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Chapter 1

Sets and Relations

1.1 Sets
Definition 1.1.1 (Subset). A set A is a subset of a set B if x P A ùñ x P B. We write A Ď B or
A Ă B.
Definition 1.1.2 (Proper subset). A proper subset is A Ď B but A ‰ B, i.e., A Ă B.
Remark. A “ B is equivalent to saying that A Ď B and B Ď A.

1.2 Set Operations
Definition 1.2.1 (Union). AYB “ tx | x P A or x P Bu
Definition 1.2.2 (Intersection). AXB “ tx | x P A and x P Bu.
Definition 1.2.3 (Difference). AzB “ A´B “ ta P A | a R Bu.
Definition 1.2.4 (Cartesian product). AˆB “ tpa, bq | a P A, b P Bu.
Remark. AˆB ‰ B ˆA.
Definition 1.2.5 (Complement). The complement of A Ď U is Ac “ ta P U | a R Au where U is
the universe.
Remark. AYAc “ U ; AXAc “ H; pAcqc “ A.

Theorem 1.2.6 (De Morgan’s Laws).

pAYBqc “ Ac XBc,

pAXBqc “ Ac YBc.

1.3 Relations
Definition 1.3.1 (Relations). A relation between sets A and B is a subset R Ď AˆB. If pa, bq P R,
then a is related to b, or aRb, or a „ b.
Example 1.3.2. R Ď Rˆ R. R “ tpx, xq P R2 | x P Ru, i.e., aRb ðñ fpaq “ b, where f : RÑ R
and fpxq “ x.
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Example 1.3.3. R Ď R2, aRb ðñ b “ a3, i.e., R “ tpx, x3q | x P Ru.

1.3.1 Functions

Definition 1.3.4 (Function). A function f : AÑ B is a relation R Ď AˆB such that @a P A, D!b P
B such that pa, bq P R.
Definition 1.3.5 (Binary Operation). A binary operation on a set A is a function f : AˆAÑ A.
Definition 1.3.6 (Disjoint). A,B Ď U are disjoint if AXB “ H.
Definition 1.3.7 (Partition). A partition of U is a collection of disjoint subsets of U whose union
is U .
Example 1.3.8. U “ Z can be partitioned into tx P Z | x ă 0u, tx P Z | x ą 0u.
Example 1.3.9. U “ R can be partitioned by the sets txu for each x P R.
Definition 1.3.10 (Equivalence Relation). A relation R Ď AˆA is an equivalence relation if it is

(i) reflexive: aRa @a P A.

(ii) symmetric: aRb ðñ bRa.

(iii) transitive: aRb and bRc ùñ aRc.

Remark. Equivalence relation "are the same" as partition, i.e., they contain the same information.
(Why)?

• If R is an equivalence relation on A, then create partition of A: say a and b are in the same
subset of the partition ðñ aRb. This is a partition of A.

• Given a partition of A, make a relation R on A by saying aRb ðñ a and b are in the same
subset of the partition. Check R is an equivalence relation.

Example 1.3.11. If Z are partitioned into 0, 1, . . . , n´ 1 for some n ě 2, the corresponding equiv-
alence relation is congruence modulo n. For aRb, write a ” b pmod nq.

1.4 Modular Arithmetic
Notation.

i “ tx P Z | i is the remainder when x is divided by nu “ tan` i | a P Zu.

Define Zn “ t0, 1, . . . , n´ 1u. Goal is to define ` and ˆ on Zn.

To do so, first, given x P Z, let x “ tan` x | a P Zu. Then x “ y when x´ y “ kn for some k P Z,
i.e., x ´ y P 0. Now for `{ˆ: define ` : Zn ˆ Zn Ñ Zn that has the mapping pa, bq Ñ a` b and
define ˆ : Zn ˆ Zn Ñ Zn that has the mapping pa, bq Ñ ab.
Question. Define a` b “ a` b. But if a “ x and b “ y, then is a` b “ x` y?
Question. Write out tables of binary operations for n “ 3.
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Chapter 2

Groups

2.1 Properties of ` on R and ˆ on Rzt0u
(i) Closure: adding/ multiplying two elements gives another element (built in to definition of a

binary operation).

(ii) Commutativity:
#

a` b “ b` a

ab “ ba
@a, b.

(iii) Associativity
#

a` pb` cq “ pa` bq ` c

apbcq “ pabqc
@a, b, c.

(iv) Identity
#

a` 0 “ 0` a “ a

a ¨ 1 “ 1 ¨ a “ a
@a.

(v) Inverses
#

a` p´aq “ 0
a ¨ 1

a “ 1
@a.

Definition 2.1.1. We say a binary operation p : AˆAÑ A is:

• commutative if ppa, bq “ ppb, aq @a, b P A.

• associative if ppa, ppb, cqq “ ppppa, bq, cq @a, b, c P A.

• has an identity if De P A such that ppa, eq “ ppe, aq “ a @a P A.

• has inverses if D identity e P A and @a P A, Db P A such that ppa, bq “ ppb, aq “ e. We denote
the inverse as a´1.

Example 2.1.2. A “ Zn, p “ addition mod n, i.e., ppi, jq “ i` j.

6
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1. Associativity:

i` pj ` kq “ i` j ` k “ i` pj ` kq

“ pi` jq ` k

“ i` j ` k

“ pi` jq ` k.

2. Identity: 0.

3. Inverses: i has inverse ´i “ n´ i. (e.g. n “ 2: inverse of 1 “ ´1 “ 2´ 1 “ 1.

4. Commutativity:
i` j “ i` j “ j ` i “ j ` i.

Example 2.1.3. A “ MatnpRq “ set of nˆ n matrices with entries in R. p : Aˆ AÑ A is matrix
multiplication. Associativity: matrix multiplication is associative. Identity: In the identity
matrix. Inverses: No, consider the inverse for the zero matrix. Commutativity: AB ‰ BA for
matrices.
Example 2.1.4. A “ GLnpRq General linear group (invertible matrices). Associativity: yes.
Identity: yes. Inverses: yes. Commutativity: no.
Example 2.1.5. A “ set of functions f : R Ñ R, ppf, gq “ f ˝ g. Associativity: yes. Identity:
fpxq “ x. Inverses:? Commutativity: no, e.g.?

2.1.1 Properties

• If p is a binary operation on A with identity e, and ab “ ac “ e and ba “ ca “ e. (ab means
ppa, bq, ac means ppa, cq), then b “ c. This is the cancellation law.
Remark. (Why?) ab “ e ùñ cab “ ce ùñ eb “ c ùñ b “ c. Hence, inverses are unique.
That is, if e, f P A are such that

#

ea “ ae “ a

fa “ af “ a
@a P A,

then e “ f .
(Why?) e “ ef “ f (f, e is identity).

• pabq´1 “ b´1a´1.

Definition 2.1.6 (Groups). A group is a set G with a binary operation p : G ˆ G Ñ G that is
associative, has an identity e, and has inverses. Write this as pG, pq or just G if the binary operation
is understood from context.
Definition 2.1.7 (Abelian). A group pG, pq is Abelian or communitative if p is commutative.
Notation: write ppa, bq as ab or a` b sometimes depending on the context.
Remark. Some authors have four properties: with the extra one being closure. For us, closure is
built in to the definition of p.
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Example 2.1.8. Examples of Abelian group:pR,`q,pRzt0u,ˆq, pZn,`q.
Examples of non-Abelian group: pGLnpRq,ˆ).
Examples of non-group: pMatnpRq,ˆq, ptf : RÑ RRu, commpositionq, pN,`q.
Definition 2.1.9 (Order). The order of a group is the cardinality of G as a set.
Notation: |G| “ order of G. |R| “ 8, |Zn| “ n.

Theorem 2.1.10 (Cancellation Law). In a group G, if ab “ ac, then b “ c, i.e., we can cancel a.

Proof. a has inverse a´1 P G. Hence,

ab “ ac ùñ a´1ab “ a´1ac ùñ eb “ ec ùñ b “ c.

Example 2.1.11.

• GLnpRq, GLnpCq, GLnpQq under matrix multiplication. (General linear groups)

• SLnpRq, SLnpCq, SLnpQq under matrix multiplication. (Special linear groups, i.e. SLnpRq “
tA P GLnpRq | detA “ 1u.) Matrix multiplication can be reimagined as a binary operation
SLnpRq ˆ SLnpRq Ñ SLnpRq.

• Given a set rns “ t1, 2, . . . , nu, let Sn “ set of bijections rns Ñ rns. For example, f : r3s Ñ r3s
(fp1q “ 1, fp2q “ 3, fp2q “ 3) is an element of S3. Define binary operation p on S3 by function
composition fg “ f ˝g, e.g. pfgqp1q “ pf ˝gqp1q “ fpgp1qq. This forms a group pSn, pq, called
the symmetric group, e.g. for f above: f ˝ f is (1 Ñ 1, 2 Ñ 2, 3 Ñ 3), which is the identity
function.
Remark. It is a group. Associativity: function composition is associative. Identity: fpiq “
i @i. Inverse: every bijection has an inverse bijection (if fpiq “ j, then define f´1pjq “ i)
and so f ˝ f´1 “ f´1 ˝ f “ e. Hence, Sn is a group.
These bijection can be thought of as permutations of the list t1, 2, . . . , nu, e.g. f above
permutes 123 to 132. It also permutes 132 to 123. f takes the second slot to third slot
and the third slot to second slot. f permutes: 123 f

ù 132 f
ù 123. There are n! different

permutations of 123 ¨ ¨ ¨n and so |Sn| “ n!.

2.2 Subgroups
Definition 2.2.1 (Subgroup). A subgroup is a non-empty subset H of a group pG, pq such that

• H is closed under p: ppa, bq P H @a, b P H.

• Identity is in H.

• H has inverses: if a P H, then a´1 P H.

Under these conditions, we can define a new binary operation: pH : H ˆ H Ñ H defined by
pHpa, bq “ ppa, bq.
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Proposition 2.2.2. pH, pHq is a group.

Proof. pH is a well-defined binary operation since H is closed under p. We also have the identity e P
H since given any a P H, we know that a´1 P H. Hence, we have pHpa, a´1q “ ppa, a´1q “ e P H.
The inverse is also given. For associativity, we have pH is associative because p is associative.

Notation: H ď G means H is a subgroup of G.
Example 2.2.3. pZ,`q ď pQ,`q ď pR,`q ď pC,`q.
Example 2.2.4. pQzt0u,ˆq ď pRzt0u,ˆq ď pCzt0u,ˆq.
Remark. Examples of non-subgroups: pRzt0u,ˆq ę pR,`q, pRzt0u,`q ę pR,`q
Example 2.2.5. SLnpRq ď GLnpRq (under matrix multiplication).
Example 2.2.6. For any group G, teu ď G, called the trivial subgroup.
Definition 2.2.7 (Proper Subgroup). A subgroup H ď G is a proper subgroup if H ‰ G.

2.2.1 Subgroups of pZ,`q

Let a P Z and define aZ “ tax | x P Zu (multiples of a).

Proposition 2.2.8. paZ,`q ď pZ,`q for any a P Z.

Proof. Non-emptiness: a P aZ, so aZ ‰ H. Closure: given ax, ay P aZ, we want to check that
ax ` ay P aZ. But ax ` ay “ apx ` yq P aZ. Inverses: given ax P aZ, we know that ap´xq P aZ
and ax` ap´xq “ ax´ ax “ 0, so ap´xq is the inverse of ax and thus aZ has inverse.

Theorem 2.2.9. If H ď Z, then H “ aZ for some a P Z.

Proof. Since H ď Z, 0 P H (identity). If H “ t0u. then H “ 0Z and we are done. If not, let a be
the smallest positive integer in H (see explanation in the following remark). To show that H “ aZ,
we need to show that H Ď aZ and aZ Ď H.
(aZ Ď H): given any ax P aZ, we have

ax “

$

’

’

’

’

’

&

’

’

’

’

’

%

a` ¨ ¨ ¨ ` a
looooomooooon

x

if x ą 0,

p´aq ` ¨ ¨ ¨ ` p´aq ` ¨ ¨ ¨
loooooooooooooomoooooooooooooon

x

if x ă 0,

0 if x “ 0.

When x ą 0, ax P H since H is closed under addition. When x ă 0, ax P H as ´a P H since H has
inverse and H is closed under addition. When x “ 0, ax P H since H has identity. Hence, since
for all cases we have ax P H, this shows that aZ Ď H.
pH Ď aZq : let b P H, write b “ ax ` r for some r, x P Z with r P t0, 1, . . . , a ´ 1u. Note that
r “ b` ap´xq P H since b P H, ap´xq P aZ Ď H and H is closed under addition. If r ‰ 0, then r is
a positive integer in H smaller than a. But this contradicts our choice of a as the smallest positive

9
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integer in H. Hence, r “ 0, and b “ ax P aZ. Hence, H Ď aZ.
Therefore, we conclude that H “ aZ.

