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§1 Vector Spaces
§1.1 Definition of Vector Space
A vector space is defined to be a set V with an addition and a scalar multiplication on V
that satisfy the properties that will be introduced below.

Definition 1.1 (addition, scalar multiplication)
1. An addition on a set V is a function that assigns an element u+ v ∈ V to each
pair of elements u, v ∈ V .
2. A scalar multiplication on a set V is a function that assigns an element λv ∈ V
to each λ ∈ F and each v ∈ V .

The formal definition of a vector space is as follows:

Definition 1.2 (vector space)
A vector space is a set V along with an addition on V and a scalar multiplication
on V such that the following properties hold:

commutativity
u+ v = v + u for all u, v ∈ V ;
associativity
(u+ v) + w = u+ (v + w) and (ab)v = a(bv) for all u, v, w ∈ V and all a, b ∈ F;
additive identity
there exists an element 0 ∈ V such that v + 0 = v for all v ∈ V ;
additive inverse
for every v ∈ V, there exists w ∈ V such that v + w = 0;
multiplicative identity
1v = v for all v ∈ V ;
distributive properties
a(u+ v) = au+ av and (a+ b)v = av + bv for all a, b ∈ F and all u, v ∈ V .

Lemma 1.3 (Unique additive identity)
A vector space has a unique additive identity.

Proof. Suppose 0 and 0’ are both additive identities for some vector space V . Then

0′ = 0′ + 0 = 0 + 0′ = 0,

where the first equality holds because 0 is an additive identity, the second equality comes
from commutativity, and the third equality holds because 0′ is an additive identity. Thus
0′ = 0, proving that V has only one additive identity.

Lemma 1.4 (Unique additive inverse)
Every element in a vector space has a unique additive inverse.
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Proof. Suppose V is a vector space. Let v ∈ V. Suppose w and w′ are additive inverses
of v. Then

w = w + 0 = w +
(
v + w′

)
= (w + v) + w′ = 0 + w′ = w′.

Thus w = w′, as desired.

Notation 1.5.
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§2 Linear Maps

Notation 2.1 (F, V,W ). F denotes R or C; V and W denote vector spaces over F.

§2.1 The Vector Space of Linear Maps
§2.1.1 Definition and Examples of Linear Maps

Now we are ready for one of the key definitions in linear algebra.

Definition 2.2 (linear map)
A linear map from V to W is a function T : V →W with the following properties:

additivity
T (u+ v) = Tu+ Tv for all u, v ∈ V ;
homogeneity
T (λv) = λ(Tv) for all λ ∈ F and all v ∈ V.

Note: Linear transformation and linear map are identically the same concept.

Notation 2.3 (L(V,W )). The set of all linear maps from V to W is denoted L(V,W ).

Example 2.4 (linear maps)
zero
In addition to its other uses, we let the symbol 0 denote the function that takes each
element of some vector space to the additive identity of another vector space. To be
specific, 0 ∈ L(V,W ) is defined by

0v = 0.

The 0 on the left side of the equation above is a function from V to W , whereas the
0 on the right side is the additive identity in W. As usual, the context should allow
you to distinguish between the many uses of the symbol 0.
identity
The identity map, denoted I, is the function on some vector space that takes each
element to itself. To be specific, I ∈ L(V, V ) is defined by

Iv = v.
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Example 2.5 (continued)
differentiation
Define D ∈ L(P(R),P(R)) by Dp = p′ The assertion that this function is a linear
map is another way of stating a basic result about differentiation: (f + g)′ = f ′ + g′

and (λf)′ = λf ′ whenever f, g are differentiable and λ is a constant.
integration
Define T ∈ L(P(R),R) by

Tp =
∫ 1

0
p(x)dx.

The assertion that this function is linear is another way of stating a basic result
about integration: the integral of the sum of two functions equals the sum of the
integrals, and the integral of a constant times a function equals the constant times
the integral of the function. multiplication by x2 Define T ∈ L(P(R),P(R)) by

(Tp)(x) = x2p(x)

for x ∈ R.
backward shift
Recall that F∞ denotes the vector space of all sequences of elements of F. Define
T ∈ L (F∞,F∞) by

T (x1, x2, x3, . . .) = (x2, x3, . . .)

from R3 to R2

Define T ∈ L
(
R3,R2) by

T (x, y, z) = (2x− y + 3z, 7x+ 5y − 6z).

from Fn to Fm

Generalizing the previous example, let m and n be positive integers, let Aj,k ∈ F for
j = 1, . . . ,m and k = 1, . . . , n, and define T ∈ L (Fn,Fm) by

T (x1, . . . , xn) = (A1,1x1 + · · ·+A1,nxn, . . . , Am,1x1 + · · ·+Am,nxn)

Actually every linear map from Fn to Fm is of this form.

