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Chapter 1

The Real Number Systems

1.1 Natural Numbers N

Definition 1.1.1 (Peano Axioms (Peano Postulates)). The properties of the set of natural numbers,
denoted N, are as follows:

(i) 1 belongs to N.
(ii

)

) If n belongs to N, then its successor n + 1 belongs to N.
(iii) 1 is not the successor of any element in N.

)

)

(iv) If n,m € N have the same successor, then n = m.

(v) A subset of N which contains 1, and which contains n + 1 whenever it contains n, must equal
to N.

Remark. The last axiom is the basis of mathematical induction. Let P;, P, Ps3,... be a list of
propositions that may or may not be true. The principle of mathematical induction asserts all the
statements P, P, ... are true provided

o Py is true. (Basis for induction)

e P, = P,;+1. (Induction step)

1.2 Rational Numbers Q

Definition 1.2.1 (Rational Numbers). The set of rational numbers, denoted Q, is defined by
Qz{%h’b,meZ,n;&O},

which supports addition, multiplication, subtraction, and division.

Remark. Q is a very nice algebraic system. However, there is no rational solution to equations like
z? = 2.

Definition 1.2.2 (Algebraic Number). A number is called an algebraic number if it satisfies a
polynomial equation

1

e +ep1x" T+ e +epg=0

where cg, ..., c, are integers, ¢, # 0 and n > 1.
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Remark. Rational numbers are always algebraic numbers.

Theorem 1.2.3 (Rational Zeros Theorem). Suppose ¢y, c1, . . . , ¢, are integers and r is a rational
number satisfying the polynomial equations

Cn"™ + Cp1V N+ e =0

where n > 1,¢,,c0 # 0. Let 7 = § where ged(c,d) = 1. Then ¢ | ¢p and d | ¢,. In simpler

terms, the only rational candidates for solutions to the equation have the form § where c is a
factor of ¢y and d is a factor of c,.

Proof. Plug in r = 3 to the equation, we get

Cn, (§>n + cp—1 (g)?@q +--t+a (g) +co=0.

Then we multiply by d" on both sides and get
en@ + cp1 Y+ -+ cred™t + cpd™ = 0.
Solving for cod™, we obtain
cod" = —¢ (cncn + CZ:% 44 eged™ 2 4+ cld”_l) .

Then it follows that ¢ | cod™. Since ged(e, d) = 1, ¢ can only divide ¢g.
Now let’s instead solve for ¢,c”, then we have

cnct = —d (cn_1c"71 + Cpoc 2d+ -+ cred™? + codnfl) )

Thus d | ¢, ™, which implies d | ¢, because ged(c,d) = 1. O

Corollary 1.2.4. Consider
"+ eporz" L o =0,

where cg, c1,...,c,—1 are integers and cg # 0. Any rational solution of this equation must be
an integer that divides cy.

Proof. Since the Rational Zeros Theorem states that d must divide ¢,,, which is 1 in this case, 7 is
an integer and it divides cg. O

Example 1.2.5. /2 is not a rational number.

Proof. Using Corollary 5, if » = 4/2 is rational, then 1/2 must be an integer, which is a contradiction.
O



MATH 104: Real Analysis Kelvin Lee

1.3 Real Numbers R

1.3.1 The Completeness Axiom

Definition 1.3.1 (Maximum/minimum). Let S be a nonempty subset of R.

(i) If S contains a largest element sg(i.e., sp € 5, s < soVs € 5), then sp is the maximum of S,
denoted sy = max S.

(i) If S contains a smallest element, then it is called the minimum of S, denoted as min S.
Remark.

o If 51,89 are both maximum of S, then s; = s9, 9 = s1, which implies that s; = so. Thus the
maximum is unique if it exists.

o However, the maximum may not exist (e.g. S = R).
e If S c R is a finite subset, then max S exists.
Definition 1.3.2 (Upper/Lower bound). Let S be a nonempty subset of R.

(i) If a real number M satisfies s < M for all s € S, then M is an upper bound of S and S is
said to be bounded abowve.

(i) If a real number m satisfies < s for all s € S, then m is a lower bound of S and S is said to
be bounded below.

(i) S is said to be bounded if it is bounded above and bounded below. Thus S is bounded if there
exist real numbers m and M such that S < [m, M].

Definition 1.3.3 (Supremum/Infimum). Let S be a nonempty subset of R.

o If S is bounded above and S has a least upper bound, then it is called the supremum of S,
denoted by sup S.

e If S is bounded below and S has a greatest lower bound, then it is called the infimum of S,
denoted by inf S.

Remark. If S has a maximum, then max S = sup S. Similarly, if S has a minimum, then min .S =
inf.S. Also note that sup .S and inf S need not belong to S.

Example 1.3.4. Suppose we have S = {1 — % | n € N}. Then max S does not exist and sup S = 1.

Proof. Suppose for contradiction that it exists. Then it must be of the form 1 — % for some ng € N.
However,

and 1 — % € S. Hence a contradiction. O
o+1

Theorem 1.3.5 (Completeness Axiom). Every nonempty subset S < R that is bounded above
has a least upper bound. In other words, sup .S exists and is a real number.
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Corollary 1.3.6. Every nonempty subset S < R that is bounded below has a greatest lower
bound inf S.

Proof. Consider the set —S = {—s | s € S}. Since S is bounded below there exists an m € R such
that m < s for all s € S. This implies —m > —s for all s€ S, so —m > u for all w € —S. Thus, —S
is bounded above by —m. The Completeness Axiom applies to —S5, so sup — S exists.

Now we show that infS = —sup — 5. Let sy = sup — S, we need to prove

—S0 < S for all s e S,

and if ¢t < s for all s € S, then t < —sg. The first inequality will show that —sg is a lower bound
while the second inequality will show that —sg is the greatest lower bound, i.e., —sg = inf.S. The
proofs of the two claims are left as an exercise. O

Theorem 1.3.7 (Archimedean Property). If a,b > 0, then na > b for some positive integer n.

Proof. Suppose the property fails for some pair of a,b > 0. That is, for all n € N, we have na < b,
meaning that b is an upper bound for the set S = {na | n € N}. Using the Completeness Axiom,
we can let s = sup S. Since a > 0, we have sy — a < Sg, S0 Sg — a cannot be an upper bound for
S. It follows that sy — a < nga for some ng € N, which then implies that sy < (ng + 1)a. Since
(no + 1)a is in S, sp is not an upper bound for S, which is a contradiction. O

Theorem 1.3.8 (Denseness of Q). If a,b € R and a < b, then there is a rational r € Q such
that a < r <.

Proof. We need to show that a < < b for some integers m and n where n # 0. Equivalently, we
want
an < m < bn.

Since b — a > 0, the Archimedean property shows that there exists an n € N such that
nb—a)>1 = bn—an > 1.

Now we need to show that there is an integer m between an and bn. O

1.4 4o and —©

We adjoint +00 and —o0 to R and extend our ordering to the set R u {—o0, +00}. Explicitly, we
have —00 < a < +0o0 for all a € R U {—0, +00}.
Remark. +00 and —o0 are not real numbers. Theorems that apply to real numbers would not work.

We define
sup S = +0 if S is not bounded above

and
infS =—w if S is not bounded below.
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1.5 Reading (Rudin’s)

1.5.1 Ordered Sets

Definition 1.5.1 (Order). Let S be a set. An order on S is a relation, denoted by <, with the
following two properties:

e If x €S and y €S, then one and only one of the statements
s<y, =Y, ,Yy<=zwx
is true.
o Ifx,y,ze S, ifz <yand y < z, then = < 2.

Definition 1.5.2 (Ordered Set). An ordered set is a set S in which an order is defined.

For example, @) is an ordered set if r < s is defined to mean that s —r is a positive rational number.

1.5.2 Fields

Definition 1.5.3 (Field). A field is a set F' with two operations: addition and multiplication, which
satisfy the following field axioms:

(A) Axioms for addition

(Al) If z,y e F, then z + y € F.

(A2) (Commutativity) Vx,y € F, z +y =y + .

(A3) (Associativity) Vz,y,z€ F, (x +y) + z =z + (y + 2).
(A4) (Identity) Vx e F, 0+ z = .