Remark. For the second case, H contains a positive integer! (Why?) If not, then H only contains
0 and negative numbers, but then H has no inverses.

Given aZ, bZ ‰ t0u, we can define aZ ` bZ “ tax ` by | x, y P Zu. As an exercise, show that
this is a subgroup of Z. Assuming that we have proved the claim, then by the theorem above,
aZ` bZ “ dZ for some d P Z and we can take d ą 0.
Definition 2.2.10 (Greatest Common Divisor). If a ‰ 0, b ‰ 0, then d is the greatest common
divisor of a and b. We write d “ gcdpa, bq.

Proposition 2.2.11. If a ‰ 0, b ‰ 0, d “ gcdpa, bq, then:

(i) d|a and d|b,

(ii) if e|a and e|b, then e|d,

(iii) Dx, y P Z such that ax` by “ d.

Proof. Recall that dZ “ aZ` bZ.

(i) (1) a ¨ 1` b ¨ 0 P aZ` bZ “ dZ, so a P dZ ùñ a is a multiple of d ùñ d|a.
(2) a ¨ 0` b ¨ 1 P dZ, so b P dZ ùñ b is a multiple of d ùñ d|b.

(ii) if e|a and e|b, then e|ax` by “ d.

(iii) d P dZ “ aZ` bZ, so Dx, y P Z such that d “ ax` by P aZ` bZ.

Remark. If ax` by “ n, it is now always the case that n “ gcdpa, bq. For example, gcdp2, 4q “ 2,
but 2 ¨ 2` 4 ¨ 1 “ 8 ‰ gcdp2, 4q.
Definition 2.2.12. a, b P Z are relatively prime if gcdpa, bq “ 1.
Remark. gcdpa, bq “ 1 ðñ Dx, y P Z such that ax` by “ 1.

Proposition 2.2.13. If p P Z is prime, then p|ab implies p|a or p|b.

Proof. If p|ab, and p - a, we want to show p|b. Since p has divisors ˘1 and ˘p, then gcdpa, pq “ 1
or p. But p - a by assumption, so gcdpa, pq “ 1. Hence, there exists x, y P Z such that ax` py “ 1.
Then multiply both sides by b: abx` pby “ b. Since p|ab and p|p, p|abx` pby “ b as required.

2.2.2 Cyclic subgroups

Definition 2.2.14 (Cyclic subgroups). Let G be a group, a P G. Then

xay “ t. . . , a´2, a´1, e, a, a2, . . .u “ tan | n P Zu.

is called the cyclic subgroup of G generated by a.

10
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Remark. xay is the smallest subgroup of G containing a, i.e., if H ď G and a P H, then xay Ď H
by closure and inverses.
Example 2.2.15. If f P S1 is f “ p12qp3q, then xfy “ te, fu.
Definition 2.2.16 (Order). If xay ď G is finite, let n P N be the smallest positive integer such that
an “ e. This n is called the order of a, written |a|. If |xay| “ 8, then |a| “ 8, and we say that a
has infinite order.

Proposition 2.2.17. Let |a| “ n ă 8.

(i) a` “ am ðñ `´m ” 0 pmod nq. In particular, a` “ e ðñ ` ” 0 pmod nq.

(ii) xay “ te, a, a2, . . . , an´1u and |xay| “ n.

Proof.

(i) If a` “ am, then a`a´m “ ama´m ùñ a`´m “ e. Write ` ´ m “ nk ` r for some
r P t0, 1, . . . , n ´ 1u. Then ar “ ap`´mq´nk “ a`´mpanq´k “ e ¨ e´k “ e. If r ‰ 0, then
ar “ e, but r ă n. This contradicts the definition of n as the order of a. Hence, r “ 0 and
`´m “ nk ùñ `´m ” 0 pmod nq. Conversely, if `´m ” 0 pmod nq, then `´m “ nk for
some k, so a`´m “ panqk “ ek “ e.

(ii) Exercise. (See book)

Exercise 2.2.18. If |a| “ n, and ` P t0, . . . , n´ 1u, then

• |a`| “ 1 ðñ ` “ 0,

• if d “ gcdpn, `q, then |a`| “ n
d .

Definition 2.2.19 (Cyclic group). A group G is cyclic if Da P G such that G “ xay. We call a a
generator of G and say that G is generated by a.
Example 2.2.20. Z “ x1y “ x´1y, called an infinite cyclic group. Zn “ x1y for any n, called a
cyclic group of order n.

2.2.3 Homomorphisms

Definition 2.2.21 (Homomorphism). Given groups pG, pq and pG1, p1q, a homomorphism ϕ : GÑ
G1 is a function such that

ϕpppa, bqq “ p1pϕpaq, ϕpbqq @a, b P G.

Remark. The point of a group homomorphism is to preserve the structure of the group. The idea
is that it doesn’t matter whether you multiply first then apply the map or apply the map then
multiply. This is what we mean when we say it “preserves the structure” of the group.
Example 2.2.22. ϕ : pZ,`q Ñ pZn,`q and ϕpxq “ x. To check if this is a homomorphism, we
check if ϕpx` yq “ ϕpxq ` ϕpyq, @x, y P Z.

ϕpx` yq “ x` y

ϕpxq ` ϕpyq “ x` y.

11
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Since x` y “ x` y by definition of ` in Zn, ϕ is a homomorphism.
Example 2.2.23. ϕk : ZÑ Z, ϕkpxq “ kx.

ϕpx` yq “ kpx` yq “ kx` ky “ ϕpxq ` ϕpyq.

Hence, it is a homomorphism.
Example 2.2.24. exp : pR,`q Ñ pRzt0u,ˆq, exppxq “ ex.

exppx` yq “ ex`y “ ex ¨ ey “ exppxq ¨ exppyq.

Remark. Non-homomorphism example: exp : pQ,`q Ñ pQzt0u,ˆq. This is not well-defined since
ex is generally not rational.
Example 2.2.25. det : GLnpRq Ñ pRzt0u,ˆq. detpABq “ detpAqdetpBq.
Example 2.2.26. Given any group G, and any element a P G, define ϕ : pZ,`q Ñ G, ϕpxq “ ax.
Same as for exp. The image of ϕ is xay.
Example 2.2.27. Let G and G1 be any groups and let ϕ : GÑ G1 be defined by a ù eG1 , @a P G.
We have ϕpabq “ eG1 and ϕpaqϕpbq “ eG1 ¨ eG1 “ eG1 . This is called the trivial homomorphism.

2.2.4 Properties of Homomorphism

Proposition 2.2.28. If ϕ : GÑ G1 is a homomorphism, then

(i) ϕpa1, . . . , anq “ ϕpa1qϕpa2q ¨ ¨ ¨ϕpanq.

(ii) ϕpeGq “ eG1 .

(iii) ϕpa´1q “ ϕpaq´1 @a P G.

Proof.

(i) Induction on definition of homomorphism.

(ii) Since ϕpeGq “ ϕpeG ¨ eGq “ ϕpeGqϕpeGq, we then multiply both sides by ϕpeGq´1:

ϕpeGq
´1ϕpeGq

looooooomooooooon

eG1

“ ϕpeGq
´1ϕpeGq

looooooomooooooon

eG1

ϕpeGq ùñ eG1 “ eG1ϕpeGq “ ϕpeGq.

(iii) Given a P G. By (ii), we have

ϕpa ¨ a´1q “ ϕpeGq “ eG1 .

Since ϕ is a homomorphism,

ϕpa ¨ a´1q “ ϕpaqϕpa´1q “ eG1 ,

which implies that ϕpa´1q “ ϕpaq´1.

Remark.

12
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(1) The image of ϕ is ϕpGq “ tϕpaq | a P Gu Ď G1. ϕpGq is a subgroup of G1.

(2) The kernel of ϕ is kerpϕq “ ta P G | ϕpaq “ eG1u Ď G. kerpϕq is a subgroup of G.

Proof.

(1) Closure: if ϕpaq, ϕpbq P ϕpGq, then ϕpaqϕpbq “ ϕpabq P ϕpGq. Inverses: if ϕpaq P ϕpGq, then
ϕpaq´1 “ ϕpa´1q P ϕpGq.

(2) Closure: if a, b P kerpϕq, then

ϕpabq “ ϕpaqϕpbq “ eG1eG1 “ eG1 ùñ ab P kerpϕq.

Inverses: if a P kerpϕq, then

ϕpa´1q “ ϕpaq´1 “ e´1
G1 “ eG1 ùñ a´1 P kerpϕq.

Example 2.2.29. det : GLnpRq Ñ pRzt0u,ˆq. The identity of pRzt0u,ˆq is 1, so

kerpdetq “ tA P GLnpRq | detA “ 1u “ SLnpRq.

Proposition 2.2.30. If ϕ : G Ñ G1 is a homomorphism, then ϕ is injective if and only if
kerpϕq “ teGu.

Proof. If ϕ is injective, and a P kerpϕq, then ϕpaq “ eG1 . But also ϕpeGq “ eG1 . ϕ being injective
implies that a “ eG. Hence, kerpϕq “ teGu.
Conversely, if kerpϕq “ teGu, and ϕpaq “ ϕpbq for some a, b P G. Multiplying both sides by ϕpbq´1

gives
ϕpaqϕpbq´1 “ ϕpbqϕpbq´1 “ eG1 ,

which implies that ϕpaqϕpb´1q “ eG1 ùñ ϕpab´1q “ eG1 ùñ ab´1 P kerpϕq. Since kerpϕq “ teG1u,
we know ab´1 “ eG ùñ a “ b. Hence, ϕ is injective.

2.2.5 Isomorphisms

Definition 2.2.31 (Isomorphism). An isomorphism ϕ : GÑ G1 is a bijective homomorphism.
Example 2.2.32. exp : pR,`q Ñ pRą0,ˆq is an isomorphism.
Remark. If ϕ : GÑ G1 is an injective homomorphism, then ϕ : GÑ ϕpGq ď G1 is an isomorphism.
Example 2.2.33. Let ϕ : pZ,`q Ñ xay ď G be defined by x ù ax for some a P G. ϕ is surjective.
ϕ is injective if and only if a has infinite order. If |a| “ n, then ϕ : pZn,`q Ñ xay ď G defined by
x ù ax is an isomorphism.
Example 2.2.34. Given A P GLnpRq, the map fA : pRn,`q Ñ pRn,`q defined by ~v ù A~v is an
isomorphism. Homomorphism: fAp~v ` ~wq “ Ap~v ` ~wq “ A~v ` A~w “ fAp~vq ` fAp~wq. Bijection:
Since A is invertible, D inverse matrix A´1 P GLnpRq. Then fA´1 is the inverse function to fA, i.e.,
fA ˝ fA´1 “ fA´1 ˝ fA “ idRn . Any invertible function is a bijection.

13
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Example 2.2.35. If a P G, then the map ϕa : G Ñ G defined by b ù aba´1 is an isomorphism.
This is called conjugation by a, and aba´1 is the conjugate of b by a.
Exercise 2.2.36. Check ϕapbcq “ ϕapbqϕapcq and check ϕa is a bijection. (Hint: find an inverse
function)

Proposition 2.2.37. If ϕ : G Ñ G1 is an isomorphism, then ϕ´1 : G1 Ñ G is also an isomor-
phism.

Proof. ϕ´1 exists and is a bijection, as ϕ is a bijection. Now we show that it is a homomorphism by
choosing x, y P G1 and show that ϕ´1pxyq “ ϕ´1pxqϕ´1pyq. For simplicity, let ϕ´1pxq “ a, ϕ´1pyq “
b, ϕ´1pxyq “ c and we want to show that c “ ab. Now

c “ ab ðñ ϕpcq “ ϕpabq (ϕ is a bijection)
ðñ ϕpcq “ ϕpaqϕpbq (ϕ is a homomorphism)
ðñ ϕpϕ´1pxyqq “ ϕpϕ´1pxqqϕpϕ´1pyqq

ðñ xy “ xy.

Thus, c “ ab, which implies that ϕ´1 is a homomorphism. Since it’s also bijective, it’s an isomor-
phism.

Corollary 2.2.38. The relation G „ G1 ðñ D isomorphism GÑ G1 is an equivalence relation.

Proof. Reflexive: G „ G, as idG : GÑ G is an isomorphism. Symmetric: if G „ G1 and ϕ : GÑ G1

is an isomorphism, then ϕ´1 : G1 Ñ G is an isomorphism, soG1 „ G. Transitive: ifG „ G1, G1 „ G2

and ϕ : G Ñ G1, ϕ1 : G1 Ñ G2 are isomorphisms, then ϕ1 ˝ ϕ : G Ñ G2 is an isomorphism, so
G „ G2.

