ż b

a
fdα2

ż b

a
fdpcαq “ c

ż b

a
fdα.

Theorem 7.2.2. If f P Rpαq and g P Rpαq on ra, bs, then

(i) fg P Rpαq;

(ii) |f | P Rpαq and
ˇ

ˇ

ˇ

şb
a fdα

ˇ

ˇ

ˇ
ď

şb
a |f |dα.

Proof. For (i), let φptq “ t2, then f2 “ φ ˝ f P Rpαq by previous theorem. Since fg “ 1
2ppf ` gq

2 ´
f2 ´ g2q, where the RHS is integrable with respect to α, fg P Rpαq as well.

For (ii), let φptq “ |t|, then |f | “ φ ˝ f P Rpαq. Choose c “ ˘1, so that

c

ż

fdα ě 0.
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Then
ˇ

ˇ

ˇ

ˇ

ż

fdα

ˇ

ˇ

ˇ

ˇ

“ c

ż

fdα “

ż

cfdα ď

ż

|f |dα,

since cf ď |f |.

Definition 7.2.3 (Unit Step Function). The unit step function I is defined by

Ipxq “

#

0 px ď 0q,
1 px ą 0q.

Theorem 7.2.4. If f : ra, bs Ñ R is bounded and is continuous at s P pa, bq, and αpxq “ Ipx´sq,
then

ż b

a
fdα “ fpsq.

Proof. Consider partitions P “ ta “ x0, s “ x1, x2, x3 “ bu. Then

UpP, f, αq “ sup tfpxq | x P rs, x2su ¨ 1 “
LpP, f, αq “ inf tfpxq | x P rs, x2su ¨ 1.

Since f is continuous at s, we see that Up, Lp Ñ fpsq as x2 Ñ s.

Theorem 7.2.5. Suppose cn ě 0 for n “ 1, 2, 3, . . . ,
ř

cn converges, tsnu is a sequence of
distinct points in pa, bq. and

αpxq “
8
ÿ

n“1
cnIpx´ snq.

Let f be continuous on ra, bs. Then
ż b

a
fdα “

8
ÿ

n“1
cnfpsnq.

Theorem 7.2.6. Suppose α increases monotonically and α1 P R on ra, bs. Let f be a bounded
real function on ra, bs. Then f P Rpαq if and only if fα1 P R. In that case

ż b

a
fdα “

ż b

a
fpxqα1pxqdx.
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Theorem 7.2.7 (Change of Variable). Suppose ϕ is a strictly increasing continuous function
that maps an interval rA,Bs onto ra, bs. Suppose α is monotonically increasing on ra, bs and
f P Rpαq on ra, bs. Define β and g on rA,Bs by

βpyq “ αpϕpyqq, gpyq “ fpϕpyqq

Then g P Rpβq and
ż B

A
gdβ “

ż b

a
fdα

7.3 Integration and Differentiation

Theorem 7.3.1 (Fundamental Theorem of Calculus I). Let f P R on ra, bs. For a ď x ď b, put

F pxq “

ż x

a
fptqdt

Then F is continuous on ra, bs; furthermore, if f is continuous at a point x0 of ra, bs, then F
is differentiable at x0, and

F 1 px0q “ f px0q .

Theorem 7.3.2 (Fundamental Theorem of Calculus II). If f P R on ra, bs and if there is a
differentiable function F on ra, bs such that F 1 “ f , then

ż b

a
fpxqdx “ F pbq ´ F paq.

Theorem 7.3.3 (Integration by Parts). Suppose F andG are differentiable functions on ra, bs, F 1 “
f P R, and G1 “ g P R. Then

ż b

a
F pxqgpxqdx “ F pbqGpbq ´ F paqGpaq ´

ż b

a
fpxqGpxqdx.

7.4 Uniform Convergence and Integration

Theorem 7.4.1. Let α be monotonically increasing on ra, bs. Suppose fn P Rpαq on ra, bs, for
n “ 1, 2, 3, . . ., and suppose fn Ñ f uniformly on ra, bs. Then f P Rpαq on ra, bs, and p23q

ż b

a
fdα “ lim

nÑ8

ż b

a
fndα.

45



MATH 104: Real Analysis Kelvin Lee

Corollary 7.4.2. If fn P Rpαq on ra, bs and if

fpxq “
8
ÿ

n“1
fnpxq pa ď x ď bq

the series converging uniformly on ra, bs, then
ż b

a
fdα “

8
ÿ

n“1

ż b

a
fndα.

In other words, the series may be integrated term by term.
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Chapter 8

Special Functions

8.1 The Gamma Function
Definition 8.1.1 (Gamma function). For 0 ă x ă 8,

Γpxq “
ż 8

0
tx´1e´tdt.

Theorem 8.1.2. Properties of the gamma function:

(i) If 0 ă x ă 8,
Γpx` 1q “ xΓpxq.

(ii) For n P N,
Γpn` 1q “ n!.

(iii) log Γ is convex on p0,8q.

Theorem 8.1.3. If f is a positive function on p0,8q such that

(i) fpx` 1q “ xfpxq,

(ii) fp1q “ 1,

(iii) log f is convex,

then fpxq “ Γpxq.
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8.1.1 Beta function

Theorem 8.1.4. If x ą 0, and y ą 0, then
ż 1

0
tx´1p1´ tqy´1dt “

ΓpxqΓpyq
Γpx` yq ,

where the integral is the beta function Bpx, yq.
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Chapter 9

The Lebesgue Theory

9.1
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