(A5) (

A5) (Inverse) Ya € F, there exists a corresponding —z € F' such that

x+ (—x)=0.
(M) Axioms for multiplication

M1) If z,y € F, then zy € F.

(

(M2) (Commutativity) Vz,y € F, xy = yx.

(M3) (Associativity) Vz,y,z € F, (zy)z = x(yz).

(M4) (Identity) Vx € F, 1z = x.

(M5) (Inverse) Va € F, there exists a corresponding % e F such that

)

Ve,y,z€ Fx(y + 2) = xy + xz.

Definition 1.5.4 (Ordered Field). An ordered field is a field ' which is also an ordered set, such
that

(D) The distributive law

(i)ify<zand z,y,ze F,z+y <z + 2,

(i) if z,y > 0 and z,y € F, xy > 0.



Chapter 2

Sequences

2.1 Limits of Sequences

Definition 2.1.1 (Sequence). A sequence is a function whose domain is a set of the form {n e Z |
n = m} where m is usually 1 or 0.

One may wonder why do we care about sequence, and the answer is that sequences are useful
for approrimation.

Definition 2.1.2. A sequence {s,} of real numbers is said to converge to the real number s if
Ye > 0, 3N > 0 such that for all positive integers n > N, we have

lsn — 8| <e.
If {s,} converges to s, we write lim,,_,4 s, = s, or simply s, — s, where s is called the limit of

the sequence. A sequence that does not converge to some real number is said to diverge.

2.2 Proofs of Limits

Example 2.2.1. Prove lim,,_,4 % = 0.

Scratch. For any € > 0, we want

1 ‘ 1 1,

— —0l<e = 5 <e <= —-<n” = —<n

n? n € NG

Thus, we can just take N = ﬁ ]

Proof. Let e > 0and N = \i[ Then n > N implies n > \% which implies n? > 1 and hence € > 1

€ € n?:
Thus n > N implies ‘% — O‘ < €. This proves our claim. O

3n+1l _ 3

m—4 — T7°

Example 2.2.2. Prove lim,,_, 4

3n+1
Tm—4

Scratch. Ve > 0, we need

— %’ < €, which implies that

|21n+7—21n—|—12 19

7(dn —4) '“ — ’7<7n—4>’<
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Since Tn — 4 > 0, we can remove the absolute value sign and have

19 <7 4 19 + 1 <

— n—4 = — + = <n.

Te 49¢ T
Thus, we have N = % + %. O
Proof. Let € > 0 and let N = 41—996 + %. Then n > N implies n > 41—996 + %, hence 7n > % + 4, which
gives us ﬁ < ¢, and thus ‘?Z:l; — %‘ < €. Then we are done. O

Example 2.2.3. Prove lim;, o, 1 + 1(—1)" = 1.

Scratch. Ye > 0, we want n large enough, such that

1, 1, . 1
lap, — 1| <e = |1+ —(-1)"—1|<e = |- (-1)"<e &= —<e < n>—.
n n n €
Just take o = L, thenn > N — |a, — 1| <€ O

2.3 Limit Theorems for Sequences

Definition 2.3.1 (Bounded). A sequence {s,} of real numbers is said to be bounded if the set
{sn | n € N} is a bounded set, i.e., if there exists a constant M such that |s,| < M for all n.

Theorem 2.3.2. Convergent sequences are bounded.

Proof. Let {s,} be a convergent sequence and let s = lim,, 4 s,. Let € > 0 be fixed. Then by
convergence of the sequence, there exists an number N € N such that

n>N = |s, —s| <e

By the triangle inequality we see that n > N implies |s,| < |s| + . Define M = max {|s| +
€ 1s1],---,|sn|}. Then |s,| < M for all n € N, so {s,} is a bounded sequence. O

Theorem 2.3.3. Let {s,} and {¢,,} be sequences in R such that s,, — s and t,, - ¢t. Let k€ R
be a constant. Then

(i) ksp — ks.
(i) (sp +1tn) — s+t

(ifi) sntn — st.

(iv) If s, # 0 for all n, and if s # 0, then i -1

(v) If s, # 0 and s # 0 for all n, then z—z — L

S

10
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Proof of (i). Since the case where k = 0 is trivial, we assume k& # 0. Let ¢ > 0 and we want to
show that |ks,, — ks| < € for large n. Since lim,,_,o = s, there exists N such that

n>N = lsn—s|<ﬁ.

Then
n>N = |ks, —ks| <e.

Proof of (ii). Let e > 0. We need to show
|sp +tn — (s +t)| <e for large n.
Using triangle inequality, we have |s,, + ¢, — (s + t)| < |s,, — s| + |t — t|. Since s, — s, there exists
N7 such that
€
n>N = |s, — ] <3
Similarly, there exists Ny such that
€
n> Ny = |t, —t <3

Let N = max {N1, No}. Then clearly

n>N = |sn+tn—(s+t)|<|sn—s|+|tn—ty<§+f:e.

2
O
Proof of (iii). We use the identity
Sptn — st = (sp — 8) (tn —t) +s(tn —t) +t (s — 9) .
Given € > 0, there are integers N1, No such that
n>N = |s, —s| <./e
n>N2 > ‘tn—t’<\/g
If we take N = max {N1, Na},n > N implies
|(sn— ) (th — )| <€
which implies that
7}1_1)130 (s —s) (tn, —t) = 0.
Applying (i) and (ii), we get
Jim (Sptn — st) = 0.
O

11
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Proof of (iv). Choosing m such that |s, — s| < |s| if n > m, we see that
1
sul > 518l (n>m).
Given € > 0, there is an integer N > m such that n > N implies
1
|sp — 5] < §|5|2e.

Hence, for n = N

1 1 Sy — S 2
= <—2|sn—s\<e.
Sp S SnS Kl
O
Proof of (v). Using (iv), we have é — 1 and by (iii), we get
t 1 1 t
lim = = lim — -, = - -t = —.
n—w s, n—o0 g, S S
U

Theorem 2.3.4.
(i) limy oo & = 0 for p > 0.
(ii) limy,opa™ =0 if |a| < 1.
(iii) limp oo nn = 1.

(iv) lim,— o an =1 for a > 0.

1

Proof of (i). Let ¢ > 0 and let N = (1)». Then n > N implies n? > 1 and thus e > L. Since
n—lp > 0, this shows n > N implies |nip — O| < e. 0

Proof of (ii). The case for a = 0 is trivial. Suppose that a # 0. Since |a| < 1, we can write
la| = %er where b > 0. By the binomial theorem, we have (1 + b)" > 1 4+ nb > nb, then

1 1
n_ = n = — _
ja” = 0] = Ja” (1+0b)n = b
Consider € > 0 and let N = 5. Then n > N implies n > & and thus [a" — 0] < & <. O

Proof of (iii). Let s, = nw — 1. Then $p = 0 and by the binomial theorem,

—1
n=(1+s,)" > n(n2)si

[ 2
0<s, < = s, — 0.
n—1

12

Hence,
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Proof of (iv). Suppose a > 1. Let s, = an — 1. Then sp > 0, and by the binomial theorem,
1+ns, <(1+s,)" =a,

so that !
0<s, < L.
n

Hence, s, — 0. The case for a = 1 is trivial, and if 0 < p < 1, the result is obtained by taking
reciprocals. 0

2.3.1 Upper and lower limits

Definition 2.3.5. Let {s,} be a sequence of real numbers with the property that for every real M
there is an integer NV such that n > N implies s,, = M. We then write

Sy — +00.
Similarly, if for every real M there is an integer N such that n > N implies s, < M, we write

Sy, — —00.

2.4 Monotone Sequences and Cauchy Sequences

Definition 2.4.1 (Monotone sequence). A sequence {s,} of real numbers is called an increasing
sequence if s, < sp41 for all n, and {s,} is called a decreasing sequence if s, = sp41 for all n. If
{sn} is increasing, then s, < s,, whenever n < m. A sequence that is increasing or decreasing will
be called a monotone sequence or a monotonic sequence.

Theorem 2.4.2. All bounded monotone sequences converge.

Proof. Let {s,} be a bounded increasing sequence, Let = {s | n € N} and let v = sup S, Since S is
bounded, u represents a real number. We show s, — u. Let € > 0. Since u — € is not an upper
bound for S, there exists N such that sy > u — e.Since {s,} is increasing, sy < s, for all n > N.
Of course s, < u for all n, so n > N implies u — € < s, < u, which implies |s,, — u| < e. Hence
sn — u. The proof for bounded decreasing sequences is left as an exercise. ]

Theorem 2.4.3.
(i) If {s,} is an unbounded increasing sequence, then s,, — +0.