Definition 2.2.39. We say G and G1 are isomorphic if D an isomorphism ϕ : GÑ G1

Notation: G – G1.
Remark. There is no such notion of "homomorphic".

2.3 Integers mod n

Zn “ t0, 1, . . . , n´ 1u.
The ` operation is addition mod n, i.e.

i` j ” k pmod nq ùñ i` j “ k.

(Zn, +) is an Abelian group.
Remark. Recall that the order |a| of an element a P Zn is the smallest integer m such that

a` a` ¨ ¨ ¨ ` a
loooooooomoooooooon

m times

“ 0
loomoon

identity

,

i.e., the smallest positive integerm such that am ” 0 pmod nq, i.e., the smallest positivem such that
am is a multiple of n. Then this implies that am “ lcmpa, nq, or m “

lcmpa,nq
a “

an
gcdpa,nq

a “ n
gcdpa,nq .

Hence, |a| “ n
gcdpa,nq . In particular, |a| is a factor of n (since |a| ¨ gcdpa, nq “ n).

14
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Remark. If a is such that gcdpa, nq “ 1, then |a| “ n
gcdpa,nq “ n, which is the order of Zn. This

implies that xay is a subgroup of order n, and thus xay “ Zn. Hence, xay “ Zn ðñ gcdpa, nq “ 1.
Remark. If p is prime, then gcdpa, pq “ 1. a ‰ 0, a P t1, . . . , p ´ 1u implies that every non-zero
element of Zp is a generator.

2.3.1 Multiplication mod n

1 is the multiplicative identity. a P Zn is invertible if there is a b P Zn such that

a ¨ b “ 1, i.e., ab ” 1 pmod nq.

Db P Z s.t. ab ” 1 pmod nq ðñ Db, k P Z s.t. ab “ 1` nk
ðñ Db, k P Z s.t. a ¨ b` np´kq “ 1
ðñ gcdpa, nq “ 1.

Hence, a P Zn has a multiplicative inverse ðñ gcdpa, nq “ 1.

Corollary 2.3.1. pZnzt0u,ˆq is a group ðñ n is prime.

Let Zˆn “ ta P Zn | gcdpa, nq “ 1u. This is a group under multiplication mod n.

|Zˆn | “ |ta P t1, . . . , n´ 1u | gcdpa, nq “ 1u| “ ϕpnq,

where ϕ is the Euler’s totient function.
Fact. For prime p, (Zˆp “ Zpzt0u,ˆ) is cyclic, so pZˆp ,ˆq – pZp´1,`q.

2.4 Roots of Unity
Definition 2.4.1 (Roots of Unity). The roots of unity is the set

Upnq “ tz P C | zn “ 1u “ tei
2π
n
k | k “ 0, 1, . . . , n´ 1u,

which is a group under complex multiplication.
Remark. Upnq – pZn,`q by isomorphism: f : Un Ñ Zn

loooomoooon

ei
2π
n k
ÞÑk

.

2.5 Symmetric Groups
Recall: Sn is the group of bijections t1, . . . , nu Ñ t1, . . . , nu under composition and that |Sn| “ n!.

Proposition 2.5.1. The order of an element in Sn is the lcm of the cycle length it contains.

Example 2.5.2. |p12qp34q| “ lcmp2, 2q “ 2.
Example 2.5.3. |p1234qp56qp78q| “ lcmp4, 2, 2q “ 4.
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Remark. p12qp34q can have two interpretations: p12qp34q “ σ1
loomoon

p12qp3qp4q

¨ σ2
loomoon

p1qp2qp34q

, or p12qp34q “ σ.

Remark. p123q “ p12qp23q.
Definition 2.5.4 (Transposition). A transposition is an element τ P Sn such that τ “ pabq for
some a, b P t1, . . . , nu.
Remark. Any element of Sn can be written as a product of transpositions.
Example 2.5.5. p1234qp56q “ p12qp23qp34qp56q.
Definition 2.5.6 (Even/Odd). σ P Sn is even/odd if it can be written as a product of an even/odd
number of transpositions.

Theorem 2.5.7. No σ P Sn is both odd and even.

Proof. The identity e P Sn has n disjoint cycles. We claim that if σ P Sn has m cycles, then n´m
is even/odd if and only σ is even/odd. Since n ´m cannot be both odd and even, σ cannot be
both odd and even.

2.5.1 Alternating Groups

Sn “ teven σu Y todd σu

teven σu X todd σu “ H.

There is a homomorphism sgn : Sn Ñ pt˘1u,ˆq, i.e.,

σ ÞÑ

#

1 if σ is even,
´1 if σ is odd.

Also note that

kerpsgnq “ tσ P Sn | sgnpσq “ 1u
“ tσ P Sn | σ is evenu.

Remark. kerpsgnq is a subgroup of Sn, called the alternating group An with order |An| “ n!
2 .

2.6 Symmetry Groups

2.6.1 Dihedral Group

Definition 2.6.1 (Dihedral Group). A Dihedral group is the group of symmetries of a regular
polygon, which includes rotations and reflections.
Remark. Sometimes it is called Dn, sometimes D2n.
Fact. |D2n| “ 2n since a symmetry is determined by where a vertex gets sent (n choices) and if
it’s clockwise or counter-clockwise (2 choices).
For D2n, we have elements:

16
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• x “ rotation by 2π
n “

360˝
n counter-clockwise, and xn “ e.

• y “ reflection in vertical axis, and y2 “ e.

• yx “ xn´1y.

Then
D2n “ te, x, x

2, . . . , xn´1, y, xy, . . . , xn´1yu.

Remark. A symmetry in D2n corresponds to a permutation of the vertices. Hence, we can think
of D2n as a subgroup of Sn, i.e., D2n ď Sn for n ě 3. In fact, D6 – S3.

2.7 Cosets
Definition 2.7.1 (Coset). If H ď G, and a P G, then the set

aH “ tah | h P Hu

is the left coset of H associated to a. Similarly,
Ha “ tha | h P Hu

is the right coset of H associated to a.
Remark. These are sets, not subgroups.
Remark. If aH “ H, then ae P aH “ H, i.e., a P H. Conversely, if a P H, and h P H, then
a ¨ pa´1hq P aH ùñ h P aH ùñ H Ď aH. Also since a P H, ah P H @h P H, so aH Ď H. Hence,
H “ aH.
Conclusion. aH “ H ðñ a P H. Similarly, Ha “ H ðñ a P H.

Proposition 2.7.2. If ϕ : GÑ G1 is a group homomorphism, and K : kerϕ ď G, and a, b P G.
Then

ϕpaq “ ϕpbq ðñ a´1b P K and b´1a P K ðñ b P aK and a P bK ðñ aK “ bK.

Proof.
ϕpaq “ ϕpbq ðñ eG1 “ pϕpaqq

´1ϕpbq

ðñ eG1 “ ϕpa´1qϕpbq

ðñ eG1 “ ϕpa´1bq

ðñ a´1b P K

ðñ Dk P K s.t. a´1b “ k

ðñ Dk P K s.t. b “ ak.

ðñ b P aK.

Finally, assuming we have a P bK, b P aK, Dk1, k2 P K such that a “ bk1 and b “ ak2. Given
ak P aK, ak “ pbk1qk “ bpk1kq P bK ùñ aK Ď bK. Similarly, given bk P bK, bk “ pak2qk “
apk2kq P aK ùñ bK Ď aK. Hence, aK “ bK.
Conversely, note that a “ ae P aK and b “ be P bK. So if aK “ bK, then a P aK “ bK, and
b P bK “ aK.
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Corollary 2.7.3. ϕ´1pϕpaqq “ tb P G | ϕpbq “ ϕpaqu is equal to aK (or equivalently Ka) (since
ϕpaq “ ϕpbq ðñ b P aK).

2.7.1 Properties of Cosets

Let G be a group, H ď G be a subgroup of G. Define relation „ on G by

a „ b ðñ a P bH.

• Reflexive: a „ a ðñ a P aH.

• Symmetric: if a „ b, then a P bH ðñ b P aH by proposition. Hence, b „ a.

• Transitive: if a „ b, b „ c, then a P bH and b P cH ðñ aH “ bH and bH “ cH, which
implies aH “ bH “ cH ðñ a P cH, i.e., a „ c.

Conclusion. Being in each other’s coset is an equivalence relation.

Recall: tequivalence relationsu ÐÑ tpartitionsu. Here partition subsets are just the cosets.

Conclusion. Cosets of H partition G.
Definition 2.7.4 (Index). The number of cosets of H in G is the index of H in G, denoted by
rG : Hs.

Lemma 2.7.5. |aH| “ |H| @a P G.

Proof. Set up a bijection by letting f : H Ñ aH defined by h ÞÑ ah. Injective: if fphq “ fph1q,
then ah “ ah1 ùñ h “ h1. Surjective: given any ah P aH, then fphq “ ah, so f is surjective.
Hence, f is a bijection.

Example 2.7.6. G “ S3, H “ te, p12qu “ xp12qy. G “ te, p12q, p13q, p23q, p123q, p132qu.

eH “ te, p12qu “ p12qH.

p13qH “ tp13qe, p31qp12q “ p312q “ p123qu “ p123qH.
p23qH “ tp23qe, p23qp12q “ p321q “ p132qu “ p132qH.

Theorem 2.7.7 (Lagrange’s Theorem). If H ď G, and |G| is finite, then |H| divides |G|.

Proof. The cosets of H partition G, so

|G| “
ÿ

cosets of H in G

|coset|.

By the lemma, all cosets have order |H|. The number of cosets “ rG : Hs, the index of H in G.
Hence,

|G| “

rG:Hs
ÿ

i“1
|H| “ |H| ¨ rG : Hs.

Thus, |H| divides |G|.
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Remark. rG : Hs “ |G|
|H| .

Corollary 2.7.8. If a P G, then |a| divides |G|.

Proof. |a| “ |xay|. Since xay ď G, by Lagrange, |xay| “ |a| divides |G|.

Corollary 2.7.9. If |G| “ p, where p is prime, then G – Zp.

Proof. If a P G, then |a| “ 1 or |a| “ p (since |a| divides |G| “ p). But |a| “ 1 ðñ a “ a1 “ e.
If a ‰ e, then |a| “ p ùñ |xay| “ p “ |G| ùñ xay “ G, i.e., G is cyclic, generated by a. Recall
that any cyclic group of order n is isomorphic to Zn. Hence, G – Zp.

Recall: if ϕ : GÑ G1 is a homomorphism, K “ kerϕ, then aK “ Ka @a P G.
(Why?) The proposition was that ϕ´1pϕpaqq “ aK @a P G. But similarly, with right cosets,
ϕ´1pϕpaqq “ Ka @a P G, which implies aK “ ϕ´1pϕpaqq “ Ka @a P G.

2.8 Normal Subgroups
Definition 2.8.1 (Normal subgroup). A subgroup H ď G is called a normal subgroup if aH “

Ha @a P G, denoted by H Ĳ G. Equivalently, H is a normal subgroup if aha´1 P H for every
h P H and a P G.
Question. Why are these equivalent?
Answer. If aH “ Ha, then ah P aH “ Ha, so Dh1 P H such that ah “ h1a ùñ aha´1 “ h1 P H.
Conversely, assume that aha´1 P H for every a P G, h P H. Choose a P G and we show that
aH “ Ha. Consider ah P aH. We have aha´1 P H, which implies there is h1 P H such that
aha´1 “ h1. Thus, ah “ h1a P Ha ùñ aH Ď Ha. Similarly, by considering a´1 P G, we
have shown that a´1H Ď Ha´1. Multiply everything in these cosets by a on left and right: so
apa´1Hqa Ď apHa´1qa ùñ Ha Ď aH. Hence, aH “ Ha.

Example 2.8.2. The kernel of any homomorphism is normal.
Example 2.8.3. t0, 4u ď Z8 is normal.
Example 2.8.4. te, p12qu ď S3 is not normal.
Example 2.8.5. If G is abelian, then all subgroups are normal, since given H ď G, a P G, then

aH “ tah | h P Hu “ tha | h P Hu “ Ha,

so H Ĳ G is a normal subgroup.
Example 2.8.6. For any G, teu Ĳ G and G Ĳ G since ateu “ tau “ teua and aG “ G “ Ga.
Question. Why do we care about normal subgroups?
Answer. Normal subgroups are perfect for doing algebra with cosets.

19



MATH 113: Abstract Algebra Kelvin Lee

If H Ĳ G, then

paHqpbHq “ txy | x P aH, y P bHu

“ ta h ¨ b
loomoon

hb“bh”

h1 | h, h1 P Hu

“ tab h”h1
loomoon

element in H

| h1, h” P Hu

“ abH,

so paHqpbHq “ abH as sets.