The following result illustrates that a linear map is completely determined by its values
on a basis, i.e. we can find a linear map that takes on whatever values we wish on the
vectors in a basis.
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Lemma 2.6 (Linear maps and basis of domain)
Suppose v1, . . . , vn is a basis of V and w1, . . . , wn ∈W. Then there exists a unique
linear map T : V →W such that

Tvj = wj

for each j = 1, . . . , n.

Proof. First we show the existence of a linear map T with the desired property. Define
T : V →W by

T (c1v1 + · · ·+ cnvn) = c1w1 + · · ·+ cnwn

where c1, . . . , cn are arbitrary elements of F. The list v1, . . . , vn is a basis of V, and thus
the equation above does indeed define a function T from V to W (because each element
of V can be uniquely written in the form c1v1 + · · ·+ cnvn) For each j, taking cj = 1
and the other c ’s equal to 0 in the equation above shows that Tvj = wj If u, v ∈ V with
u = a1v1 + · · ·+ anvn and v = c1v1 + · · ·+ cnvn, then

T (u+ v) = T ((a1 + c1) v1 + · · ·+ (an + cn) vn)
= (a1 + c1)w1 + · · ·+ (an + cn)wn
= (a1w1 + · · ·+ anwn) + (c1w1 + · · ·+ cnwn)
= Tu+ Tv.

Similarly, if λ ∈ F and v = c1v1 + · · ·+ cnvn, then

T (λv) = T (λc1v1 + · · ·+ λcnvn)
= λc1w1 + · · ·+ λcnwn

= λ (c1w1 + · · ·+ cnwn)
= λTv.

Thus T is a linear map from V to W . To prove uniqueness, now suppose that T ∈ L(V,W )
and that Tvj = wj for j = 1, . . . , n. Let c1, . . . , cn ∈ F. The homogeneity of T implies
that T (cjvj) = cjwj for j = 1, . . . , n. The additivity of T now implies that

T (c1v1 + · · ·+ cnvn) = c1w1 + · · ·+ cnwn.

Thus T is uniquely determined on span (v1, . . . , vn) by the equation above. Because
v1, . . . , vn is a basis of V , this implies that T is uniquely determined on V .

§2.1.2 Algebraic Operations on L(V,W )

We begin by definition addition and scalar multiplication on L(V,W ).

Definition 2.7 (Definition addition and scalar multiplication on L(V,W ))
Suppose S, T ∈ L(V,W ) and λ ∈ F. The sum S + T and the product λT are the
linear maps from V to W defined by

(S + T )(v) = Sv + Tv and (λT )(v) = λ(Tv)

for all v ∈ V .

You should verify that the sum and the product above are indeed linear.
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Lemma 2.8 (L(V,W ) is a vector space)
With the operations of addition and scalar multiplication as defined above, L(V,W )
is a vector space.

The routine proof of the result above is left to the reader. Note that the additive identity
of L(V,W ) is the zero linear map defined earlier in this section.

Usually it makes no sense to multiply together two elements of a vector space, but for
some pairs of linear maps a useful product exists. We will need a third vector space, so
for the rest of this section suppose U is a vector space over F.

Definition 2.9 (Definition Product of Linear Maps)
If T ∈ L(U, V ) and S ∈ L(V,W ), then the product ST ∈ L(U,W ) is defined by

(ST )(u) = S(Tu)

for u ∈ U .

Lemma 2.10 (Algebraic properties of products of linear maps)
associativity

(T1T2)T3 = T1 (T2T3)

whenever T1, T2, and T3 are linear maps such that the products make sense (meaning
that T3 maps into the domain of T2, and T2 maps into the domain of T1 ).
identity

TI = IT = T

whenever T ∈ L(V,W ) (the first I is the identity map on V , and the second I is the
identity map on W ).
distributive properties

(S1 + S2)T = S1T + S2T and S (T1 + T2) = ST1 + ST2

whenever T, T1, T2 ∈ L(U, V ) and S, S1, S2 ∈ L(V,W ).

The routine proof of the result above is left to the reader. Multiplication of linear
maps is not commutative. In other words, it is not necessarily true that ST = TS, even
if both sides of the equation make sense.
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Example 2.11
Suppose D ∈ L(P(R),P(R)) is the differentiation map defined in Example 3.4 and
T ∈ L(P(R),P(R)) is the multiplication by x2 map defined earlier in this section.
Show that TD 6= DT .
Solution:
We have

((TD)p)(x) = x2p′(x) but ((DT )p)(x) = x2p′(x) + 2xp(x).

In other words, differentiating and then multiplying by x2 is not the same as
multiplying by x2 and then differentiating.