(ii) If {s,} is an unbounded decreasing sequence, then s, — —o0.

Corollary 2.4.4. If {s,} is a monotone sequence, then the sequence either converges, diverges
to +00, or —o0. Thus lim s, is always meaningful for monotone sequences.

Proof. Simply apply the previous two theorems. O

13
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Definition 2.4.5. Let {s,} be a sequence in R. We define
limsup s, = lim sup{s, | n > N}
N—0
and

liminfs, = lim inf{s, | n > N}
N—0

Theorem 2.4.6. Let {s,} be a sequence in R.

(i) If lim sy, is defined (real, or +00), then

liminfs, = lims, = limsup s,.

(ii) If liminfs, = limsup s,, then lim s, is defined and

lim s,, = liminfs,, = lim sup s,,.

Definition 2.4.7 (Cauchy sequence). A sequeunce {s,} of real numbers i called a Cauchy seque-
unce if for each € > 0 there exists a number N such that

m,n >N = s, — sp| <e.

Lemma 2.4.8. Convergent sequences are Cauchy sequences.

Proof. Suppose lim s,, = s. Since the terms s, are close to s for large n, they must also be close to
each other; indeed
|Sn — Sm| = [$n — s+ 85— 8| < [$n — 8| + |5 — Sl

Let € > 0. Then there exists /N such that

n>N = \sn—s|<%.
Clearly we can also write
m>N — |sm—s|<§,
S0
€ €
m,n >N = [s, — S| < |sn — 8| + |5 — S| <gtz=e
Thus {sy} is a Cauchy sequence. O

Lemma 2.4.9. Cauchy sequences are bounded.

Proof. Let e = 1. By definition, we have N in N such that
m,n >N = |s, —sp| < 1.

In particular, |s, —sy41| < 1 for n > N, so |s,| < [sy4i1|+ 1 forn > N. If M = max {|sy11 +
1,|s1l,|s2],- -, |sn]|}, then |s,| < M for all n € N. O

14
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Theorem 2.4.10. A sequence is a convergent sequence if and only if it is a Cauchy sequence.

Proof. Earlier we have shown one direction in a lemma. We now only need to show that Cauchy
sequences are convergent sequences. Consider a Cauchy sequence {s,} and it is bounded by previous
lemma. We now need to show that

liminf s, = limsup s,.
Let € > 0. Since {s,,} is a Cauchy sequence, there exists N so that
m,n >N = |s, — sp| <€

In particular, s, < sy, + € for all m,n > N. This shows s,, + € is an upper bound for {s, | n > N},
so vy = sup{s, | n > N} < s, + € for m > N. This, in turn, shows vy — € is a lower bound for
{s$m | m > N}, sovy —e <inf{s,, | m> N} =uy. Thus

limsups, < vy <uny + € < liminfs,, + €.

Since this holds for all € > 0, we have limsup s, < liminfs,. Since limsup s, > liminfs, always
holds, we are done. ]

2.4.1 Subsequences

Definition 2.4.11 (Subsequence). Suppose {sy }nen is a sequence. A subsequence of this sequence
is a sequence of the form {tx}ren

Theorem 2.4.12. Every sequence {s,} has a monotonic subsequence.

Proof. We say that the n-th term is dominant if s, < s, for all m > n. There are two cases:
Case 1: Suppose there are infinitely many dominant terms, and let {s,x} be any subsequence

consisting solely of dominant terms. Then sp41 < sy, for all k, so {s;, } is a decreasing sequence.
Case 2: Suppose there are only finitely many dominant terms. Select n; so that s,, is beyond

all the dominant terms of the sequence. Then given N > nq, there exists m > N such that s,, > sy.

O]

Theorem 2.4.13 (Bolzano-Weierstrass Theorem). Every bounded sequence has a convergent
subsequence.

Proof. Using previous theorem, we have a monotonic subsequence. Since monotonic bounded
sequence are convergent, we are done. O

Alternative proof. Suppose that {s,} is bounded. Then there exists M > 0 such that |s,| < M for
allneN. Let Ay ={neN|s,e[0,M]},B; ={neN|s,e[-M,0]}. Since A; uB; = N is an
infinite set, hence at least one of Aq, By is infinite. WLOG assume that A; is infinite. We then cut
[0, M] into two halves, and repeat the same procedure, then at least one of [0, M /2] and [M /2, M|
contains infinitely many points of the sequence. Then, we get a nested sequence of closed intervals,

1
5 nl.

Lolhbo---, |In+1|:2

15
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One can pick subsequence {s,r} such that for all k, s,x is in I, and ngy1 > ng. Then this
subsequence is Cauchy, hence is convergent. ]

Definition 2.4.14 (Subsequential limit). A subsequential limit is any real number or symbol +00
that is the limit of some subsequence of {s,}.

Example 2.4.15. Consider {s,} where s, = n?(—1)". The subsequence of even terms diverges to
+00 where as that of odd terms diverges to —oo. Hence, the set {—o0, +00} is the set of subsequential
limits of {s,}.

Example 2.4.16. Consider {r,}, a list of all rational numbers. Every real number is a subsequential
limit of {r,} as well as +00. Thus, R U {—00, +o0} is the set of subsequential limits of {r,}.

Theorem 2.4.17. Let {s,} be any sequence. There exists a monotonic subsequence whose limit
is lim sup s,, and there exists a monotonic subsequence whose limit is lim inf s,,.

Proof. 1f {s,} is not bounded above, then a monotonic subsequence of {s,} has limit limsup s,, =
+00. Similarly, if {s,} is not bounded below, a monotonic subsuquence has limit lim inf s,,.
Consider the case that it is bounded above. Let t = limsup s,,, and consider ¢ > 0. There exists
Ny so that for N = Ny,

sup{s, |n > N} <t+e.

In particular, s, <t + € for all n > Ny. We now claim
{neN||s, —t| < e} is infinite.

Otherwise, there exists N1 > Ny O

Theorem 2.4.18. Let {s,} be any sequence in R, and let S denote the set of subsequential
limits of {s,}.

(i) S is non-empty.
(ii) sup S = limsup s, and inf S = liminfs,,.

(iii) lim s, exists if and only if S has exactly one element, namely lim s,,.

Proof. (i) is an immediate consequence of the previous theorem.
To prove (ii), consider any limit ¢ of a subsequence {s,x} of {s,}. By the O

2.5 lim sup’s and lim inf’s

Let {s,} be any sequence of real numbers, and let S be the set of subsequential limits of {s,}.
Recall the following definition:

limsup s, = lim sups, |n> N =supS
N—0

and
liminfs, = lim infs, |n > N =infS.
N—o0

16
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Claim.
liminfs, < limsup s,.

Proof. We know that
SUP n>NSn = inf s NSy,

Then take limit N — oo. O
Claim. If {s,,} is a subsequence, then

lim sup s,, < limsup s,.

Theorem 2.5.1. If {s,} — s > 0 and {¢,,} is any sequence, then
lim sup s,t, = s - limsupt,.

Here we allow the conventions s - (+o0) = +oo for s > 0.

Proof. O

Question. If {s,, - t,,} converges, does that imply {¢,,} converges?
Answer. Yes. (Why?)
Theorem 2.5.2. Let {s,} be any sequence of nonzero real numbers. Then we have

Sn+1
Sn

1/n 1/n Sn+1

Sn

lim inf < liminf|s,|”" < limsup |s,| 7" < lim sup

Question. If {s,} is a bounded positive sequence, is 21 a bounded sequence?
n

Answer. No. Consider 0 < a,b < 1, and take a = % and b = %, then § = 3.

Claim. If {s,} is bounded and monotone, then the ratio SZ—Zl eventually converges to 1.

Proof. Since {s,} is bounded and monotone, it must converge to some limit s. Then

Spp1 limspyr s

lim = =—-=1.
Sn Sn s
O
Question. Is it possible to have s, to be bounded, but 8’;—:1 unbounded?
Answer. Yes. Consider
1 n is even;
8 =

" % n is odd.