2.9 Quotient Groups
Notation. a “ aH and G{H “ ta | a P Gu. Define binary operation on G{H : a ¨ b “ ab.
Definition 2.9.1 (Quotient group). If H Ĳ G, then pG{H, ¨q is a group, called the quotient group
of G by H.

Theorem 2.9.2. The map π : G Ñ G{H defined by a ÞÑ a is a group homomorphism with
kerπ “ H.

Proof. π is a homomorphism: πpabq “ ab “ a ¨ b “ πpaq ¨ πpbq. To show kerπ “ H, we have

πpaq “ e ðñ a “ e

ðñ aH “ eH “ H

ðñ a P H.

Thus, kerπ “ H.

Example 2.9.3. H “ t0, 4u Ĳ Z8 “ G. G{H “ t0`H, 1`H, 2`H, 3`Hu.

Theorem 2.9.4. Let H Ĳ G be a normal subgroup and G{H “ taH | a P Gu “ ta | a P Gu be
the set of left cosets of H and binary operation G{H ˆ G{H Ñ G{H defined by pa, bq ÞÑ ab.
Then this is a group, and the map π : GÑ G{H defined by a ÞÑ a is a surjective homomorphism
with kerπ “ H.

Remark. "Identify the quotient group" means "find a familiar group to which the quotient group is
isomorphic".
Example 2.9.5. Q: "Identify Sn{An". A: Sn{An – Z2.

Theorem 2.9.6 (First Isomorphism Theorem). If ϕ : G Ñ G1 is a group homomorphism, and
K “ kerϕ, then

G{K – impϕq “ ϕpGq.

Proof. Assume that ϕ : G Ñ G1 is surjective (if not, replace codomain by image of ϕ). Let
K “ kerϕ. We want to show that G{K – G1. Let π : G Ñ G{K be the projection map defined
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by πpaq “ a. Consider G π
ÝÑ G{K

ϕ
ÝÑ G1 where ϕ : G{K Ñ G1 defined by ϕpaq “ ϕpaq. Then

ϕ “ ϕ ˝ π.
We have to first check that ϕ is well-defined, i.e., if a “ b (i.e., aK “ bK), check that ϕpaq “ ϕpbq
(i.e.,ϕpaq “ ϕpbq). By the proposition on cosets, we have ϕpaq “ ϕpbq ðñ aK “ bK (i.e., a “ b).
Now check that ϕ is an isomorphism. Homomorphism: since ϕ is a homomorphism, ϕpa ¨ bq “
ϕpabq “ ϕpabq “ ϕpaqϕpbq “ ϕpaqϕpbq. Injective: we show that kerϕ “ teu. If ϕpaq “ eG1 , then
ϕpaq “ eG1 , which implies that a P kerϕ “ K and a P K ðñ aK “ K ðñ a “ e. Thus,
kerϕ “ teu. Surjective: if b P G1, then Da P G such that ϕpaq “ b since ϕ is surjective. Then
ϕpaq “ ϕpaq “ b. Hence, ϕ : G{K Ñ G1 is an isomorphism.

2.10 Group Actions
Definition 2.10.1. If S is a set and G is a group, we say G acts on S (denoted by G ýS) if there
exists a function Gˆ S Ñ S defined by pg, sq ÞÑ g ˚ s with the following properties:

• e ˚ s “ s @s P S

• pabq ˚ s “ a ˚ pb ˚ sq @a, b P G,@s P S.

Remark. If G ýS, then given any g P G, we have a function fg : S Ñ S, where fgpsq “ g ˚ s P S
such that fe “ idS (identity function on S) and fab “ fa ˝ fb @a, b P G.
Example 2.10.2. G “ Sn, S “ t1, . . . , nu and σ ˚ i “ σpiq.
Remark. There may be many different actions of a fixed G on a fixed S.

2.10.1 Orbits

Definition 2.10.3 (Orbit). Given a group action G ýS, and given s P S, the orbit of s is
Os “ tg ˚ s | g P Gu. That is, Os is the subset of S consisting of images of s under the action of all
elements of G, i.e., the image of the function GÑ S defined by g ÞÑ g ˚ s.
Claim. If s1 P Os, then Os1 “ Os.

Proof. If s1 P Os, then Dg P G such that g ˚ s “ s1. Now act on both sides by g´1:

g´1 ˚ pg ˚ sq
loooooomoooooon

pg´1gq˚s“s

“ g´1 ˚ s1 ùñ s “ g´1 ˚ s1.

Thus s P Os1 .
Given b ˚ s P Os, then

b ˚ s “ b ˚ pg´1 ˚ s1q “ pbg´1q ˚ s1 P Os1 .

Hence, Os1 Ď Os, which implies Os “ Os1 .

Corollary 2.10.4. If Os XOs1 ‰ H, then Os “ Os1

Proof. If s2 P OsXOs1 , then s2 P Os and s2 P Os1 . By the claim, we have Os2 “ Os and Os2 “ Os1 ,
which implies Os “ Os1 .
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Fact. Orbits are either disjoint or equal. Hence, orbits partition S. If S is a finite set, then

|S| “
ÿ

orbits O
|O|.

Example 2.10.5. If G ýS is the trivial action, then Os “ tg ˚ s | g P Gu “ tsu.
Example 2.10.6. If G “ Sn, S “ t1, . . . , nu, then O1 “ S, since if p1iq P Sn, for i P t2, . . . , nu, then
p1iq ˚ 1 “ p1iqp1q “ i.
Definition 2.10.7 (Transitive). A group action G ýS is transitive if D only one orbit, i.e., Os “
S @s P S. Equivalently, for any s, s1 P S, Dg P G such that g ˚ s “ s1.
Definition 2.10.8 (Stabilizer). If G ýS is a group action, and s P S, then the stabilizer of s
Gs “ tg P G | g ˚ s “ su

Claim. Gs ď G is a subgroup of G.

Proof. Gs ‰ H as e P Gs. If g, h P Gs, then pghq ˚ s “ g ˚ ph ˚ sq “ g ˚ s “ s ùñ gh P Gs and Gs
is closed. If g P Gs, then g ˚ s “ s. Act on both sides by g´1:

g´1 ˚ pg ˚ sq “ g´1 ˚ s

pg´1gq ˚ s “ g´1 ˚ s

e ˚ s “ g´1 ˚ s

s “ g´1 ˚ s.

Hence, g´1 P Gs and Gs has inverses.

Example 2.10.9. Sn ýt1, . . . , nu, then if n P t1, . . . , nu, Gn “ tσ P Sn | σpnq “ nu – Sn´1 since if
n is fixed, we can still freely permute t1, . . . , n´ 1u Ď t1, . . . , nu.
Fact. Gi – Sn´1 @i P t1, . . . , nu.

Proposition 2.10.10. If G ýS and s P S:

(i) if a, b P G, then a ˚ s “ b ˚ s ðñ a´1b P Gs;

(ii) if a ˚ s “ s1, then Gs1 “ aGsa
´1 “ taga´1 | g P Gsu.

Proof.

(i) a ˚ s “ b ˚ s ðñ s “ a´1 ˚ pb ˚ sq “ pa´1bq ˚ s ðñ a´1b P Gs.

(ii) Want to show aGsa
´1 “ Gs1 . If aga´1 P aGsa

´1, then g P Gs, so

paga´1q ˚ s1 “ a ˚ pg ˚ pa´1 ˚ s´1qq

“ a ˚ pg ˚ sq

“ a ˚ s “ s1.

So aga´1 P Gs1 and hence aGsa´1 Ď Gs1 . Similarly, we can show that a´1Gs1pa
´1q´1 Ď Gs.
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Theorem 2.10.11 (The Orbit-Stabilizer Theorem). If G ýS is a group action, and s P S, then
there is a bijection f : taGs Ñ Osu defined by fpaGsq “ a ˚ s. Then

rG : Gss “ |Os|.

Proof. We first check that f is well-defined: if aGs “ bGs, we want to check that a ˚ s “ b ˚ s.
From the proposition on cosets, aGs “ bGs ðñ a´1b P Gs. Then by the proposition on action:
a´1b P Gs ðñ a ˚ s “ b ˚ s.
Now we check that f is a bijection. Injective: if fpaGsq “ fpbGsq, then

a ˚ s “ b ˚ s ðñ aGs “ bGs ùñ f is injective.

Surjective: if s1 P Os, we want aGs such that fpaGsq “ s1. But

s1 P Os ùñ Da P G s.t. a ˚ s “ s1,

so fpaGsq “ a ˚ s “ s1. Hence, f is surjective. Thus, f is a bijection.

Recall from the Lagrange’s theorem that for H ď G:

|G| “ |H| ¨ rG : Hs.

Here we have Gs ď G, so
|G| “ |Gs| ¨ rG : Gss “ |Gs| ¨ |Os|.

Hence,
|G| “ |Gs| ¨ |Os| @s P S.

Example 2.10.12 (Rubik’s Cube). G “ rotational symmetries of a cube, S “ cube. Let s “ vertex
P S. Then Os “ tvertices in Su ùñ |Os| “ 8 and |Gs| “ 3. Then by O-S Theorem, we have
|G| “ |Gs| ¨ |Os| “ 3 ¨ 8 “ 24.

2.10.2 Permutation Representations

Definition 2.10.13 (Permutation representation). A permutation representation of a group G is
a homomorphism ϕ : GÑ PermpSq for some set S, where PermpSq is the permutation group of
the set S, i.e., the set of bijections S Ñ S with composition of functions being the binary operation.

Theorem 2.10.14. Given group G and set S. There is a bijection

tactions of G on Su ðñ tpermutation representations GÑ Perm(S)u

Proof. If we have an action G ýS, then we want a corresponding homomorphism GÑ PermpSq.
Given a P G, recall that we have a function fa : S Ñ S given by fapsq “ a ˚ s.
Claim. fa is a bijection, i.e., fa P PermpSq.
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Proof of claim. fa has an inverse fa´1 : S Ñ S since

pfa´1 ˝ faqpsq “ fa´1pfapsqq

“ a´1 ˚ pa ˚ sq

“ pa´1aq ˚ s “ e ˚ s “ s.

Similarly, pfa ˝ fa´1qpsq “ s.

So given a group action G ýS, define ϕ : GÑ PermpSq defined by ϕpaq “ fa. We check that ϕ is
a homomorphism:

fabpsq “ pabq ˚ s

“ a ˚ pb ˚ sq

“ fapfbpsqq

“ pfa ˝ fbqpsq.

So we have a function tG ýSu Ñ thomomorphisms GÑ PermpSqu defined by action ÞÑ pϕ : GÑ
PermpSq s.t. ϕpaq “ faq. Now given a permutation representation ϕ : G Ñ PermpSq, we want
to define an action G ýS. Define a ˚ s “ r ϕpaq

loomoon

PPermpSq

spsq. Now we check that this satisfies group

action properties: (1) e ˚ s “ rϕpeqspsq “ idSpsq “ s @s P S. (2) a ˚ pb ˚ sq “ rϕpaqsprϕpbqspsqq “
pϕpaq ˝ ϕpbqqpsq “ pϕpabqqpsq “ pabq ˚ s@a, b P G,@s P S. So this is indeed a group action G ýS.
Hence, we get the desired function.

2.10.3 Faithful Representation

Definition 2.10.15 (Faithful representation). An injective permutation representation ϕ : G Ñ

PermpSq is called a faithful representation. The corresponding action G ýS is called a faithful
action.
Remark. A faithful representation preserves the maximal amount of information about the original
group.

Theorem 2.10.16 (Cayley’s Theorem). Every group is isomorphic to a subgroup of a permuta-
tion group.

Proof. We are looking for a faithful representation G Ñ PermpSq for some S. Equivalently, we
need to find a faithful action G ýS for some S.
Let S “ G (as a set) and a ˚ s “ as (group multiplication). If a ˚ s “ s, then as “ s ùñ a “ e. So
our action G ýS is faithful, which implies that the homomorphism representation GÑ PermpSq
is faithful, and so G – impϕq ď PermpSq “ PermpGq.

Remark. If |G| “ n, then G – subgroup of Sn. Why? PermpGq – Sn.

2.10.4 Conjugation and the Class Equation

Recall the conjugation action G ýG defined by g ˚ a “ gag´1.
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Definition 2.10.17 (Centralizer). The stabilizer of a P G is called the centralizer of a, written

Zpaq “ tg P G | gag´1 “ au

“ tg P G | ga “ agu.

The orbit of a P G is called the conjugacy class of a, written

Cpaq “ tgag´1 | g P Gu.

Definition 2.10.18 (Center). The center of a group G is

ZpGq “ tg P G | ga “ ag @a P Gu.

Remark.

• ZpGq, Zpaq ď G.

• ZpGq “
Ş

aPG Zpaq, so Zpaq ď ZpGq.

• Zpaq contains ZpGq and xay.

• If b P Zpaq, then xby ď Zpaq.