§3 Operators on Inner Product Spaces
§3.1 Self-Adjoint and Normal Operators

Definition 3.1 (Adjoint, T∗)
7.2 Definition adjoint, T ∗ Suppose T ∈ L(V,W ). The adjoint of T is the function
T ∗ : W → V such that

〈Tv,w〉 = 〈v, T ∗w〉

for every v ∈ V and every w ∈W

§3.2 Polar Decomposition and Singular Value Decomposition
§3.2.1 Polar Decomposition

Notation 3.2 (
√
T ). If T is a positive operator, then

√
T denotes the unique postive

square root of T .

Lemma 3.3 (Polar Decomposition)
Suppose T ∈ L(V ). Then there exists an isometry S ∈ L(V ) such that

T = S
√
T ∗T .

Here,
√
T ∗T is the unique positive square root of the positive operator T ∗T .

Proof.

§3.2.2 Singular Value Decomposition

Definition 3.4 (singular values)
Suppose T ∈ L(V ). The singular values of T are the eigenvalues of

√
T ∗T , with

each eigenvalue λ repeated dimE(λ,
√
T ∗T ) times.
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Note: The singular values are nonegative real numbers.
Alternatively, the singular values of T are the square roots of the diagonal entries when
T ∗T is put in diagonal form in an orthonormal basis.

Example 3.5

Let T =
(

1 1
0 1

)
be an operator on R2, then T ∗T =

(
1 1
1 2

)
. You should be able to

check that the eigenvalues of T ∗T are the positive numbers

3 +
√

5
2 ,

3−
√

5
2

and that the square roots of these eigenvalues are
√

5 + 1
2 ,

√
5− 1
2 .

These are the singular values of T .

The next result shows that every operator on V has a clean description in terms of its
singular values and two orthonormal bases of V .

Theorem 3.6 (Singular Value Decomposition)
Suppose T ∈ L(V ) has singular values s1, . . . , sn. Then there exist orthonormal
abses e1, . . . , en and f1, . . . , fn of V such that

Tv = s1〈v, e1〉f1 + . . .+ sn〈v, en〉fn

for every v ∈ V .

Proof. By the Spectral lemma (real or complex), there is an orthonormal basis e1 . . . , en
of V such that

√
T ∗T (ej) = sjej for each j. Choose a polar decomposition

T = S
√
T ∗T

for T (i.e., choose S). Then for each j,

Tej = S(sjej) = sjfj , fj := Sej .

Because S is an isometry, the list f1, . . . , fn is an orthonormal basis for V . (For more
details, please refer to LADR p.237.)

The following result has been mentioned above and it provides an alternative perspective
on singular values.

Lemma 3.7 (Singular values without taking square root of an operator)
Suppose T ∈ L(V ). Then the singular values of T are the nonegative square roots
of the eigenvalues of T ∗T , with each eigenvalue λ reapeated dimE(λ, T ∗T ) times.

Proof. The Spectral lemma implies that there are an orthonormal basis e1, . . . , en and
nonnegative numbers λ1, . . . , λn such that T ∗Tej = λjej for j = 1, . . . , n. It is easy to
see that

√
T ∗Tej =

√
λjej for j = 1, . . . , n, which implies the desired result.

9
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This concludes the section on polar decomposition and singular values.
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§4 Operators on Complex Vector Spaces
§4.1 Gereralized Eigenvectors and Nilpotent Operators
§4.1.1 Null Spaces of Powers of an Operator

We begin this chapter with a study of null spaces of powers of an operator.

Lemma 4.1 (Sequence of increasing null spaces and decreasing range)
Suppose T ∈ L(V ) and V is finite-dimensional. Then

{0} = nullT 0 ⊆ nullT 1 ⊆ · · · ⊆ nullT k ⊆ · · · ⊆ V

and
V = rangeT 0 ⊇ rangeT ⊇ · · · ⊇ rangeT k ⊇ · · · ⊇ {0}.

Proof. Suppose k is a nonnegative integer and v ∈ nullT k. Then T kv = 0, and hence

T k+1v = T (T kv) = T (0) = 0.

Thus v ∈ nullT k+1. Hence nullT k ⊆ nullT k+1, as desired and the remaining is left as an
exercise for the reader.

Note that the ”links” between successive spaces cannot all be proper inclusions because
V has a finite dimension. Thus, for instance, there is a j such that nullT j = nullT j+1,
and clearly j ≤ dimV .

The following result states that if two consecutive terms in this sequence of subspaces
are equal, then all later terms in the sequence are equal.

Lemma 4.2 (Equality in the sequence of null spaces)
Suppose T ∈ L(V ). Suppose m is a nonnegative integer such that nullTm =
nullTm+1. Then

nullTm = nullTm+1 = nullTm+2 = nullTm+3 = · · ·.

Proof. Suppose v ∈ nullT j+2. Then

T j+1(Tv) = 0, T v ∈ nullT j+1 = nullT j

and thus T j(Tv) = 0, so v ∈ nullT j+1.