Question. If {s,} is positive and bounded, is it possible that 8’;—:1 — 07
Answer. Yes. Consider s, = % Then

S 1
lim % — lim =0
Sn n—owon + 1

17



Chapter 3

Metric Spaces and Topology

3.1 Metric Spaces

Definition 3.1.1 (Metric Space). A set X, containing elements called points, is said to be a metric
space if with any two points p and ¢ of X there is associated a real number d(p, q), called the
distance from p to g, such that

(i) d(p,q) > 0if p # ¢; d(p,p) = 0;
(i) d(p,q) = d(g,p);
(iii) d(p,q) < d(p,r) + d(r,q), for any r € X.

Any function with these three properties is called a distance function, or a metric.

Definition 3.1.2 (Induced Metric). Let (X, d) be a metric space, and let S < X. Then, (S5, d|g) is
a metric space, where d|g is the induced metric, which is the metric d when restricted to S.

3.1.1 Topological Definitions

Definition 3.1.3 (Topology). A topology on a set X is a collection T of subsets of X having the
following properties:

(i) @ and X are in T.
(ii) The union of the elements of any subcollection of 7 is in 7.
(iii) The intersection of the elements of any finite subcollection of 7 is in 7.

A set X for which a topology T has been specified is called a topological space.

Definition 3.1.4 (Open). If X is a topological space with topology T , we say that a subset U ¢ X
is an open set of X if U belongs to the collection 7. Hence, a topological space is a set X together
with a collection of open subsets of X, such that:

(i) & and X are both open;
(ii) arbitrary unions of open sets are open;

(iii) finite intersections of open sets are open.

18
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Definition 3.1.5 (Open/Closed Balls). Let (X, d) be a metric space. The open ball of radius € at
x is defined by:
Be(p) := {z € X [ d(p,z) < ¢}

and the closed ball is defined by:

Be(p) = {z e X | d(p,z) <¢}.
Sometimes we also use the neighborhood of p to represent any open ball of any radius centered
at p.
Definition 3.1.6 (Limit Point). A point p € F is a limit point if every open ball of p contains a
point g # p such that g € F, i.e., for every § > 0,

Bi(p) n E # &.

Definition 3.1.7 (Dense). E c X is dense in X if every points of X is a limit point of E or a point
of B,ie, E=X.

Definition 3.1.8 (Interior Point). Let (X, d) be a metric space, and E < X. A point p € E is called
an interior point of F if there is a open ball B of p such that B < E.

Definition 3.1.9 (Open Sets). A subset U — X is open if and only if for any p € U, there exists
0 > 0 such that the open ball

Bs(p) ={re X |d(p,z)<d}cU.

In other words, U is open if every point of U is interior.

Definition 3.1.10 (Closed Sets). A subset E — X is closed if every limit point of E is a point
of E. Equivalently, F is closed if and only if for any point z € E€, there exists § > 0, such that
B(g (x) NnE= @ .

Theorem 3.1.11 (Open/Closed). A set E is open if and only if its complement E° is closed.
Similarly, it is closed if and only if its complement is open.

Definition 3.1.12 (Closure). Let X be a metric space, if E < X, the closure of E is the set
E = FE U E’, where E' is the set of all limit points of E. In other words, the closure of E is the
intersection of all closed sets containing F, i.e., it is the smallest closed set containing F.

Theorem 3.1.13. If X is a metric space and F < X, then
(i) the closure E is closed;
(i) E = E if and only if E is closed;

(iii) E < F for every closed set F' < X such that E < F.

3.1.2 Compact Sets

Definition 3.1.14 (Open Cover). An open cover of a set F in a metric space X is a collection {U;}
of open subsets of X such that £ <, U;.
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Definition 3.1.15 (Compact Set). Let K < S. K is compact if every open cover of K contains a
finite subcover. More explicitly, the requirement is that if {G,} is an open cover of K, then there
are finitely many indices aq, ..., a, such that

Kc Gy u--UG,,.

Remark. Every finite set is compact. R is not compact.

Theorem 3.1.16. Compact subsets of metric spaces are closed.

Theorem 3.1.17. Closed subsets of compact sets are compact.

Corollary 3.1.18. If F' is closed and K is compact, then F' u K is compact.

Theorem 3.1.19 (Heine-Borel Theorem). A subset E = R is compact if and only if it is closed
and bounded.

Theorem 3.1.20. If £ c X is compact, then F is a closed and bounded subset of X.

Theorem 3.1.21 (Weierstrass). Every bounded infinite subset of R¥ has a limit point in R*.

Definition 3.1.22 (Convergence of Metric Space). A sequence {s,} in a metric space (S,d) con-
verges to s € S if lim,,_,o, d(sy,s) = 0. The sequence is a Cauchy sequence if for each € > 0, there
exists an N such that

m,n >N = d(sm,sn) < €.

Lemma 3.1.23. If {s,,} converges to s, then s, is Cauchy.

Proof. For any € > 0, there exists NV > 0 such that for all n > N

€
d(sn,8) < <.
(Sn,s) < 5

Thus, for all n,m > N, we have
d(Sny Sm) < d(spn, $) + d(Sm, S)
O

Definition 3.1.24 (Completeness). The metric space (S, d) is complete if every Cauchy sequence
in S converges to some element in S.
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Example 3.1.25 (Non-complete Metric Spaces).

1. S =R\{0}.
2. 5=Q.
Lemma 3.1.26. A sequence {x(™} € R* converges iff for each j = 1,2,. .., k, the sequence (z7)

converges in R. A sequence {£(™} in R* is a Cauchy sequence iff each sequence {xgn)} is a
Cauchy sequence in R.

Theorem 3.1.27. Euclidean k-space R* is complete.

Theorem 3.1.28 (Bolzano-Weierstrass Theorem). Every bounded sequence in R¥ has a conver-
gent subsequence.

Theorem 3.1.29. Let {F,} be a decreasing sequence (F; 2 Fy 2 ---) of closed bounded
nonempty sets in R¥. Then F = _ F, is also closed, bounded and nonempty.

Definition 3.1.30 (Open Cover). Let E < S. An open cover of E is a collection {G,}of open
subsets of S such that E < |, Ga.

Remark. Every finite set is compact. R is not compact.

Theorem 3.1.31 (Heine-Borel Theorem). A subset E of R¥ is compact iff it is closed and
bounded.

Proof. Suppose E < S is compact. Then pick some point p € S and consider {B,(p) | n € N},
which covers S and thus covers E as well:

EcS= UBn(p).

neN

Since E is compact, there is a finite subcover such that

M

Ec | | By (p)-

i=1

We can order the indices such that nq < no < --- ,nps then
E c By,,(p),
which implies that F is bounded. In particular, for any points z,y € F,
d(z,y) < d(z,p) +d(y,p) <2-ny.

The remaining of the proof is left as an exercise. O
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Theorem 3.1.32. Every k-cell F in R” is compact.

3.2 Connected Sets

Definition 3.2.1 (Separated). Two subsets A, B of a metric space X are separated if both A n B
and A n B are empty, i.e

Definition 3.2.2 (Connected Sets). A set £ c X is connected if F is not a union of two nonempty
separated sets.

Theorem 3.2.3. A subset E of R is connected if and only if z,y € F and z € (x,y) implies
ze E.

22



Chapter 4

Series

4.1 Series

In this section we are interested in convergence of series, thus we use } a, to denote >}~ a;.

Definition 4.1.1 (Convergence/Divergence). The n-th partial sum of a sequence {a,} is defined as
Sp = Yy a;. We say that > a, converges iff the sequence of partial sums {s,} converges to a
real number. Otherwise, we say that the series diverges.

Definition 4.1.2 (Absolute Convergence). The series ), a, converges absolutely if > |a,| con-
verges.

Definition 4.1.3 (Geometric Series). A series of the form >, jar™ for constants a and r is a

geometric series. For r # 1,
Tn—&-l)

n

]__
5 ark - 20
k=0 -r

For |r| < 1, since lim,, o, 7"*! = 0, using the formula above gives
= a
Sart =
k=0 -7

If a # 0 and |r| > 1, then the sequence {ar™} does not converge to 0, so the series diverges.

Definition 4.1.4 (Cauchy Criterion). A series ) a, satisfies the Cauchy criterion if its sequence
{sn} of partial sums is a Cauchy sequence, i.e., for each € > 0, there exists N € N such that

n
2
i=m

n=m>N — < e.