• The O-S Theorem implies that |G| “ |Cpaq||Zpaq| @a P G.

• a P ZpGq ðñ Zpaq “ G ðñ Cpaq “ tau.

• ZpGq “ G ðñ G is Abelian.

• a P Cpaq @a P G, as eae´1 “ a.

Recall that the orbits of an action G ýS partition S, which implies that the conjugacy classes
partition G.

If G is finite, then there are finitely many conjugacy classes, call them C1, C2, . . . , Ck.
Definition 2.10.19 (Class Equation). The equation:

|G| “ |C1| ` |C2| ` ¨ ¨ ¨ ` |Ck|

is called the class equation.
Remark.

• Since e P ZpGq, Cpeq “ teu assume C1 “ Cpeq, so |C1| “ 1. In fact every element in ZpGq
corresponds to a `1 in class equation (as a P ZpGq ðñ Cpaq “ tau).

• By O-S theorem, each |Ci| divides |G|.

Example 2.10.20. If G is Abelian, ZpGq “ G, so class equation is |G| “ 1` 1` . . .` 1
loooooooomoooooooon

|G| times

.

Example 2.10.21. G “ S3 “ te, p12q, p13q, p23q, p123q, p132qu. Cpeq “ teu. By O-S, |Cpp123qq| “
|S3|

|Zpp123qq| . We know that xp123qy ď Zpp123qq with order 3. By Lagrange, |Zpp123qq| divides |S3| “ 6.
Hence, |Zpp123qq| “ 3 or 6. If it’s 6, then p123q P ZpS3q. But p12qp123qp12q´1 “ p12qp12qp23qp12q “
p32qp21q “ p321q “ p132q ‰ p123q. Hence |Zpp123qq| “ 3 ùñ |Cpp123qq| “ 6{3 “ 2.
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Fact. |a| “ |gag´1| @a, g P G.
|Cpp12qq| “ 1, 2, or 3, as we only have 3 unused elements in S3. It’s not 1 as p12q is not in the

center. If it’s 2, then |Cpp23qq| or |Cpp13qq| must be 1 as conjugacy classes partition G. But neither
p13q nor p23q is in ZpS3q, so ‰ 2. Hence, it’s 3. Thus,

|S3| “ 6 “ 1
loomoon

Cpeq“teu

` 2
loomoon

Cpp123qq

` 3
loomoon

Cpp12qq

.

The class equation is then 6 “ 1` 2` 3!
Techniques:

• |Cpaq| “ |G|
|Zpaq| .

• of 1s Ø |ZpGq|.

• xay ď Zpaq and ZpGq ď Zpaq. Thus by Lagrange, |a| and |ZpGq| divide |Zpaq|.

• |Cpaq| and |Zpaq| divide |G|.

2.10.4.1 Normal Subgroups and Class Equations

Proposition 2.10.22. If H Ĳ G is a normal subgroup, and a P H, then Cpaq Ď H. And H is
a union of conjugacy classes.

Proof. If a P H, then gag´1 P H @g P G. But tgag´1 | g P Gu “ Cpaq ùñ Cpaq Ď H. Since
every a P H is contained in some conjugacy class Cpaq, we see H “

Ť

aPH Cpaq.

Corollary 2.10.23. A5 is a simple group, i.e., it has no proper non-trivial normal subgroups.

Proof. We can work out the class equation for A5 to be:

60 “ 1` 12` 12` 15` 20.

IF H Ĳ A5, then |H| divides |A5| “ 60, and H “ Cpeq
Ť

¨ ¨ ¨ , so |H| “ 1` . . .
loomoon

combination of 12,15,20

. No

combination divides 60 except |H| “ 1, |H| “ 60.

2.10.4.2 p-Groups

Definition 2.10.24 (p-group). A p-group is a group G with |G| “ pk, for some prime p, integer
k ě 1.

Proposition 2.10.25. If G is a p-group, then |ZpGq| ą 1.

Proof. Class equation for G:
pk “ 1` ¨ ¨ ¨ .
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If |ZpGq| “ 1, then every other term in class equation is larger than 1. Since they all divide |G| “ pk

and p is prime, they are all powers of p. Thus,

pk “ 1` pr1 ` pr2 ` ¨ ¨ ¨ ` p
rn pri ě 1@iq,

which implies that
1 “ pk ´ pr1 ´ pr2 ´ ¨ ¨ ¨ ´ prn .

The RHS is divisible by p, but LHS is not. Hence, a contradiction. Thus |ZpGq| ą 1.

Proposition 2.10.26. If |G| “ p2, then G is Abelian.

Proof. G Abelian ðñ ZpGq “ G ðñ |ZpGq| “ p2. If G is not Abelian, then |ZpGq| “ p as it’s
at least 1 (by proposition) and it’s not p2. Choose a R ZpGq. Then Zpaq contains ZpGq and a, which
implies |Zpaq| ě p` 1. But |Zpaq| divides p2, which means that |Zpaq| “ p2. Hence, Zpaq “ G and
so a P ZpGq, which contradicts a R ZpGq. Therefore, |ZpGq| “ p2, and G is Abelian.

2.11 Product Groups
Let pG, pq, pG1, p1q be two groups. We can construct the set GˆG1. Define binary operation pˆp1 :

pˆ p1ppa, a1q, pb, b1qq “ pppa, bq, p1pa1, b1qq.

This makes G ˆ G1 into a group, where the identity is peG, eG1q and the inverse is pa, a1q´1 “
pa´1, a1´1q.
Definition 2.11.1 (Product group). The group pG ˆ G1, p ˆ p1q is called the product group of
pG, pq and pG1, p1q
Remark. |GˆG1| “ |G| ¨ |G1|.
Inclusion maps

ιG : GÑ GˆG1 ιG1 : G1 Ñ GˆG1

a ÞÑ pa, eq a1 ÞÑ pe, a1q

Projection maps

πG : GˆG1 Ñ G πG1 : GˆG1 Ñ G1

pa, a1q ÞÑ a pa, a1q ÞÑ a1

For the kernel, we have

kerπG “ tpa, a1q P GˆG1 | πGpa, a1q “ eGu

“ tpeG, a
1q P GˆG1 | a1 P G1u

– G1 pisom. is ιG : GÑ impιGq ď GˆG1q.

Similarly, kerπG1 – G. Then by the First Isomorphism Theorem, G ˆ G1{ kerπG – G1 and
GˆG1{ kerπG1 – G1.

Let |a| “ n in G and |a1| “ m in G1. Note that pa, a1qk “ peG, eG1q in G ˆ G1. So if pa, a1qk “
peG, eG1q, then k must be a multiple of n and m. Hence,

|pa, a1q| “ lcmpn,mq.
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Example 2.11.2. In Z2 ˆ Z3,

|p1, 2q| “ lcmp|1|, |2|q
“ lcmp2, 3q
“ 6,

ùñ xp1, 2qy is cyclic, which implies Z2 ˆ Z3 – Z6.

Proposition 2.11.3. If m,n are relatively prime, then Zm ˆ Zn – Zmn.

Proof. Consider p1, 1q P Zm ˆ Zn.

|p1, 1q| “ lcmp|1|, |1|q
“ lcmpm,nq “ mn.

Thus, Zm ˆ Zn is cyclic, which then implies it’s – Zmn.

Proposition 2.11.4. If gcdpm,nq ‰ 1, then Zm ˆ Zn fl Zmn.

Proof. Zmn has an element of order mn. If pa, bq P Zm ˆ Zn, then

|pa, bq| “ lcmp|a|, |b|q
ď lcmpm,nq

“
mn

gcdpm,nq ă mn.

So Zm ˆ Zn has no element of mn.

Remark. Z2 ˆ Z2 fl Z4. But Z2 ˆ Z2 has a subgroup tp0, 0q, p1, 0qu – Z2.

Proposition 2.11.5. If |G| “ p2, then G – Zp2 or G – Zp ˆ Zp.

Proof. Given a ‰ e in G, by Lagrange we have |a| “ p or p2. If Da P G with |a| “ p2, then G is
cyclic and G – Zp2 . If not, then pick a P G with |a| “ p, and pick b P G such that b R xay.
Claim. xay X xby “ teu.

Proof. Intersection I is a subgroup as well, so I ď xay, I ď xby. |I| divides |xay| “ |xby| “ p, which
implies |I| “ 1 or p. If it’s p, then xay “ I “ xby. But b R xay. Hence, |I| “ 1 and so I “ teu.

Claim. taibj | 0 ď i, j ď p´ 1u is a set of order p2.

Proof. If aibj “ ai1bj 1 for some i, i1, j, j1, ai´i1 “ bj
1´j . But xay X xby “ teu. Then ai´i1 “ bj

1´j “ e,
so i “ i1, j “ j1. Thus, G “ taibju since |G| “ p2.

Now write down a function ϕ : Zp ˆ Zp Ñ G defined by ϕppi, jqq “ aibj . ϕ is a bijection and
ϕpi` i1, j`j1q “ ai`i

1

bj`j
1

“ aiai
1

bjbj
1

“ aibjai
1

bj
1

“ ϕppi, jqqϕppi1, j1qq, so ϕ is an isomorphism.
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Chapter 3

Symmetry

3.1 Isometries
Definition 3.1.1 (Isometry). An isometry of Rn is a rigid motion, i.e., a bijection f : Rn Ñ Rn
that preserves distance:

}~x´ ~y} “ }fp~xq ´ fp~yq} @~x, ~y P Rn.

Definition 3.1.2 (Symmetry). If A Ď Rn, then a symmetry of A is an isometry f : Rn Ñ Rn such
that fpAq “ A (as sets), i.e., fp~aq P A @~a P A (and if fp~xq P A, ~x P A).
Example 3.1.3 (Translation). Translation is an isometry: f~vp~xq “ ~x` ~v for a fixed ~v P Rn.
Example 3.1.4 (Orthogonal linear maps). Define Opnq “ tA P GLnpRq | Aᵀ “ A´1u, which is the
orthogonal group. Given A P Opnq, define fA : Rn Ñ Rn defined by fAp~xq “ A~x.
Claim. fA is an isometry.

Proof. }~x} “
?
~x ¨ ~x. Given ~x, ~y P Rn, we show that }A~x ´ A~y} “ }~x ´ ~y}. But }A~x ´ A~y} “

}Ap~x´ ~yq}. Since A~x ¨A~y “ pA~xqᵀpA~yq “ ~xᵀpAᵀAq~y “ ~xᵀ~y “ ~x ¨ ~y, }Ap~x´ ~yq} “ }~x´ ~y}.

Theorem 3.1.5. If f : Rn Ñ Rn is an isometry that fixes the origin pi.e., fp~0q “ ~0q, then
f “ fA, for some A P Opnq.

Proof. Given f : Rn Ñ Rn such that fp~0q “ ~0. We want to show: (1)f is linear ðñ fp~xq “ A~x
for some A P GLnpRq, (2) f preserves dot products ( ùñ A P Opnq).
We prove (2) by choosing ~x, ~y P Rn,

}fp~xq ´ fp~yq} “
a

pfp~xq ´ fp~yqq ¨ pfp~xq ´ fp~yqq

“
a

p~x´ ~yq ¨ p~x´ ~yq.

Pick ~y “ ~0 ùñ fp~yq “ fp~0q “ ~0. Expanding p~x´ ~yq ¨ p~x´ ~yq “ pfp~xq ´ fp~yqq ¨ pfp~xq ´ fp~yqq, we
get ~x ¨ ~y “ fp~xq ¨ fp~yq. Hence, f preserves the dot product.
(1) is left as an exercise.

Corollary 3.1.6. Every isometry of Rn is fp~xq “ A~x` ~v, where ~v P Rn and A P Opnq.
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Proof. If fp~0q “ ~v, then let T p~xq “ ~x´ ~v. Then

pT ˝ fqp~0q “ T pfp~0qq
“ T p~vq “ ~0.

So T ˝ f is an isometry that fixes ~0. Then by the theorem, T ˝ f “ fA for some A P Opnq ùñ f “
T´1 ˝ fA, i.e., fp~xq “ T´1pfAp~xqq “ T´1pA~xq “ A~x` ~v.

Remark. This uses the fact that set of isometries is closed under composition. In fact, it’s a group,
called IsompRnq or Epnq.

3.1.1 Orientation

Claim. The determinant of A P Opnq is ˘1.

Proof. pdetAq2 “ detA ¨ detAᵀ “ detAAᵀ “ detAA´1 “ det I “ 1 ùñ detA “ ˘1.

Definition 3.1.7. If detA “ 1, fA is called orientation preserving. If detA “ ´1, fA is called
orientation reversing.