One says that the spaces nullT k stabilize, and in fact the stable subspace that we get is
nullTn, where n = dimV. Similarly, the spaces rangeT j coincide with rangeTn for j ≥ n.

Lemma 4.3 (Null spaces stop growing)
Suppose T ∈ L(V ). Let n = dimV . Then

nullTn = nullTn+1 = nullTn+2 = . . . .

Proof. We can show this using the results from above.

11
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Lemma 4.4 (V is the direct sum of nullT dimV and rangeT dimV )
Suppose T ∈ L(V ). Let n = dimV. Then

V = nullTn ⊕ rangeTn.

Proof. It’s not too hard to see that the two subspaces have {0} intersection. An element
of rangeTn is Tnv. If this element is annihilated by Tn, then T 2nv = 0 and then Tnv = 0
by the previous result(s).

Since the subspaces have complementary dimensions (by rank-nullity), their direct
sum is the whole space V .

Example 4.5

An example to keep in mind is the operator T on F2 defined by
(

0 1
0 0

)
. The null

space and range of T are 1−dimensional; in fact, they’re the same 1−dimensional
subspace of F2. The operator T 2 is 0, so its null space is all of F2 and its range is 0.
The operator T itself is sort of dicey, but when we stabilize by taking T dim F2 , we’re
in good shape.

§4.1.2 Generalized Eigenvectors

Unfortunately, some operators do not have enough eigenvectors to lead to a good descrip-
tion. Thus we introduce the concept of generalized eigenvectors, which will play a major
role in our description of the structure of an operator.

To understand why we need more than eigenvectors, let’s examine the question of
describing an operator by decomposing its domain into invariant subspaces. Fix T ∈ L(V ).
We seek to describe T by finding a ”nice” direct sum decomposition

V = U1 ⊕ · · · ⊕ Um

where each Uj is a subspace of V invariant under T . The simplest possible nonzero
invariant subspaces are 1-dimensional. A decomposition as above where each Uj is
a 1 -dimensional subspace of V invariant under T is possible if and only if V has a
basis consisting of eigenvectors of T . This happens if and only if V has an eigenspace
decomposition

V = E (λ1, T )⊕ · · · ⊕ E (λm, T )

where λ1, . . . , λm are the distinct eigenvalues of T . The Spectral lemma shows that if
V is an inner product space, then a decomposition of the form holds for every normal
operator if F = C and for every self-adjoint operator if F = R because operators of those
types have enough eigenvectors to form a basis of V .

Then what about operators of other types? Sadly, the decomposition might not
hold for more general operators, even on a complex vector space. Hence, we will need
generalized eigenvectors and generalized eigenspaces, which we now introduce, to remedy
this situation.

12
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Definition 4.6 (generalized eigenvector)
A vector v ∈ V is called a generalized eigenvector of T corrresponding to λ if
v 6= 0 and

(T − λI)jv = 0

for some positive integer j.

Note: According to Axler, we don’t define the concept of a generalized eigenvalue, because
this would not lead to anything new. The reason would be if (T − λI)j is not injective for
some positive integer j, then T − λI is not injective, and hence λ is an eigenvalue of T .

Here, although j is allowed to be an arbitrary integer, we will soon prove that every
generalized eigenvector satisifes this equation with j = dimV .

Definition 4.7 (generalized eigenspace, G(λ, T ))
The generalized eigenspace of T corresponding to λ, denoted G(λ, T ), is defined
to be the set of all generalized eigenvectors of T corresponding to λ, along with the
0 vector.

Because every eigenvector of T is a generalized eigenvector of T (take j = 1 in the
definition of generalized eigenvector), each eigenspace is contained in the corresponding
generalized eigenspace. In other words, if T ∈ L(V ) and λ ∈ F, then

E(λ, T ) ⊂ G(λ, T ).

The next result implies that if T ∈ L(V ) and λ ∈ F, then G(λ, T ) is a subspace of V
(because the null space of each linear map on V is a subspace of V ).

Lemma 4.8 (Description of generalized eigenspaces)
Suppose T ∈ L(V ) and λ ∈ F. Then

G(λ, T ) = null(T − λI)dimV .

Proof. Suppose v ∈ null(T−λI)dimV . The definitions imply v ∈ G(λ, T ). Thus G(λ, T ) ⊃
null (T − λI)dimV .
Conversely, suppose v ∈ G(λ, T ). Thus there is a positive integer j such that

v ∈ null(T − λI)j .

Using the lemmas above, we get v ∈ null(T −λI)dimV . Thus G(λ, T ) ⊂ null(T −λI)dimV,
as desired.

The takeaway here is that we now see that if λ is an eigenvalue for T ∈ L(V ), then

V = G(λ, T )⊕ range(T − λI)n.