Theorem 4.1.5. A series converges iff it satisfies the Cauchy criterion.

Corollary 4.1.6. If a series ) a, converges, then lima,, = 0.

Proof. By Cauchy criterion, take n = m. Then for € > 0, there exists N such that n > N implies
|an| < €. Thus, lima,, = 0. O
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Remark. The converse is not true. Consider Y, 1 = +o0.

Theorem 4.1.7 (Comparison Test). Let >’ a, be a series where a,, = 0 for all n.
(i) If >} ay converges and |by| < a,, for all n, then >’ b, converges.

(ii) If >} a, = 400 and by, = a, for all n, then > b, = +00.

Proof of (i). For n = m, by the triangle inequality, we have

n n
< 2 |bi| < Z ay.
k=m k=m

n

S

k=m

Since ) a, converges, it satisfies the Cauchy criterion. It follows from the above that ) b, also

satisfies the Cauchy criterion, and so ). b, converges.

O]

Proof of (ii). Let {s,} and {t,} be the sequences of partial sums for > a, and },b, respectively.

Since b, = a, for all n, we have t, > s, for all n. Since lim s, = 400, limt,

D> b, = +o0.

Theorem 4.1.8 (Ratio Test). A series ) a, of nonzero terms

an+1

an

1. converges absolutely if lim sup <1

(i) converges absolutely if a < 1;
(ii) diverges if o > 1.

(iii) Otherwise, the test gives no information if o = 1.

4.2 Alternating Series

Theorem 4.2.1. )] n—lp converges iff p > 1.

Proof. If p > 1, then

2. diverges if liminf |*254) > 1.
3. Otherwise lim inf | 25| < 1 < limsup [“2**| and the test gives no information.

+00, and so

O]

Theorem 4.1.9 (Root Test). Let Y, a, be a series and let o = lim sup \an]%. The series > ay,
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Hence,

> 1
Z — < P < +00.
np —1
n=1
If 0 < p <1, then % < n—lp for all n. Since Z% diverges, > # diverges as well by the Comparison
Test. [

Theorem 4.2.2 (Integral Tests). Suppose that f(x) > 0 and is decreasing on the infinite interval
[k,0) (for some k > 1) and that a, = f(n). Then the series >, ~_; a,, converges if and only if
the improper integral Siﬁ f(x)dx converges.

Theorem 4.2.3 (Alternating Series Theorem). If a1 > a2 > -+ > a, = --- = 0 and lima,, =
0, then the alternating series >.(—1)"*!a, converges. Moreover, the partial sums s, =
Yo (—=1)k*lay satisfy |s — s,| < ay, for all n.

Proof. Define s, = Z?:I a;. The subsequence {sy,} is increasing because so,12 — S2n, = —a2p42 +
aon+1 = 0, Similarly, the subsequence {s2,—1} is decreasing. O
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Chapter 5

Continuity

5.1 Limits of Functions

Definition 5.1.1 (e-6 limit). Let X,Y be metric spaces, and E' c X, and p a limit point of E. We
write the limit

lim f(z) = f(p)

T—p

if there exists f(q) € Y such that for every e > 0 there exists a 6 > 0 such that

0<dx(z,p) <d = dy(f(x), f(p)) <e.

Theorem 5.1.2.
lim f(z) = q

T—p
if and only if
lim f(pn) = ¢

n—0o0

for every sequence {p,} such that p, # p (for all n) and p,, — p.

5.1.1 Continuous Functions

Definition 5.1.3 (Continuity). Let X and Y be metric spaces. A function f : X — Y is continuous
at p e X if for any € > 0, there exists § > 0 such that for every z € X,

dX($,p) <) = dy(f(l‘),f(p) < €.

Or equivalently, for every € > 0, there is a § > 0 such that

f(Bs(p)) = Be(f(p))-

Theorem 5.1.4. If p is a limit point of E. Then f is continuous at p if and only if lim,_,, f(x) =

f(p).
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Theorem 5.1.5 (Preimage of open subset is open). Let X and Y be metric spaces. A function
f: X — Y is continuous if and only if for every open subset U < Y, f~1(U) is open.

Theorem 5.1.6 (Composition of continuous functions is continuous). If f: X - Y andg:Y —

Z are continuous, then
go f: X — Z is continuous.

Theorem 5.1.7. Let f, g be complex continuous functions on metric space X. Then f +g, fg,
and f|g are continuous on X.

5.2 Continuity and Compactness

Definition 5.2.1. A function f : X — Y is bounded if there exists M € R such that |f(z)] < M
for all z € X.

Theorem 5.2.2 (Compactness is preserved under continuity). If f is a continuous mapping of a
compact metric space X into a metric space Y. Then f(X) is compact.

Theorem 5.2.3. Suppose f is a continuous real function on a compact metric space X, and
M = suppex f(p), m = infpex f(p)

Then there exist points p,q € X such that f(p) = M and f(q) = m.

5.3 Uniform Continuity

Definition 5.3.1 (Uniformly Continuous). Let f be a mapping of a metric space X into a metric
space Y. We say that f is uniformly continuous on X if for every € > 0 there exists § > 0 such
that (15)

dy (f(p), f(q)) <e

for all p and ¢ in X for which dx(p,q) < o

Theorem 5.3.2. Let f be a continuous mapping of a compact metric space X into a metric
space Y. Then f is uniformly continuous on X.

5.4 Continuity and Connectedness
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Theorem 5.4.1 (Connectedness is preserved under continuity). If f is a continuous mapping of
metric space X to metric space Y and if E is a connected subset of X, then f(F) is connected.

Theorem 5.4.2 (Intermediate Value Theorem). Let f be a continuous real function on [a, b]. If
f(a) < f(b) and if c€ (f(a), f(b)), then there exists a point x € (a,b) such that f(z) = c.

Proof. Since [a, b] is connected, f([a,b]) is also connected subset of R, which implies that [ f(a), f(b)] <
f(la, ). O
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Chapter 6

Differentiation

6.1 The Derivative of a Real Function

Definition 6.1.1 (Derivative). Let f : [a,b] — R be a real valued function. We say f is differen-
tiable at a point p € [a, ] if the following limit exists:

o) — 1 £@) =0

Top T —D

(z € [a,b]\{p})

f’ is called the derivative of f.

Theorem 6.1.2. If f is differentiable at p € [a, b], then f is continuous at p.

Proof. We simply show that lim,_,, f(z) = f(p), or lim,,(f(z) — f(p)) = 0. Since f'(p) exists,
we have

i (/) ~ 1) = iy (LI o)

T—p T—p r—0p
= <lim @) = fp) f(p)) . (lim T —p)
Top T —p T—p
= f'(p)-0

O

Remark. It is not true that if f is differentiable at p, then f is continuous in a neighborhood of p.

Consider
_ x? reQ
f(x)_{—l‘2 JJ¢Q

f is both continuous and differentiable only at x = 0.

Remark. Consider

29



MATH 104: Real Analysis Kelvin Lee

17(0) does not exist because

lim f(x)_g(o) = lim sin <1>

z—0 X — z—0 X
does not exist.
Question. If f: R — R is a continuous function, and f’(z) exists at all x € R. Is f’ continuous?

Answer. No. Consider

Since f'(07) = f/(07) =0, f'(0) = 0. For z > 0, lim,_,g+ f'(z) # 0.

Theorem 6.1.3. Let f, g : [a,b] — R and assume f, g are differentiable at p. Then
(i) (f +9) () = f'(p) + d'(p);
(ii) (f-9)'(p) = f'(P)g(p) + f(P)d (P);
(iii) if g(p) # 0, then

/e = HIT
Proof of (ii).
li L @9@) = f)gp) _ . F@)g(x) = f(@)g(p) + [(2)9(p) = f(P)9(p)
z—p r—0p T—p r—p
_ lim f(x) - 9) —9) _ y,, f@) = @) o(p)
T—p —-p T—=p T —p
= f(p)g' () + ' (p)9(p)-

Theorem 6.1.4 (Chain Rule). Let f : [a,b] — R be differentiable at z¢ € [a,b], and g : [ > R
where f([a,b]) < I, and g is differentiable at f(xg). If

hz) =g(f(x))  (ze€la,b]),

then h is differentiable at xg and

W (z0) = ¢'(f(x0)) f' (o).