We have a homomorphism ϕ : Opnq Ñ pt˘1u,ˆq and kerϕ “ tA P Opnq | detA “ 1u, which is
called the special orthogonal group SOpnq.
Dimension 2

Theorem 3.1.8. If A P Op2q, then fA is a rotation about ~0 or a reflection ˝ rotation.

Proof. Let ~v “ fApp1, 0qq. Let ` be the line which contains ~v and `1 be the line perpendicular to `.
Then fApp0, 1qq is a unit vector on `1 (~w or ´~w). If fApp0, 1qq “ ~w, then fA rotates p1, 0q and p0, 1q
by a fixed angle θ. Since fA is linear and px, yq “ xp1, 0q ` yp0, 1q, fApx, yq “ x~v ` y ~w, so fA is
rotation by θ. If fApp0, 1qq “ ´~w, then let R “ reflection in `, then pR ˝fAqpp1, 0qq “ Rp~vq “ ~v and
pR ˝ fAqpp0, 1qq “ Rp´~wq “ ~w. Hence R ˝ fA is a rotation, as above, which implies that fA “ R´1˝
rot. “ refl. ˝ rot..

Corollary 3.1.9. If f : R2 Ñ R2 is any isometry, then f is one of identity, translation, rotation,
reflection, glide reflection (refl ˝ trans).

Proof. Exercise.

Fact. Any isometry of R2 fixes (fp~xq “ ~x) 0, 1 or infinitely many points.
Dimension 3

Theorem 3.1.10. If A P SOp3q, then fA is a rotation about an axis through the origin.

Corollary 3.1.11. If A P Op3q has detA “ ´1, then fA “ refl˝ rot..
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Chapter 4

More Group Theory

4.1 The Sylow Theorems
Recall that ifH ď G is a subgroup, then by Lagrange, |H| divides |G|. But the converse is false.
Definition 4.1.1. If G is a group, |G| “ pem, where p is prime, e ą 0. and p - m. Then a subgroup
H ď G with |H| “ pe is called a Sylow p-subgroup of G. Equivalently, H is a p-group, and
p - rG : Hs “ |G|

|H| .

Theorem 4.1.2 (First Sylow Theorem). If p | |G|, then G has a Sylow p-subgroup.

Theorem 4.1.3 (Cauchy’s Theorem). If p | |G|, then G contains an element of order p.

Proof. If p | |G|, then the first Sylow theorem implies that there exists H ď G with |H| “ pe.
If a P H, a ‰ e, then |a| | |H| “ pe, and |a| ‰ 1, which implies |a| “ pk for some k. Then
|ap

k´1
| “ p.

Definition 4.1.4. SylppGq “ set of Sylow p´subgroups of G.

Theorem 4.1.5 (Second Sylow Theorem). Let p | |G| be primte.

(i) All Sylow p´subgroups are conjugate, i.e., if H,H 1 P SylppGq, then Da P G such that
aHa´1 “ H 1.

(ii) Every p´subgroup pH ď G, |H| “ p` for some `q is contained in some Sylow p´subgroup.

Corollary 4.1.6. If H P SylppGq, then

SylppGq “ tHu ðñ H Ĳ G is normal.

Proof. If a P G, aHa´1 ď G, and |aHa´1| “ |H|, aHa´1 P SylppGq. H Ĳ G is normal ðñ

aHa´1 “ H @a P G ðñ SylppGq “ tHu since any H 1 P SylppGq is H 1 “ aHa´1, for some
a P G.
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Theorem 4.1.7 (Third Sylow Theorem). Let p | |G| “ pem be prime, and let np “ |SylppGq|.
Then

• np | m.

• np ” 1 pmod pq.

• np “ rG : NGpHqs for any H PSylppGq where NGpGq is the normalizer of H in G:

NGpHq “ ta P G | aHa
´1 “ Hu.

H Ĳ G ðñ NGpHq “ G ðñ rG : NGpHqs “ 1.

4.1.1 Applications

4.1.1.1 Wilson’s Theorem

Theorem 4.1.8 (Wilson’s Theorem). A number p P N is prime ðñ pp´ 1q! ” ´1 pmod pq.

Proof. If n P N is composite, then D prime q ă n such that q | n. Then if pn´ 1q! ” ´1 pmod nq,
then pn´1q! “ ´1`nk for some k. But n “ q` for some `, so pn´1q! “ ´1`qp`kq ùñ pn´1q! ” ´1
pmod qq. Since q ď n´ 1, pn´ 1q! “ pn´ 1q ¨ ¨ ¨ pq ` 1qqpq ´ 1q ¨ ¨ ¨ 2 ¨ 1. so pn´ 1q! is a multiple of
q, and so pn´ 1q! ” 0 pmod qq, so we have a contradiction and thus pn´ 1q! ı ´1 pmod nq.

If p P N is prime, consider Sp, the symmetric group. |Sp| “ p!. Since p | p! and p2 - p!,
any H P SylppSpq has order p, generated by a p-cycle in Sp. There are pp ´ 1q! p-cycles in Sp
because any p-cycle can be written as p1i2i3 . . . ipq, where ti2, . . . , ipu “ t2, . . . , pu and there are
pp ´ 1q! ways of choosing i2, . . . , ip. If H,H 1 P SylppSpq, and H ‰ H 1, then H X H 1 “ teu (since
H X H 1 ď H and ď H 1 and so its order is 1 or p. But its not p, as H ‰ H 1, so it’s 1). Hence
np “ |SylppSpq| “ pp´1q!

p´1 “ pp´ 2q!. By Third Sylow theorem, np ” 1 pmod pq. Hence, pp´ 2q! ” 1
pmod pq so pp´ 1qpp´ 2q! ” p´ 1 pmod pq, i.e., pp´ 1q! ” ´1 pmod pq.

Lemma 4.1.9. If H,K Ĳ G, and H XK “ teu, and |G| “ |H||K|, then G – H ˆK.

Theorem 4.1.10. If |G| “ 15, then G – Z15.

Proof. If |G| “ 15 “ 5 ¨3. Let H P Syl3pGq,K P Syl5pGq. Then n3 | 5, n3 ” 1 pmod 3q ùñ n3 “ 1,
so H Ĳ G, and n5 | 3, n5 ” 1 pmod 5q ùñ

Proposition 4.1.11. If |G| “ 300, then G is not simple, i.e., G has a non-trivial proper normal
subgroup.
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Theorem 4.1.12 (Fundamental Theorem of Finitely Generated Abelian Groups). Any finitely
generated abelian group is isomorphic to Zˆ ¨ ¨ ¨Z

loooomoooon

mě0

ˆZn1 ˆ ¨ ¨ ¨ ˆ Znk where k ě 0, ni ě 2.
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Chapter 5

Rings

Definition 5.0.1 (Ring). A ring is a set R with binary operations ` and ˆ satisfying:

(i) pR,`q is an Abelian group where the identity is denoted by 0 and the inverse of a P R by ´a.

(ii) pR,ˆq is a group possibly without inverses, or monoid, i.e. it’s associative, has identity.

(iii) ` and ˆ satisfy distributivity properties:
#

apb` cq “ ab` ac

pb` cqa “ ba` ca.

Definition 5.0.2 (Commutative ring). A commutative ring is a ring where the multiplication is
commutative.
Remark. Unless otherwise stated, all rings will be commutative. "Ring" = "commutative ring".
Example 5.0.3 (Communative rings). pZ,`,ˆq, pQ,`,ˆq, pR,`,ˆq, pC,`,ˆq.
Example 5.0.4. pZn,`,ˆq where `,ˆ are mod n, additive identity = 0 and multiplicative identity
= 1.
Note that from now on all rings are commutative.
Example 5.0.5 (Gaussian Integers). Zris “ ta` bi | a, b P Zu Ď C.
Remark. Although every C number has a multiplicative inverse in C, that inverse might not be in
Zris.
Example 5.0.6. 2´1 “ 1

2 P C, but
1
2 R Zris.

Example 5.0.7. Z
“1

2
‰

“ ta`b¨ 12 | a, b P Zu. Not good! Multiplication isn’t closed! 1
2 ¨

1
2 “

1
4 R Z

“1
2
‰

.
Fix: Z

“1
2
‰

“
 

a0 ` a1 ¨
1
2 ` a2 ¨

1
4 ` ¨ ¨ ¨ ` an ¨

1
2n | n ě 0, ai P Z

(

.
Remark. For Zris, we don’t need more than a`bi since powers of i are simple: a0`a1i`a2i

2`a3i
3 “

pa0 ´ a2q ` pa1 ´ a3qi.
Definition 5.0.8 (Subring). A subring of pR,`,ˆq is a subset S Ď R that is closed under `,ˆ,
has additive inverses, and contains 1, i.e., pS,`q ď pR,`q and S is closed under ˆ and 1 P S.
Example 5.0.9. Z Ď Q Ď R Ď C are subrings.
Example 5.0.10. Z Ď Zris Ď C. Z Ď Z

“1
2
‰

Ď Q.
Remark. Z

“1
2
‰

is the smallest subring of Q containing Z and 1
2 , i.e., if S Ď Q is a subring, and

Z Ď S and 1
2 P S, then Z

“1
2
‰

Ď S. Similarly, Zris is the smallest subring of C containing both Z
and i.
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Remark. If S Ď C is a subring, then Z Ď S. Why? All subrings contain 1, have additive inverses,
and are closed under addition.

• 1` 1, 1` 1` 1, . . . P S

• ´1,´1` p´1q, . . . P S

• 0 P S, as pS,`q ď pR,`q.

Similarly for subrings of Q,R, etc. Hence Z
“1

2
‰

is the smallest subring of Q containing 1
2 and Zris

is the smallest subring of C containing i.
Example 5.0.11. Choose α P C. Zrαs is the subring of C generated by α, or Z adjoin α, is the
smallest subring of C containing α. In particular, Zrαs “

 
řn
i“0 aiα

i | n ě 0, ai P Z
(

“ tfpαq |

fpxq is an integer polynomialu. For example, Zr
?

2s “ ta ` b
?

2 | a, b P Zu (since
?

22
“ 2,

?
23
“

2
?

2,
?

24
“ 4, . . ., so higher powers aren’t needed). Zr 3

?
2s “ ta` b 3

?
2` c 3

?
4 | a, b, c P Zu.

Example 5.0.12. Similar definition for Qrαs and Rrαs : smallest subrings of C containing Q (or R)
and α:

 
řn
i“0 aiα

i | n ě 0, ai P Qpor ai P Rq
(

.

5.1 Polynomial Rings
Definition 5.1.1 (Polynomial ring). If x is a variable (not a specific element of C), then Zrxs is the
polynomial ring in variable x with Z coefficients, i.e. if f P Zrxs, then fpxq “ a0`a1x`¨ ¨ ¨`anx

n,
for some n ě 0, ai P Z. Similarly, if R is any ring, then Rrxs is the polynomial ring in variable x
with coefficients in R.
Example 5.1.2. In Z4rxs, we have elements 2x`1 “ 2x2`x`3 and p2x`1q`p2x2`x`3q “ 2x2`p2`
1qx`p1`3q “ 2x2`3x and p2x`1qp2x2`x`3q “ p2¨2qx3`p1¨2`¨2¨1qx2`p2¨3`1¨1qx`p1¨3q “ 3x`3.
Example 5.1.3. pRrxsqrys: polynomials in y with coefficients in Rrxs (polynomials in x with coeffi-
cients in R). For example, y2`p1`xqy`p´x3q P pRrxsqrys. After expanding, we get polynomials in
variable x and y with Z coefficients: ´x3`y2`xy`y or can group x: ´x3`yx`py2`yq P pRrysqrxs.
Instead of distinguishing all these rings, we just write Rrx, ys. In general, consider the ring
Rrx1, . . . , xns of polynomials in variables x1, . . . , xn with coefficients in R.
There is a subring of Rrxs that can be identified with the ring R. r P Rðñ fpxq “ r P Rrxs. We
often write R Ď Rrxs is a subring.
Example 5.1.4. Ring of Laurent polynomials: Rrx, x´1s is the ring

#

n2
ÿ

´n1

aix
i | n1 ě 0, n2 ě 0, ai P R

+

.

5.1.1 Division of Polynomials with Remainder

If R is a ring, f, g P Rrxs and f is monic, then there exist unique polynomials q, r P Rrxs such that
gpxq “ fpxqqpxq ` rpxq and rpxq “ 0 or deg r ă deg f .

Proof. Polynomial long division.
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Corollary 5.1.5. If fpxq P Rrxs, and α P R, then the remainder of dividing f by x ´ α is
fpαq P R Ď Rrxs.

Proof. x ´ α P Rrxs is monic, so write fpxq “ px ´ αqqpxq ` rpxq, where r “ 0 or deg r ă
deg px´ αq “ 1. Either way, r is constant. So plug in x “ α : fpαq “ pα ´ αqqpαq ` rpαq ùñ
rpαq “ fpαq. But r is constant, so r “ fpαq.