Further, the subspace range(T − λI)n of V is visibly T -invariant. The displayed decompo-
sition helps us to achieve our aims of analyzing and understanding T on V (whatever that
means). The space range(T − λI)n is smaller than V , while the generalized eigenspace is
specific to λ and might be tractable.
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Example 4.9

From the examples T = 0 and T =
(

0 1
0 0

)
on F2, we see that both have V = G(0, T ).

In the first case, T is 0(duh!); in the second case, T is nonzero but nilpotent(a
concept that will be covered soon).

We learned earlier that eigenvectors corresponding to distinct eigenvalues are linearly
independent. Now we prove a similar result for generalized eigenvectors.

Lemma 4.10 (Linear independence of generalized eigenvectors)
Let T ∈ L(V ). Suppose that λ1, . . . , λm are distinct eigenvalues of T and v1, . . . , vm
are corresponding generalized eigenvectors. Then v1, . . . , vm is linearly independent.

Proof. Suppose a1, . . . , am are complex numbers such that

0 = a1v1 + · · ·+ amvm (1)

Let k be the largest nonnegative integer such that (T − λ1I)k v1 6= 0. Let

w = (T − λ1I)k v1

Thus
(T − λ1I)w = (T − λ1I)k+1w = 0

and hence Tw = λ1w. Thus (T − λI)w = (λ1 − λ)w for every λ ∈ F and hence

(T − λI)nw = (λ1 − λ)nw (2)

for every λ ∈ F, where n = dimV . Apply the operator

(T − λ1I)k (T − λ2I)n · · · (T − λmI)n

to both sides of (1) getting

0 = a1 (T − λ1I)k (T − λ2I)n · · · (T − λmI)n v1

= a1 (T − λ2I)n · · · (T − λmI)nw
= a1 (λ1 − λ2)n · · · (λ1 − λm)nw.

The equation above implies that a1 = 0. In a similar fashion, aj = 0 for each j, which
implies that v1, . . . , vm is linearly independent.

§4.1.3 Nilpotent Operator

Now we introduce the concept of nilpotent operator, which we have mentioned above.

Definition 4.11
An operator is called nilpotent if some power of it equals 0.

The Latin word nil means nothing or zero; the Latin word potent means power. Thus
nilpotent literally means zero power!

Keep in mind that we would never need to use a power higher than the dimension of
the sapce and we will show why.

14
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Lemma 4.12 (Nilpotent operator raised to dimension of domain is 0)
Suppose N ∈ L(V ) is nilpotent. Then

NdimV = 0.

Proof. The proof is simple. Because N is nilpotent, G(0, N) = V , which implies null
NdimV = V, as desired.

Given an operator T on V , we want to find a basis of V such that the matrix of T with
respect to this basis is as simple as possible, meaning that the matrix contains many 0’s.

Lemma 4.13 (Matrix of a nilpotent operator)
If N is nilpotent, it is strictly upper-triangular in some basis of V .

The phrase ”strictly upper-triangular” means upper-triangular with 0s along the diagonal.
We can also rephrase being upper-triangular as follows:

There is a basis v1, . . . , vn of V so that Nvj ∈ span(v1, . . . , vj−1) for j = 1, . . . , n. For
j = 1, this means that Nv1 is in the span of the empty list, which is {0}, and thus
Nv1 = 0.

Proof. The proof might be kind of wordy, but bear with it. First choose a basis of null
N. Then extend this to a basis of null N2. Then extend to a basis of null N3. Continue
in this fashion, eventually getting a basis of V (because 8.18 states that null NdimV = V
).

Now let’s think about the matrix of N with respect to this basis. The first column, and
perhaps additional columns at the beginning, consists of all 0’s, because the corresponding
basis vectors are in null N . The next set of columns comes from basis vectors in null
N2. Applying N to any such vector, we get a vector in null N ; in other words, we get
a vector that is a linear combination of the previous basis vectors. Thus all nonzero
entries in these columns lie above the diagonal. The next set of columns comes from
basis vectors in null N3. Applying N to any such vector, we get a vector in null N2; in
other words, we get a vector that is a linear combination of the previous basis vectors.
Thus once again, all nonzero entries in these columns lie above the diagonal. Continue in
this fashion to complete the proof.
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§4.2 Decomposition of an Operator
§4.2.1 Description of Operators on Complex Vector Spaces

We saw earlier that the domain of an operator might not decompose into eigenspaces,
even on a finite-dimensional complex vector space. In this section we will see that every
operator on a finite-dimensional complex vector space has enough generalized eigenvectors
to provide a decomposition.

We observed earlier that if T ∈ L(V ), then null T and range T are invariant under T
(see LADR 5.3, parts (c) and (d)). Now we show that the null space and the range of
each polynomial of T is also invariant under T .