Proof. Let y = f(z) and yo = f(xo).

lim M) — h(zo) — lim 9(y) — 9(yo)
T—x0 T — X0 r—xQ T — X

Since f’(x0) exists, there exist functions wu, v such that
f(@) = flzo) + (x — o) (f'(20) + u(2));
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9(y) = 9(yo) + (¥ — o) (9’ (o) + v(¥)),
and limg_,4, u(z) = 0 lim,_,, v(y) = 0. Then
9(f (@) = 9(f(z0)) = (f(z) = f(x0))(g'(f(20)) + v(f(x)))
= (z — 20)(f'(x0) + u(x))(g'(f(z0)) + v(f(2)))-

Hence,

tim IS @ ZIT@D) i (1(20) 1 ue)) (o (F(a0)) + v( (@)

T—1T0 T — To z—xo

= f'(z0)g'(f(x0)).

6.2 Mean Value Theorem
Definition 6.2.1 (Local Maximum). A point p is a local maximum of f if there exists a 6 > 0
such that f(p) = max f(Bs(p)). Likewise for local minimum.

Remark. If f is locally constant at p, then p is both a local maximum and local minimum.

Lemma 6.2.2. Let f : [a,b] — R. If f has a local maximum or local minimum at p € (a,b),
and if f'(p) exists, then f’(p) = 0.

Proof. Suppose f has a local maximum at p. Then there exists § > 0 such that f(p) > f(z) for
z € (p—0,p+6). The derivative is

Fp) — i T =)

To>p T —p

This limit is > 0 when 2 < p and < 0 when zp. Since f’(p) exists, then by squeeze theorem we
must have f'(p) = 0. O

Remark. The conditions that p € (a,b) and f’(p) exists are required since the endpoints a, b can be
local maxima but the slopes there are not zero. In addition, there can be cases where p is a local
maximum but f’(p) does not exist, consider f(z) = —|z|.

Theorem 6.2.3 (Rolle’'s Theorem). Let f : [a,b] — R be continuous, and suppose f is differen-
tiable on (a,b), and f(a) = f(b). Then there exists some ¢ € (a,b) such that f/(c) = 0.

Remark. Note that [a,b] € R is compact, and so f([a,b]) is also compact.
Proof. Consider the following cases:
o if f([a,b]) is a single point, then f is a constant function, any c € (a,b) has f'(c) = 0.

o if max (f([a,b)] # f(a), then let p € (a,b) such that f(p) = max (f([a,b]). Then by the above
lemma, we have f'(p) = 0, where we let ¢ = p.

o if min (f[a,b])) # f(a), then similar argument shows f’(p) = 0.
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Theorem 6.2.4 (Generalized Mean Value Theorem). Let f, g : [a,b] — R be continuous and
differentiable in (a,b). Then there exists c € (a,b) such that

Proof. Take h(x) = [f(b) — f(a)]lg(z) — [g(b) — g(a)]f(z). Then we have h(a) = h(b). Hence, by
Rolle’s theorem, there exists ¢ € (a, b) such that h'(c) = 0 as desired. O

Theorem 6.2.5 (Mean Value Theorem). If f : [a,b] — R is continuous and differentiable on
(a,b), then there exists c € (a,b) such that

Proof. Use the generalized Mean Value Theorem by taking g(z) = x. O

Corollary 6.2.6. Let f be differentiable on (a,b). Then for all z € (a,b),
(i) if f’(z) = 0, then f is strictly increasing;
(ii) if f'(x) = 0, then f is constant;

(iii) if f’(z) <0, then f is strictly decreasing.

Proof of (i). Let < y be in (a,b). Then applying Mean Value Theorem to [z,y], there exists
some c € (z,y) such that

y—x
Hence, we have f(y) > f(x). Similar arguments apply to the other two claims. O

Corollary 6.2.7. Suppose f : R — R is continuous and differentiable everywhere on R. Suppose
there exists M > 0 such that |f'(z)| < M for all z € R. Then f is uniformly continuous.

Proof. For any € > 0, take 0 = 7. Then for any = # y, with |z —y| < J, there exists some c € (z,y)

such that

which implies
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Theorem 6.2.8 (Intermediate Value Theorem for Derivatives). Let f : [a,b] — R be differentiable
such that f’(a) < f’(b). Then for any A € (f'(a), f'(b)), there exists some ¢ € (a,b) such that

7€) =\

Remark. This is not an immediate application of the intermediate value theorem as the derivatives
of continuous functions may not be continuous.

Proof. Let g(z) = f(z) — Az. Our goal is to show that ¢ has a root in (a,b). Since ¢'(a) =
f'(a) =X <0, and ¢'(b) = f'(b) — XA > 0. Let c € [a,b] such that ¢ = min g([a,b]). Since ¢'(a) <0
and ¢'(b) > 0, a,b are not global minimum, which implies that there exists some ¢ € (a,b) that is
a global minimum. Then using the previous lemma, we know that ¢'(¢) = f/(¢) — A = 0 and so
flle) =M\ O

6.3 L’Hospital’s Rule

Theorem 6.3.1 (L'Hospital's Rule). Suppose f,g : [a,b] € R are differentiable in (a,b) and
g'(x) # 0 for all x € (a,b), where —o0 < a < b < +00. Suppose
/
v=a g (x)

=LeRuy {400, —0}

and one of the following holds:
(i) limg—q f(l‘) = limg 4 g(x) =0;
(ii) limg—q|g(2)] = limg—a | f(2)] = +o0.

Then we have
i £ ®) _
z—a g(r)

Proof. TODO. 0

Example 6.3.2.
1\* 1
lim (1 + ) — lim e*lo8(1+3)
r—00
_ elimzﬂooa:log(lJr%)

= €.

6.4 Derivatives of Higher Order

Definition 6.4.1. If f'(z) is differentiable at x¢, then the second derivative is defined as f”(xo) =
(") (x0). Similarly, if the (n — 1)-th derivative f("~1) exists and is differentiable at z¢, then the
n-th derivative is defined as f( (o) = (1) (o).

Definition 6.4.2 (Smoothness). f(z) is a smooth function on (a,b) if for any = € (a,b), £ (z)
exists for all £ € N. We also say that f is infinitely differentiable.
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6.5 Taylor’s Series

Definition 6.5.1 (Power Series). Given a sequence {c,}n>0. A power series is defined by

es}
en(z — x0)".

n=0
Proposition 6.5.2. Given a power series
0
f(z) = Z 2"
n=0

Let a = limsup {/|c,| and R = 1. Then f(z) converges for |z| < R and diverges for |z| > R
(equality gives no info), where R is the radius of convergence.

Proof. Use root test for absolute convergence. If |z| < R, then |c,2"|'/™ = |c,|"/"|2|. Hence,

lim sup |c,2"|Y" = alz| < 1.

n—ao

Thus, Y, |c,2"| is convergent, which implies that », c,2" is convergent (absolute convergence
implies convergence). If |z| > R, one can show that |c,2"| does not converge to 0. O

Definition 6.5.3 (Taylor Series). Let f be a smooth function for which all higher derivatives exist
at . Then the Taylor series of f at « is defined as the power series

Ty (x) = 2 / k'( )(x—a)k.
k=0

Remark. The series may not converge. Even if it converges, the limit may not be f(z).

Theorem 6.5.4 (Taylor's Theorem). Let f : [a,b] — R, f("~1 exists and is continuous on [a, b]
and f(™ exists on (a,b). Let o, 3 € [a,b] be distinct points and define

Intuition: Given a smooth function f, we can approximate f(z) near a of different levels:

(i) 0-th order:
Pa,O = f(Oé)

(ii) 1-th order:
Pop(z) = fa) + f(a)(z — ).
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(iii) 2-nd order

Pop(z) = f(a) + fl(a)(z — o) +

Taylor’s theorem is all about the error term f(z) — Py p—1(x).

Remark. If n = 1, then P,(x) = f(a). The statement then becomes there exists v € («, ) such
that

fB) = f(e) = f'(7)(B — ),

which is the Mean Value Theorem. In general, the theorem shows that f can be approximated by
a polynomial of degree n — 1, and we can estimate the error, if we know bounds on |f(z)|.