Corollary 5.1.6. If f P Rrxs and α P R, then fpαq “ 0 ðñ f is divisible by x´ α.

Proof. ùñ : By corollary above. Conversely, if f “ px´αqg for some g, then fpαq “ pα´αqgpαq “
0.

Definition 5.1.7 (Characteristic). The characteristic of a ring R is the smallest positive integer n
such that 1` 1` ¨ ¨ ¨ ` 1

loooooooomoooooooon

n times

“ 0 (i.e. order of 1 in pR,`q).

Notation. charR “ n. If no such n exists, we say charR “ 0.
Example 5.1.8. charZ “ 0, charZn “ n. charRrxs “charR. If R “ t0u, then R is the zero ring, in
which 1 “ 0, then charR “ 1.
Exercise 5.1.9. If R is a ring in which 1 “ 0, then R “ t0u.
Definition 5.1.10 (Unit). A unit in a ring R is an element a P R that has a multiplicative inverse,
i.e. Db P R such that ab “ 1 “ ba.
Example 5.1.11. In Z, units are ˘1. In Q,R,C, units are any a ‰ 0. In Zn, units are any a with
gcdpa, nq “ 1. In Zris, units are ˘1,˘i.

5.2 Fields
Definition 5.2.1 (Field). A field is a ring where every non-zero element is a unit.
Example 5.2.2. Q,R,C,Zp, not Z,Zris,Zn.
If f, g P Rrxs, and leading coefficients of f is any unit u P R, then we can do division:

g{f “ g{uu´1f “ pu´1gq{p u´1f
loomoon

monic

q

so write f “ u ¨ f, where f is monic (i.e. factor out u). Then divide g “ fq ` r. Then g “
u´1ufq ` r “ fpu´1qq ` r. In particular, we can do division for any fg P Rrxs, when R is a field.

5.3 Ring Homomorphisms
Definition 5.3.1 (Ring homomorphism). ϕ : RÑ R1 is a ring homomorphism if

• ϕpa` bq “ ϕpaq ` ϕpbq (ϕ : pR,`q Ñ pR1,`1q is a group homomorphism)

• ϕpabq “ ϕpaqϕpbq
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• ϕp1Rq “ 1R1 , where 1R is the multiplicative identity in R and 1R1 is the multiplicative identity
in R1.

ϕ is a ring isomorphism if it’s a ring homomorphism and is bijective.
Example 5.3.2. ϕk : Z Ñ Z defined by ϕkpnq “ kn. ϕk is a ring homomorphism ðñ k “ 1 as
we need ϕp1q “ 1. We also need ϕpnqϕpmq

loooomoooon

“pknqpkmq

“ ϕpnmq “ knm ùñ k2mn “ knm ùñ k “ 0, or 1.

But k “ 0 doesn’t work.
Example 5.3.3. ϕ : ZÑ Zn defined by ϕpxq “ x is a ring homomorphism.
Example 5.3.4. If R is any ring, there is a unique ring homomorphism ϕ : Z Ñ R, where ϕp0q “
0R, ϕp1q “ 1R, ϕp´1q “ ´1R and ϕpn ą 0q “ 1R ` ¨ ¨ ¨ ` 1R and ϕpn ă 0q “ p´1Rq ` ¨ ¨ ¨ ` p´1Rq.
Why unique? As a group, Z is cyclic generated by 1, so ϕp1q determines entire homomorphism and
we need ϕp1q “ 1R.
Example 5.3.5. If R is any ring of characterisitc n, then there’s a unique ring homomorphism
ϕ : Zn Ñ R sending 1 ÞÑ 1R.
Example 5.3.6. If R is any ring, and r P R is any element, then ϕr : Rrxs Ñ R defined by
ϕpfpxqq “ fprq is a ring homomorphism. pf ` gqprq “ fprq ` gprq and pfgqprq “ fprqgprq.
Multiplicative identity in Rrxs is fpxq “ 1R ÞÑ fprq “ 1R.
Example 5.3.7. If ϕ : RÑ R1 is any ring homomorphism, then we can write a ring homomorphism:
ϕ : Rrxs Ñ R1rxs that maps

ř

aix
i ÞÑ

ř

ϕpaiqx
i.

Definition 5.3.8. If ϕ : RÑ R1 is a ring homomorphism, then the kernel of ϕ is

kerϕ “ tr P R | ϕprq “ 0R1u

Note that ϕ is also a group homomorphism pR,`q Ñ pR1,`1q, and its kernel as a group homomor-
phis “ kernel as a ring homomorphism.
Remark. kerϕ is NOT a subring of R since ϕp1Rq “ 1R1 ‰ 0R1 (unless R1 “ t0u).
Remark. If s P kerϕ, and r P R, then ϕprsq “ ϕprqϕpsq “ ϕprq ¨ 0R1 “ 0R1 ùñ rs P kerϕ.
Similarly, sr P kerϕ, but sr “ rs.

5.3.1 Ideals

Definition 5.3.9 (Ideal). An ideal I of a ring R is a non-empty subset I Ď R satisfying:

• pI,`q is a subgroup of pR,`q

• If s P I, r P R, then rs P I (i.e. I is closed under scaling by elements of R)

• Equivalently, I Ď R is a non-empty subset such that whenever s1, . . . , sn P I, r1, . . . , rn P R,
then r1s1 ` ¨ ¨ ¨ ` rnsn P I (i.e. linear combinations of elements of I with coefficients in R is
still in I)

Example 5.3.10. The principal ideal generated by a P R is

paq “ tra | r P Ru.

Also denoted aR or Ra. Closed under `: ra ` r1a “ pr ` r1qa P paq; Additive inverse: p´rqa “
´ra P paq; Closed under scaling by elements of R: r1praq “ pr1rqa P paq. Non-empty: paq ‰ H, as
1 ¨ a “ a P paq. Hence, paq is an ideal.
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Definition 5.3.11 (Unit/zero ideal). The unit ideal is p1q “ R. The zero ideal is p0q “ t0u.
Definition 5.3.12 (Proper ideal). A proper ideal is any I Ă R.

Proposition 5.3.13. paq “ R ðñ a is a unit.

Proof. If paq “ R, then 1 P paq ùñ Db P R such that ba “ 1. This b is the multiplicative inverse
to a. Hence, a is a unit.
Conversely, if a is a unit, let a´1 be its multiplicative inverse. Then given any r P R, r “ pra´1qa P
paq ùñ r P paq. Hence, R Ď paq. But of course paq Ď R. Hence, R “ paq.

Remark. A proper ideal is never a subring. Ideals are almost subrings except a subring must
contain 1. Subrings are generally not ideals, as they are not required to be closed under scaling by
R.
Example 5.3.14. Z Ď Q, 2 P Z, 1

4 P Q but 1
4 ¨2 “

1
2 R Z. Hence, Z is not an ideal but it is a subring.

Remark. What stops an ideal from being a subring is containing the multiplicative identity, whereas
what stops a subring from being ideal is being closed under scaling by any element of R.
Example 5.3.15. ϕr : Rrxs Ñ R defined by ϕrpfpxqq “ fprq. The kernel is

kerpϕrq “ tf P Rrxs | fprq “ 0u
“ tf P Rrxs | x´ r | fu

“ tpx´ rqgpxq | g P Rrxsu

“ px´ rq
loomoon

principal ideal generated by x´ r P Rrxs

.

Example 5.3.16. ϕ : Zrxs Ñ C defined by ϕpfpxqq “ fpiq.

kerϕ “ tf P Zrxs | fpiq “ 0u
“ tf P Zrxs Ď Crxs | fpiq “ 0u
“ tf P Zrxs Ď Crxs | x´ i | fpiqu.

But px´ iq Ď Crxs but px´ iq Ę Zrxs. In fact, we are looking for px´ iq X Zrxs.
If px´ iq | f P Zrxs Ď Crxs, then f “ px´ iqgpxq where gpxq is from Crxs. Take complex conjugates:

fpxq “ px´ iq ¨ gpxq.

Since f has real coefficients, so fpxq “ fpxq “ px´ iq ¨ gpxq “ px` iqgpxq, which implies px` iq | f .
Hence, px´ iq and px` iq are factors of f , which implies px´ iqpx` iq | f , i.e. x2 ` 1 | f . Hence,
kerϕ Ď px2 ` 1q. But if px2 ` 1qgpxq P px2 ` 1q, then plug in x “ i : pi2 ` 1qgpiq “ 0 ùñ

px2 ` 1qgpxq P kerϕ. Hence, px2 ` 1q Ď kerϕ, and so kerϕ “ px2 ` 1q.
Definition 5.3.17. The ideal generated by a1, . . . , an P R is

pa1, . . . , anq “ tr1a1 ` ¨ ¨ ¨ ` rnan | ri P Ru.

Example 5.3.18. p2, xq Ď Zrxs contains all polynomials with an even constant term. p2q Ď Zrxs
contains all polynomials with even coefficients. pxq Ď Zrxs contains all polynomials with 0 constant
term.
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Claim. p2, xq is not a principal ideal.

Proof. If it is principal, p2, xq “ pfq for some f P Zrxs. Then x P pfq and 2 P pfq, so 2 “ fg for
some g ùñ f is constant (deg fg “ deg f ` deg g) and in fact f “ ˘1 or ˘2 as f | 2. If f “ ˘1,
then f is a unit, so pfq “ Zrxs. But p2, xq ‰ Zrxs, as p2, xq only contains polynomials with even
constant term. If f “ ˘2, then f | x, so x “ ˘2g for some g. But no solution for g as ˘1

2x R Zrxs.
Hence, no such f exists, and p2, xq is not principal.

Example 5.3.19. If ϕ : Zrxs Ñ Zn is defined by ϕpfpxqq “ fp0q, what is kerϕ? Certainly ϕpnq “ 0
and ϕpxq “ 0. This implies that pn, xq Ď kerϕ. ϕpfn ` gxq “ ϕpfqϕpnq ` ϕpgqϕpxq “ 0 for any
f, g P Zrxs. Also if fpxq “ amx

m`¨ ¨ ¨`a1x`a0 P kerϕ, then fp0q “ a0 ” 0 pmod nq ùñ a0 “ nk
for some k ùñ fpxq “ xpamx

m´1 ` ¨ ¨ ¨ ` a1q ` nk P pn, xq. Hence, kerϕ Ď pn, xq and hence
kerϕ “ pn, xq.
Recall that a field is a ring in which all non-zero elements have multiplicative inverses.

Theorem 5.3.20. A ring is a field ðñ the only ideals of R are R and p0q.

Proof. If R is a field, take I Ď R such that I ‰ p0q. Consider a P I, a ‰ 0. Then R is a field, so a
is a unit. For any r P R, ra P paq and ra P I ùñ paq Ď I. But a is a unit ùñ paq “ R. Hence,
I “ R.
Conversely, take a P R, a ‰ 0. Then paq ‰ p0q as a P paq but a R p0q ùñ paq “ R ùñ a is a
unit.

Corollary 5.3.21. If ϕ : F Ñ R is a ring homomorphism, where F is a field, then ϕ is injective
(or R “ t0uq.

Proof. kerϕ is an ideal of F . If R ‰ t0u, then ϕp1F q “ 1R ‰ 0R, so kerϕ ‰ F . Then by the
theorem above, kerϕ “ p0q. Hence, ϕ is injective (proved for groups, but also holds here).

Remark. There isn’t always a ring homomorphism from R Ñ R1 for rings R,R1 (unlike the case
for groups).

Proposition 5.3.22. If F is a field, then every ideal in F rxs is a principal ideal, i.e. if I Ď F rxs
is an ideal, then I “ pfq for some f P F rxs.

Proof. The idea is to emulate the proof that subgroups of Z are xay for some a. Let I Ď F rxs be
an ideal, I ‰ p0q. Choose f P I of smallest degree. We want to show I “ pfq. If g P pfq, then
g “ fh for some h P F rxs. Since f P I, h P F rxs, fh P I. Hence, g P I and so pfq Ď I.
If g P I, use division algorithm to write g “ fq`r for some q, r P F rxs, where r “ 0 or deg r ă deg f
(this uses "F is a field", so leading coefficient of f is always a unit). If r “ 0, then g “ fq P pfq. If
r ‰ 0, then r “ g

loomoon

PI

´ f
loomoon

PI

g
loomoon

PF rxs

P I. But now r P I and deg r ă deg f , which contradicts to

the choice of f as having the smallest degree in I. So can’t have r ‰ 0, so r “ 0 and g P pfq ùñ
I Ď pfq. Hence, I “ pfq.

Definition 5.3.23 (gcd). If F is a field, f, g P F rxs not both 0, then the greatest common divisor
of f, g is gcdpf, gq “ d P F rxs, where pf, gq “ pdq and d is monic.
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5.4 Quotient Rings
Recall that an ideal I Ď R in a ring is:

• pI,`q ď pR,`q is a subgroup. Since R is abelian, pI,`q Ĳ pR,`q.