Lemma 4.14 (The null space and range of p(T ) are invariant under T )
Suppose T ∈ L(V ) and p ∈ P(F). Then nullp(T ) and rangep(T ) are invariant under
T .

Proof. Suppose v ∈ null p(T ). Then p(T )v = 0. Thus

((p(T ))(Tv) = T (p(T )v) = T (0) = 0

Hence Tv ∈ null p(T ). Thus null p(T ) is invariant under T, as desired. Suppose v ∈
range p(T ). Then there exists u ∈ V such that v = p(T )u. Thus

Tv = T (p(T )u) = p(T )(Tu).

Hence Tv ∈ range p(T ). Thus range p(T ) is invariant under T, as desired.

The following major result shows that every operator on a complex vector space can
be thought of as composed of pieces, each of which is a nilpotent operator plus a scalar
multiple of the identity.

Lemma 4.15 (Description of operators on complex vector spaces)
Suppose V is a complex vector space and T ∈ L(V ). Let λ1, . . . , λm be the distinct
eigenvalues of T . Then

(a) V = G (λ1, T )⊕ · · · ⊕G (λm, T ) ;

(b) each G (λj , T ) is invariant under T ;

(c) each (T − λjI)|G(λj ,T ) is nilpotent.

(The following statements assume that the reader has read the results below, if you
haven’t, please do so before proceeding.)
We saw previously that

V = G(λ, T )⊕ U

where U := range(T − λI)n of V is a T -invariant subspace of V We have proved that

G(µ, T ) ⊆ U

if µ is another eigenvalue of T .
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Proof. Again, we will be using some results below, it would be better to read them first
before looking at this proof. For part(a), the proof is by induction on dim V . If V = {0},
there are no eigenvalues and V is the empty direct sum (which is {0} by convention). If
V is 1 -dimensional, it’s E(λ, T ) = G(λ, T ) for the unique eigenvalue λ. Assume that V
has dimension > 1 and that the lemma is known for spaces of dimension less than that
of V . Then V has an eigenvalue λ, and V = G(λ, T ) ⊕ U where U = range(T − λl)n.
The space U is T -invariant and has dimension < dimV . The statement to be proved is
known for U .

So far, we have
V = G(λ, T )⊕ U, U =

⊕
µ

G(µ, T|U ).

where T|U is the restriction of T to U. The second decomposition is true because dim
U < dimV and because of the inductive assumption. Because G(λ, T ) ∩ U = {0}, λ is
not an eigenvalue of T|U Further, since G(µ, T ) ⊆ U, for each eigenvalue µ of T other
than λ, the eigenvalues of T|U on U are the eigenvalues µ 6= λ of T . For each such µ,
the inclusion G(µ, T ) ⊆ U implies that G(µ, T|U ) = G(µ, T ) Hence we have the desired
decomposition of V . Please refer to LADR for the remaining portion.

If v ∈ V , then there is a unique way to write

v = v1 + . . .+ vm

with vj = G(λj , T ) for each j. Each summand is either a generalized eigenvector or is 0.
After removing those term that are 0, we’ve written v as a sum(possibly an empty sum!)
of generalized eigenvectors.
Hence, if we knew that

V = G (λ1, T )⊕ · · · ⊕G (λm, T )

we would learn that V is annihilated by the operator

(T − λ1l)n (T − λ2l)n · · · (T − λml)n

because the j th factor of this product annihilates the j th summand in the direct sum
decomposition.

Proposition 4.16
We do in fact know that the operator

(T − λ1I)n(T − λ2I)n . . . (T − λmI)n = 0

on V .

Here’s why:
We poved long ago that T is upper-triangular in some basis(because F = C). If the
numbers on the diagonal are a1, . . . , an, then the operator

(T − a1I) . . . (T − anI) = 0

on V as we can see by direct computation. Further, we know that complex numbers
that appear as diagonal entries are precisely the eigenvalues of T (5.32 on page 152). The
number of times a give λj appears on the digaonal is between 1 and n. The polynomial
(z − a1) . . . (z − an) is certainly a divisor of (z − λ1)n . . . (z − λm)n. It follows that the
operator (T − λ1I)n . . . (T − λmI)n = 0 on V .

17
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Proposition 4.17
Suppose that λ and µ are distinct eigenvalues of T . Then

G(µ, T ) ⊆ range(T − λI)n.

Proof. Professor Ribet’s proof on this might be slightly annoying, but here it is. Write
(λ − µ)I = (T − µl) − (T − λl) and use the formula to compute ((λ − µ)l)2n by the
binomial lemma. The result can be expressed in the form

(λ− µ)2nI = f(T )(T − µI)n + g(T )(T − λI)n;

here f and g are polynomials.