Proof. Let P(x) = P,(x) for simplicity and let M be the number defined by
f(B)=P(B) = (B —a)"M.

Define
9(@) = f(z) = P(z) = M(z — )"

Then ¢(8) = f(B) — P(B) — M (8 — a)™ = 0 by the choice of M and g(a) = f(a) — P(ar) —0 = 0.
We want to show that M = % for some v € (a, 8). By definition of g,

¢ (z) = fM(z) — nIM (P(z) is degree n — 1 polynomial in X).

Now our goal is to show that for any x € (a, b) there exists v € (a, §) such that g™ (v) = 0.
Since we have g(a) = g(3) = 0, by Rolle’s there exists some v, € («, 3) such that ¢’(y1) = 0.

In addition, we have g*)(a) = 0 for k € {1,...,n — 1}. Since ¢’(a) = 0 and ¢'(y1) = 0, by
Rolle’s there exists v € («,71) such that ¢”(72) = 0. Then we repeat the argument and get
Yn € (a,¥n_1) such that g™ (y,) = 0. Let v = 7, then ¢ (y) = 0. O

Definition 6.5.5 (Analytic function). If a smooth function f(x) satisfies the condition that for any
xo € (a,b) there exists vy > 0 such that

f(ﬂ?) = Txo(x)’ V|LE - x0| <70,

then we say f(z) is a (real) analytic function.

Remark. sin(x), cos(z), e®, polynomials, and combinations of any of them are real analytic func-
tions.
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Chapter 7

The Riemann-Stieltjes Integral

7.1 Definition and Existence of the Integral

Definition 7.1.1 (Partition). A partition P of [a,b] < R is a finite set of points {x;}}", where
a=x0< 21 < <xp_1<xy=0>,1ie.,

Define
Ami:xi—xi_l, Vi e N.

Let f : [a,b] — R be real and bounded for the remaining of this section.

Definition 7.1.2 (Upper/lower Darboux sums). Given f and a partition P of [a, b], the upper and
lower Darboux sums are defined by

U(P, f) = i M;Azx; where M; = sup {f(x) | z € [xi—1,x;]},
i=1

L(P f) = Zn: m;Az;  where m; = inf{f(z) | z € [x;—1, 2]}
i=1

Definition 7.1.3 (Upper/lower Darboux integrals). The upper and lower Darboux integrals are
defined by

b
Ut = [ s = mtU(P ),
b
L) = | f@)do = sup L(P.f).
Definition 7.1.4 (Riemann Integral). If U(f) = L(f), then the common value is denoted by

Lbfda:, or Lbf(x)d:c,

which is the Riemann integral of f over [a,b] and f is said to be Riemann-integrable on [a,b]
and we write f € R (set of Riemann-integrable functions).
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Since f is bounded, there exists m, M € R such that m < f(x) < M over [a,b]. Hence, for every
P,
m(b—a) < L(P,f) <U(P, f) < M(b—a).

Remark. This shows that the upper and lower integrals are defined for every bounded function f.

Theorem 7.1.5. Suppose f : [a,b] — R is bounded. Then f € R if and only if for each ¢ > 0
there exists a partition P of [a, b] such that

U(P, f) — L(P, f) < .

Let «: [a,b] — R be a monotonically increasing weight function. Define

Ac; = a(z;) — a(zi—1).

Then define
U(P, f,a) = Y MiAa;,
i=1
L(P> f,Oé) = Z miAaia
i=1
and

b
U(f,«) ijfda =infU(P, f,a),

b

Mﬁ@ﬁjfm=mmMRﬁw,

Definition 7.1.6 (Riemann-Stieltjes integral). If U(f,«) = L(f,«), then the common value is de-
noted by

b b
J fda, or J f(x)da(zx),
which is the Riemann-Stieltjes integral of f with respect to « over [a,b]. f is also said to be
integrable with respect to «, and write f € R(«) on [a,b].

Remark. By taking a(z) = x, the Riemann integral is seen to be a special case of the Riemann-
Stieltjes integral.

Remark. Similarly as above, since f is bounded, we have the following inequalities:
m(a(b) —ala)) < L(P, f,a) <U(P, f,a) < M(a(b) — ala)).
Definition 7.1.7 (Refinement). Let P, @ be two partitions of [a, b], where
P={a=2sp<z1<w2<- - <1 = b}
Q={a=yo<y1 <y2<-- <ym = b}

Q is a refinement of P if Q o P. Further, any two partitions P and () have a common
refinement P U Q.
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Lemma 7.1.8. If @ is a refinement of P, then
L(P7f7a) < L(Q7f7a) < U(Q’f?a) < U(P7f’a)'

In simpler terms, the refinement of partition improves the approximation.

Proof. 1t suffices to prove the case that ) has one more point than P. Let that point be z* such
that * € (z;-1,2;). Then let

wy = inf (f(2) | @ € [21,2*])
wy = inf {f(z) | 2 € [o*, 2]}

Clearly wy = m; and we = m;, where as before
m; = mf{f(:c) ‘ T e [a:i_l,xi]}.
Hence,

L(Q, f,a) = L(P, f,a) = wi[a(z™) — afwi—1] + walo(xs) — a(z™)] — mifa(x;) — a(zi1]
= (w1 —my)[a(z”) — a(zi—1)] + (w2 — mi)[a(z;) — a(2¥)]
> 0.

Similar argument applies to the second inequality. ]

Theorem 7.1.9.
L(f,e) <U(f, ).

Proof. For any partitions P, P» with common refinement Q@ = P} U P, we have

L(Plvfaa) < L(Q,f,Oé) < U(Q,f,()é) < U(P27f7a)‘
Then taking the sup over P; and the inf over P gives

L(f,a) <U(f, ).

Theorem 7.1.10 (Cauchy Criterion). f € R(«) on [a,b] if and only if for every ¢ > 0 there
exists a partition P such that

U(P, f,a) — L(P, f,«a) <e.

Proof. By definition of sup and inf, for every partition P, we have
L(P, f,a) < L(f,a) < U(f, ) < U(P, f, ),

which implies
0< U(f,Oé) —L(f,()é) < U(P,f,OL) —L(P,f,Oé).
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Since for every e there exists a partition P such that
U(P, f,a) — L(P, f,«a) <e.

Hence for every € > 0, we have
0< U(fva) - L(f,Oé) <€

which implies that U(f,a) = L(f, «), that is, f € R(«).
Conversely, suppose f € R(«), and let € > 0 be given. Since

ffda = sup pL(P, f,a) = inf pU(P, f, @),
there exists P;, P> such that

| rda = 1P g0 < §
€
>

UP, f,a) — ffda <

Now let P = P; u P, be the common refinement. Then we have

which implies

Theorem 7.1.11. Let Up = U(P, f,a) and Lp = L(P, f, ).

(i) If Up — Lp < ¢, then for any @, refinement of P, we have

UQ—LQ<6.

(ii) If Up — Lp < €, and let s;,t; € [z;—1,x;], then

n

Z |f(si) — f(ti)]Aa; < e.

=1

(iii) If f € R(a), and Up — Lp < €, 8; € [x;—1,x;], then

n b

> f(t)8ai ~ | fda

1=1 a

< €.
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Theorem 7.1.12. If f is continuous on [a,b], then f € R(a) on [a,b].

Proof. Let € > 0 be given. Since f is continuous on a compact set, f is uniformly continuous.
Hence, for every n > 0, there eixsts §(n) > 0 such that |z — y| < §(n) implies |f(x) — f(y)| < n.

Take a partition P where Ax; < §(n) so that

M; —m; <.
Hence,
U(Pafva) —L(P,f,()é) = Z(MZ —mz)Aal
i=1
< ) nAa;
i=1
= 1(a(b) — a(a))
Choose 71 such that n(a(b) — a(a)) < e. O

Theorem 7.1.13. If f is monotonic on [a, b] and « is also monotonic and continuous on [a, b],
then f e R(«).

Proof. Let € > 0. For any n € N, choose a partition P such that

a(t) - afa)

AO@' =

This is possible by the continuity of o and intermediate value theorem. Then

U(P, f,a) — L(P, f,a) = Z(Mi —mi)Ay

Then n large enough so that Up — Lp < e. O
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Theorem 7.1.14. Suppose f is bounded on [a,b], f has only finitely many points of disconti-
nuity on [a, b] and « is continuous at every points at which f is dicontinuous. Then f € R(«).