Example 4.18
Suppose n = 3. Then (λ− µ)6I is a sum of seven terms

(T − µI)6 − 6(T − µI)5(T − λl) + 10(T − µI)4(T − λI)2 + · · ·

each having either a (T − µI)3 or a (T − µI)3 that can be factored out.

Example 4.19
Suppose now that v ∈ G(µ, T ) = null(T − µI)n. Then

(λ− µ)2nv = p(T )(T − µI)nv + q(T )(T − λI)nv = (T − λI)nq(T )v

Thus
v = (T − λI)n

( 1
(λ− µ)2n q(T )v

)
is in the range of (T − λI)n.

As we know, an operator on a complex vector space may not have enough eigenvectors
to form a basis of the domain. The next result shows that on a complex vector space
there are enough generalized eigenvectors to do this.

Lemma 4.20 (A basis of generalized eigenvectors)
Suppose V is a complex vector space and T ∈ L(V ). Then there is a basis of V
consisting of generalized eigenvectors of T .

Proof. Choose a basis of each G (λj , T ) in 8.21(LADR). Put all these bases together to
form a basis of V consisting of generalized eigenvectors of T .

18
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§4.2.2 Multiplicity of an Eigenvalue

We will now study the dimensions of the subspaces involved in the decomposition of
V .

Definition 4.21 (multiplicity)

• Suppose T ∈ L(V ). The multiplicity of an eigenvalue λ of T is defined to be
the dimension of the corresponding generalized eigenspace G(λ, T ).

• In other words, the multiplicity of an eigenvalue λ of T equals dim null(T −
λI)dimV .

Lemma 4.22 (Sum of the multiplicities equals dim V)
Suppose V is a complex vector space and T ∈ L(V ). Then

dimV =
∑
λ

multiplicity of λ.

with the sum over the set of eigenvalues of T .

Proof. The desired result follows from 8.21 and the obvious formula for the dimension of
a direct sum (see 3.78 or Exercise 16 in Section 2.C).

In case of confusions, note that the terms algebraic multiplicity and geometric
multiplicity are used differently. If T ∈ L(V ) and λ is an eigenvalue of T, then

algebraic multiplicity of λ = dim null(T − λI)dimV = dimG(λ, T ),

geometric multiplicity of λ = dimnull(T − λI) = dimE(λ, T ).

Now here are some challenges:

Question 4.23. If U is a T -invariant subspace of V , is it true that the multiplicity of
λ for T on V is the sum of the multiplicity of λ for T|U (an operator on U ) and the
multiplicity of λ for T/U (an operator on V/U)?

If T is upper-triangular in some basis, with diagonal entries a1, . . . , an, is the multi-
plicity of λ the number of entries aj that are equal to λ? (Hey, this statement is the last
exercise of 8.C.!)

For those who are not interested, you may skip this section and the following propo-
sitions. Recall that U ⊂ V is assumed to be T -invariant, and we’d like to consider a
difference T − λI. Let’s call this difference N, so that (for example) G(λ, T ) = null Nn.
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Proposition 4.24

null(NU )n = (nullNn) ∩ U

This is clear: a vector in U is sent to 0 by Nn if and only if it is sent to 0 by the restriction
of N to U . Here’s another observation:

Proposition 4.25

range (NU )n = (rangeNn) ∩ U.

Note
V = nullNn ⊕ rangeNn

and
U = null (NU )n ⊕ range (NU )n .

If u ∈ U is 0 + x relative to the first direct sum decomposition and w + z relative to the
second one, then w = 0 and z = x by the uniqueness of the writing of u as a sum of
elements of null Nn and range Nn.

Remark: In the second decomposition, we would normally replace n by the dimension
of U, which in general is smaller than n. However, null spaces stop growing (8.4) and
ranges corresponding stop shrinking (e.g., by the rank-nullity formula).

§4.2.3 Block Diagonal Matrices

Definition 4.26 (block diagonal matrix)
A block diagonal matrix is a square matrix of the form A1 0

. . .
0 Am

 ,
where A1, . . . , Am are square matrices lying along the diagonal and all the other
entries of the matrix equal 0.
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Lemma 4.27 (Block diagonal matrix with upper-triangular blocks)
Suppose V is a complex vector space and T ∈ L(V ). Let λ1, . . . , λm be the distinct
eigenvalues of T, with multiplicities d1, . . . , dm. Then there is a basis of V with
respect to which T has a block diagonal matrix of the form A1 0

. . .
0 Am

 ,
where each Aj is a dj -by- dj upper-triangular matrix of the form

Aj =

 λj ∗
. . .

0 λj

 .