Proof. Fix e > 0. Let E = {¢] < ¢y < -+ < ¢p} be the set of discontinuities for f. WLOG, assume
E c (a,b). Since a is continuous at ¢;, we have

a(c) = lim at) = lim aft).

+
t—c; t—c;

Hence we can take (u;,v;) around ¢; such that

€
< 2m’

ale) — a(u;) < ¢

a(v;) — a(c;)

2m’

Then we have

€
. _ . < —,
a(u;) — alv;) -
which implies that
Z a(u;) — a(v;) <e.
i=1

Let K = [a,b]\U/L; (us, v;), a finite disjoint union of closed interval. Since f is continuous on K
and K is compact, f is uniformly continuous on K. Hence there exists § > 0 such that for any
z,y € K, |x —y| < d implies |f(x) — f(y)| <e.

Now let P be a partition of [a, b] satisfying
(i) [ui,v;] are intervals in P (jump interval or bad interval),

(ii) If I; = [x;—1, ;] is not a jump interval (good interval), i.e., I; ¢ K, then |z; — z;_1] < 9.

Then
U(P,f705)—L<P,f,C¥): (MZ_mI)Aaz
i=1
= Z (]Wz — mi)Aai + Z (MZ — mi)Aai
I;:good I;:bad
< Z eAw; + Z (M —m)Aaq;
I;:good I;:bad
< ela(b) — ala)] + (M —m)e
= e[a(b) — ala) + M —m].
Since € is arbitrary, by the Cauchy criterion, we have f € R(«). O

Theorem 7.1.15. Suppose f € R(a) on [a,b], where m < f < M, and ¢ is continuous on
[m, M], and h = ¢ o f on [a,b]. Then h € R(«) on [a,b].
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Proof. Fix e > 0. Since ¢ is uniformly continuous, there exists § > 0 such that for any z,y € [m, M/,
|z — y| < d implies |p(x) — ¢(y)| < €. Let K = sup|¢(z)| for any x € [m, M].

Since f € R(«), there exists partition P of [a,b] such that
U(P, f,a) = L(P, f, @) < 6°.

Let M; = supy, f(z), m; = infy, f(z), where I; = [z;—1,2;]. Similarly, let M} = suph(x),

m} = inf ;,h(x). Divide into two classes:

1. ieGif M; —m; <0,
2. ie Bif M; —m; = 6.
For 7 € G, our choice of ¢ implies M —m} <e. Forie B, M} —m] <2K. Then we have
8% = U(P, fa) — L(P, f,a)
> > (M; —mi) Aoy

1€B
= Z 0Awy.
ieB
Hence,
Z Aai < (5
i€B
Thus,
U(P7 ha Oé) - L(Pv ha Oé) = Z(Mz* - m;k)Aaz + Z(Mz* - m:‘)AO‘l
e iB
< €la(b) — ala)] + 2K§
< ela(b) — a(a) + 2K].
Since € is arbitrary, by Cauchy criterion, we have h € R(«). O

7.2 Properties of the Integral
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Theorem 7.2.1 (Properties of integrals). The integration operation has the following properties

(i) If f1, fo € R(«) on [a,b] and for any constant ¢, then

fi+ foeR(), cf €R(a),

Lb(fl + f2)do = Lb fido + Lb fada,

Lb cfda = CLb fda.

(i) If fi(x) < fa(z) on [a,b], then

b b
J frda SJ fodar.

(iii) If f € R(«) on [a,b] and if a < ¢ < b, then f € R(«) on [a,c| and on [¢,b], and

LC fda + Lb fda = Lb fda.

(iv) If f e R(«) and if |f(z)] < M on [a,b], then

Lb fda

(v) If feR(aq) and f € R(az), then f e R(a1 + az) and

< M[a(b) — a(a)].

Lb fd(a1 + as) = L ’ fdoy + L ’ Fda
Jj fd(ca) = cJab fda.

Theorem 7.2.2. If f € R(«) and g € R(«) on [a, b], then
(i) fg€R(a);

(ii) |f| € R(a) and

SZ fdoz‘ < SZ |f|da.

Proof. For (i), let ¢(t) = t2, then f? = ¢ o f € R(c) by previous theorem. Since fg = %((f +9)% —
f? — g%), where the RHS is integrable with respect to a, fg € R(a) as well.

For (ii), let ¢(t) = |t, then |f| = ¢ o f € R(a). Choose ¢ = £1, so that

cffdoz = 0.
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dea = cffda = fcfda < f|fda,

since cf < |f]. O

Then

Definition 7.2.3 (Unit Step Function). The unit step function [ is defined by

Theorem 7.2.4. If f : [a,b] — R is bounded and is continuous at s € (a,b), and a(z) = I(x—s),
then

| ' fda = f(s).

a

Proof. Consider partitions P = {a = 9, s = x1,x2, 3 = b}. Then

U(P, f,a) =sup{f(x) |z €[s,z2]} - 1=
L(P, f,a) =inf{f(x) | x € [s,z2]} - 1.

Since f is continuous at s, we see that Uy, L, — f(s) as 2 — s. O

Theorem 7.2.5. Suppose ¢, = 0 for n = 1,2,3,...,> ¢, converges, {s,} is a sequence of
distinct points in (a,b). and

a(z) = Z enl(z — sp).
n=1

Let f be continuous on [a,b]. Then

Lb fdo = i Cnf(sn)-

n=1

Theorem 7.2.6. Suppose « increases monotonically and o/ € R on [a,b]. Let f be a bounded
real function on [a,b]. Then f € R(«) if and only if fo/ € R. In that case

Lb fda — J " fw)al (2)de
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Theorem 7.2.7 (Change of Variable). Suppose ¢ is a strictly increasing continuous function
that maps an interval [A, B] onto [a,b]. Suppose « is monotonically increasing on [a,b] and
feR(a) on [a,b]. Define 5 and g on [A, B] by

Then g € R(B) and
JB dp = Jb fda
A g B a

7.3 Integration and Differentiation

Theorem 7.3.1 (Fundamental Theorem of Calculus 1). Let f € Z on [a,b]. For a < x < b, put

Pla) - f Ft)dt

Then F is continuous on [a, b]; furthermore, if f is continuous at a point zq of [a,b], then F
is differentiable at xg, and

F'(x0) = f (x0) .-

Theorem 7.3.2 (Fundamental Theorem of Calculus Il). If f € R on [a,b] and if there is a
differentiable function F' on [a,b] such that F’ = f, then

b
J F@)dz = F(b) — Fla).
Theorem 7.3.3 (Integration by Parts). Suppose F and G are differentiable functions on [a, b], F’ =
feR,and G' = ge R. Then

b b
j F2)g(@)dz = F()G(b) — F(a)Gla) — f F(2)G()dx.

7.4 Uniform Convergence and Integration

Theorem 7.4.1. Let a be monotonically increasing on [a, b]. Suppose f,, € R(«) on [a, b], for
n=1,2,3,..., and suppose f, — f uniformly on [a,b]. Then f € R(«) on [a,b], and (23)

b b
L fda = JE%OL fnda.
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Corollary 7.4.2. If f,, € R(«) on [a,b] and if
f@) =) falz) (a<z<b)
n=1

the series converging uniformly on [a, b], then

Lbfda - glLbfnda.

In other words, the series may be integrated term by term.
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Chapter 8

Special Functions

8.1 The Gamma Function

Definition 8.1.1 (Gamma function). For 0 < z < o0,

oe}

I(z) = J t*te~tat.
0

Theorem 8.1.2. Properties of the gamma function:

(i) f 0 <z < o0,
I(xz+1) =al'(z).

(ii) For ne N,
I'(n+1)=nl

(iii) logT is convex on (0, 0).

Theorem 8.1.3. If f is a positive function on (0, 00) such that
(i) flz+1) =zf(z),
(i) f(1) =1,
(iii) log f is convex,

then f(z) = I'(z).
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8.1.1 Beta function

Theorem 8.1.4. If £ > 0, and y > 0, then

! z—1/1 _ p\y—1g, I'(z)T(y)
Lt (1—1¢)Y dt_i]?(m+y)’

where the integral is the beta function B(z,y).
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Chapter 9

The Lebesgue Theory

9.1
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