Proof. Each (T − λjI)G(λj ,T ) is nilpotent. For each j, choose a basis of G (λj , T ) , which
is a vector space with dimension dj , such that the matrix of (T − λjI)|G(λj ,T ) with respect
to this basis is as in 8.19. Thus the matrix of T |G(λj ,T ) , which equals (T − λjI)|G(λj ,T ) +
λjI|G(λj ,T ) , with respect to this basis will look like the desired form shown above for Aj .
Putting the bases of the G (λj , T ) ’s together gives a basis of V by 8.21(a) The matrix of
T with respect to this basis has the desired form.
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§4.2.4 Square Roots

Recall that a square root of an operator T ∈ L(V ) is an operator R ∈ L(V ) such that
R2 = T (see 7.33). Every complex number has a square root, but not every operator on
a complex vector space has a square root. The noninvertibility of that operator is no
accident, as we will soon see. We begin by showing that the identity plus any nilpotent
operator has a square root.

Lemma 4.28 (Identity plus nilpotent has a square root)
Suppose N ∈ L(V ) is nilpotent. Then I +N has a square root.

Proof. Consider the Taylor series for the function
√

1 + x:
√

1 + x = 1 + a1x+ a2x
2 + · · ·

We will not find an explicit formula for the coefficients or worry about whether the
infinite sum converges because we will use this equation only as motivation.

Because N is nilpotent, Nm = 0 for some positive integer m. In 8.32 suppose we
replace x with N and 1 with I. Then the infinite sum on the right side becomes a finite
sum (because N j = 0 for all j ≥ m ). In other words, we guess that there is a square
root of I +N of the form

I + a1N + a2N
2 + · · ·+ am−1N

m−1

Having made this guess, we can try to choose a1, a2, . . . , am−1 such that the operator
above has its square equal to I +N. Now(

I + a1N + a2N
2 + a3N

3 + · · ·+ am−1N
m−1)2

= I + 2a1N +
(
2a2 + a2

1
)
N2 + (2a3 + 2a1a2)N3 + · · ·

+ (2am−1 + terms involving a1, . . . , am−2)Nm−1

We want the right side of the equation above to equal I +N. Hence choose a1 such that
2a1 = 1 (thus a1 = 1/2 ). Next, choose a2 such that 2a2 + a2

1 = 0 (thus a2 = −1/8 ).
Then choose a3 such that the coefficient of N3 on the right side of the equation above
equals 0 (thus a3 = 1/16 ). Continue in this fashion for j = 4, . . . ,m− 1, at each step
solving for aj so that the coefficient of N j on the right side of the equation above equals
0. Actually we do not care about the explicit formula for the aj ’s. We need only know
that some choice of the aj ’s gives a square root of I +N

Note: This lemma is valid on real and complex vector spaces.
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Lemma 4.29 (Over C, invertible operators have square roots)
Suppose V is a complex vector space and T ∈ L(V ) is invertible. Then T has a
square root.

Proof. Let λ1, . . . , λm be the distinct eigenvalues of T. For each j, there exists a nilpotent
operator Nj ∈ L (G (λj , T )) such that T |G(λj ,T ) = λjI +Nj (see 8.21(c)). Because T is
invertible, none of the λj ’s equals 0, so we can write

T |G(λj ,T ) = λj

(
I + Nj

λj

)

for each j. Clearly Nj/λj is nilpotent, and so I +Nj/λj has a square root (by previous
lemma). Multiplying a square root of the complex number λj by a square root of
I +Nj/λj , we obtain a square root Rj of T |G(λj ,T ) A typical vector v ∈ V can be written
uniquely in the form

v = u1 + · · ·+ um

where each uj is in G (λj , T ) (see 8.21). Using this decomposition, define an operator
R ∈ L(V ) by

Rv = R1u1 + · · ·+Rmum

The reader should verify that this operator R is a square root of T, completing the
proof.

By imitating the techniques in this section, the reader should be able to prove that if V
is a complex vector space and T ∈ L(V ) is invertible, then T has a kth root for every
positive integer k.
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§4.3 Characteristic and Minimal Polynomials
§4.3.1 The Cayley-Hamilton Theorem

Definition 4.30 (characteristic polnomial)
Suppose V is a complex vector space and T ∈ L(V ). Let λ1, . . . , λm denote the
distinct eigenvalues of T, with multiplicities d1, . . . , dm. The polynomial

(z − λ1)d1 · · · (z − λm)dm

is called the characteristic polynomial of T .

Lemma 4.31 (Degree and zeros of characteristic polynomial)
Suppose V is a complex vector space and T ∈ L(V ). Then

(a) the characteristic polynomial of T has degree dimV ;

(b) the zeros of the characteristic polynomial of T are the eigenvalues of T .

Proof.

Theorem 4.32 (Cayley-Hamilton Theorem)
Suppose V is a complex vector space and T ∈ L(V ). Let q denote the characteristic
polynomial of T. Then q(T ) = 0

Proof.

§5 References
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