• For any s P I, r P R, we have rs P I.

• Ideals are to rings what normal subgroups are to groups.

Definition 5.4.1 (Quotient Rings). Let R be a ring, I Ď R an ideal. Then pR,`q{pI,`q is a quotient
group. The cosets of I : a` I, for a P I.
Notation: a “ a` I “ ta` s | s P Iu.

R{I has an Abelian group structure and it is a ring.
Remark. π : RÑ R{I defined by πpaq “ a is a surjective ring homomorphism and kerπ “ I.

Theorem 5.4.2 (First Isomorphism Theorem). If ϕ : RÑ R1 is a ring homomorphism I “ kerϕ,
then R{I – impϕq.

Example 5.4.3. If I “ p0q “ t0u, then R{I – R. Why? ϕ : R Ñ R is an isomorphism, so
kerϕ “ p0q, ϕ is surjective. By the theorem, R{p0q – R.
Example 5.4.4. ϕ : Z Ñ Zn defined by ϕpkq “ k. kerϕ “ tk P Z | k “ 0u “ tk P Z | k ” 0
pmod nqu “ tkn | k P Zu “ pnq. 1st Isomorphism Theorem ùñ Z{pnq – Zn.
Claim. Zrxs{px´ 2q – Z.

Proof. ϕ2 : Zrxs Ñ Z defined by ϕ2pfpxqq “ fp2q. ϕ2 is surjective and kerϕ2 “ px ´ 2q. By 1st
Isomorphism Theorem, Zrxs{px´ 2q – Z.

Takeaways:

• pZrxs{pfqq{pgq – Zrxs{pf, gq – pZrxs{pgqq{pfq.

• Zrxs{px ´ aq – Z @a P Z via 1st Isomorphism Theorem on ϕa : Zrxs Ñ Z defined by
ϕapfpxqq “ fpaq.

• If ϕ : RÑ R1 is an isomorphism, then R{paq – R1{pϕpaqq.

Example 5.4.5. Identify R “ Zrxs{px2 ´ 3, 2x ` 4q. Let’s understand and simplify I “ px2 ´
3, 2x` 4q, i.e. find a simpler set of generators for I. Note that 2px2 ´ 3q ` p2´ xqp2x` 4q P I, i.e.
2x2 ´ 6` 4x` 8´ 2x2 ´ 4x “ 2 P I.
Claim. px2 ´ 3, 2x` 4q

loooooooomoooooooon

I

“ px2 ´ 3, 2q
loooomoooon

I 1

.

Proof. Need to show x2´3, 2 P I and x2´3, 2x`4 P I 1. x2´3 P I and P I 1 as it’s a generator. We
already showed 2 P I. 2x` 4 “ 0 ¨ px2 ´ 3q ` px` 2q ¨ 2 P I 1. Hence, I Ď I 1, I 1 Ď I ùñ I “ I 1.

Alternative proof: Since 2 P I, we can write px2 ´ 3, 2x` 4q “ px2 ´ 3, 2x` 4, 2q “ px2 ´ 3, 2q.
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So R – Zrxs{I – Zrxs{p2, x2´ 3q – pZrxs{p2qq{px2 ´ 3q and Zrxs{p2q – Z2rxs (since ϕ : Zrxs Ñ
Z2rxs defined by ϕp

ř

aix
iq “

ř

aix
i is surjective and ker “ tpolynomials with even coefficientsu “

p2q). Then R – Z2rxs{px
2`1q (since in Z2rxs, x2 ´ 3 “ x2`1). Elements of R are f for f P Z2rxs.

Say f “ a0`a1x`¨ ¨ ¨`anx
n where ai P t0, 1u for each i. In R, x2 ` 1 “ 0, since we’re quotienting

by px2 ` 1q ùñ x2 “ ´1 “ 1 (identity in R)

f “ a0 ` a1x` ¨ ¨ ¨ ` anxn

“ a0 ` a1x` a2 ` a3x` ¨ ¨ ¨

“

˜

ÿ

i even
ai

¸

`

˜

ÿ

i odd
ai

¸

x

“

˜

ÿ

i even
ai

¸

looooomooooon

PZ2

`

˜

ÿ

i odd
ai

¸

loooomoooon

PZ2

.x

Hence, R “ t0, 1, x, x` 1u.

5.5 Product Rings
Definition 5.5.1 (Product rings). Given rings R and R1, the product ring RˆR1 has underlying
set RˆR1 and binary operations:

• pa, a1q ` pb, b1q “ pa` b, a1 ` b1q

• pa, a1q ¨ pb, b1q “ pab, a1b1q.

• identities for addition p0R, 0R1q and p1R, 1R1q for multiplication.

Question. Given a ring, can I determine whether it’s isomorphic to a product ring?

5.5.1 Idempotents

Definition 5.5.2 (Idempotent element). An idempotent element is e P R such that e2 “ e.
Example 5.5.3. 02 “ 0, 12 “ 1 are always idempotents. Z2 ˆ Z2 has non-trivial idempotents:
p0, 1q, p1, 0q.
Remark.

• If e is idempotent, then so is e1 “ 1´ e. Check: pe1q2 “ p1´ eq2 “ 1´ 2e` e2 “ 1´ 2e` e “
1´ e “ e1. ee1 “ 0.

• ee1 “ 0. Check: ee1 “ ep1´ eq “ e´ e2 “ e´ e “ 0.

• The principal ideal peq generated by e is itself a ring with multiplicative identity e. (not a
subring of R). Check: every ideal is a ring except that it’s missing a multiplicative identity,
so check that e is a multiplicative identity for elements of peq: given b P peq, b “ ae for some
a P R. Then eb “ epaeq “ ae2 “ ae “ b.
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Theorem 5.5.4. If e P R is idempotent, then R – peq ˆ pe1q.

Proof. Define ϕ : R Ñ peq ˆ pe1q defined by ϕpaq “ pae, ae1q. ϕ is a homomorphism: ϕpa ` bq “
ppa` bqe, pa` bqe1q “ pae` be, ae1 ` be1q “ pae, ae1q ` pbe, be1q “ ϕpaq ` ϕpbq. ϕpabq “ pabe, abe1q “
pabe2, abpe1q2q “ ppaeqpbeq, pae1pbe1qq “ pae, ae1qpbe, be1q “ ϕpaqϕpbq. ϕp1q “ p1e, 1e1q “ pe, e1q,
multiplicative identity in peq ˆ pe1q. ϕ is injective: if ϕpaq “ p0, 0q, then ae “ 0 and ae1 “ 0 ùñ

0 “ ae` ae1 “ ape` e1q “ ape` p1´ eqq “ a ùñ a “ 0. Hence, kerϕ “ p0q and so ϕ is injective.
ϕ is surjective: if pae, be1q P peq ˆ pe1q, then let c “ ae` be1. Then

ϕpcq “ ppae` be1qe, pae` be1qe1q

“ pae2 ` bee1, aee1 ` bpe1q2q

“ pae, be1q.

Hence, ϕ is bijective, and hence an isomorphism.

Remark. If e “ 1, then e1 “ 0 (or vice versa), so by the theorem, R – p1q ˆ p0q “ R ˆ t0u
(isomorphism is r ÞÑ pr, 0q).

How to think about this? If R – R1 ˆR2, then we have idempotents e “ p1, 0q and e1 “ p0, 1q
and any element pa, bq of R1ˆR2 can be written as ae`be1. Hence, R can be written as a non-trivial
product ðñ D non-trivial idempotents in R.
Example 5.5.5. R “ Z6. e “ 3 is idempotent, as 32 “ 9 “ 3. Thus, e1 “ 1 ´ 3 “ ´2 “ 4 is
also idempotent and by the theorem, Z6 – p3q ˆ p4q – Z2 ˆ Z3. Similarly, Zmn – Zm ˆ Zn when
gcdpm,nq “ 1 as rings.

5.6 Adjoining Elements
Example 5.6.1. Say we have Z and we want to "enlarge" Z to a larger ring that contains a multi-
plicative inverse to 2.
Idea: A multiplicative inverse α to 2 satisfies 2α “ 1, i.e. 2α ´ 1 “ 0, i.e. α is a root of 2x ´ 1.
Consider Zrxs, let R “ Zrxs{p2x ´ 1q. Let α “ x “ x ` p2x ´ 1q (coset associated to x). Then
2x´ 1 “ 0 ùñ 2 ¨ x´ 1 “ 0, i.e. 2α “ 1 in R.
Remark. R – Z

“1
2
‰

.
In general, if R is a ring, and α is a solution to f1pxq “ 0, f2pxq “ 0, . . . , fnpxq “ 0 (where

fi P Rrxs). Then R1 “ Rrxs{pf1, f2, . . . , fnq is called a ring extension of R by adjoining α to R.
We write R1 “ Rrαs.
Example 5.6.2. Want a ring extension of Z by an element α satisfying 2α “ 6, 6α “ 15, i.e.
2α ´ 6 “ 0, 6α ´ 15 “ 0. So ring extension is R “ Zrxs{p2x ´ 6, 6x ´ 15q. Then α “ x P R is the
desired element. For example, if we have 6α ´ 2α ´ 2α “ 15 ´ 6 ´ 6. Then 2α “ 3, but we also
have 2α “ 6 ùñ 3 “ 6 in R ùñ 3 “ 0 in R.
Example 5.6.3. Ring extension of Z by α satisfying 2α “ 0, i.e. R “ Zrxs{p2xq. However,
Zrxs{pxq – Z. But in R, x ‰ 0, but 2x “ 0.
Example 5.6.4. If R is an extension of R by α satisfying α2 “ 1, then R – RˆR. As an exercise,
check Rrxs{px2 ´ 1q – Rˆ R.
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Hence, it’s important to understand Rrxs{pfq for f P Rrxs. If f is monic, i.e. f “ xn `
an´1x

n´1 ` ¨ ¨ ¨ ` a0. Let α denote a root of f , i.e. α “ x P Rrxs{pfq. Denote Rrxs{pfq – Rrαs.
Then Rrαs has a basis t1, α, α2, . . . , αn´1u over R. Why? if g “

ř

k akx
k P Rrxs, then g “

ř

k akx
k,

then g “
ř

k akx
k. If k ě n, then xk “ xn ¨ xk´n “ αnαk´n “ p´an´1α

n´1 ´ ¨ ¨ ¨ ´ a1α ´ a0qα
k´n

since f “ 0 ùñ xn ` an´1xn´1 ` ¨ ¨ ¨ ` a0 “ 0 ùñ αn ` an´1α
n´1 ` ¨ ¨ ¨ ` a0 “ 0 solve for αn.

Repeat until g has no powers of α larger than n´ 1. (also need to check linear independence)
Question. If g, h P Rrαs, what is g ¨ h?
Answer. Write gh “ fq ` r, for some q, r P Rrαs where r “ 0 or deg r ă deg f . Then gh “ fq +
r “ r.
Example 5.6.5. Consider Z5, and adjoin a square root of 3. R “ Z5r

?
3s – Z5rxs{px

2 ´ 3q. Let
α “ x P R. Then by above, x3 ´ 3 monic ùñ t1, αu is a basis for R ùñ elements of R are
tA`Bα | A,B P Z5u and where α2 “ 3.
Claim. R is a field of order 25.

Proof. A ` 0α “ A is a unit for all A ‰ 0, since Z5 is a field. So assume B ‰ 0. Then pA `
BαqpA ´ Bαq “ A

2
´ B

2
α2 “ A

2
´ 3B2. We can think of this as being in Z5, and it’s invertible

if ‰ 0. If A2
´ 3B2

“ 0 in Z5, then 3 “ A
2
pB
´1
q2 “ pAB

´1
q2. But 3 is not a square in Z5, so

A
2
´ 3B2

‰ 0 ùñ pA ` BαqpA ´ BαqpA ´ 3B2
q´1 “ 1 ùñ A ` Bα is a unit in R ùñ R is a

field.

5.7 Fractions
Definition 5.7.1 (Fraction). Given a ring R, a fraction is a

b , for a, b P R, b ‰ 0. Consider a
1 as a.

Let a
b „

c
d ðñ ad “ bc. Define a

b `
c
d “

ad`bc
bd , ab ¨

c
d “

ac
bd .

Problem: What if b, d ‰ 0, but bd “ 0? For example in Z4, 2 ¨ 2 “ 0, but 2 ‰ 0.
Definition 5.7.2 (Zero-divisor). A zero-divisor is a P R such that ab “ 0 for some b ‰ 0.
Remark. 0 is always a zero-divisor unless R “ t0u.
Definition 5.7.3 (Integral Domain). An integral domain or ID, is a ring R with no non-trivial
zero-divisors, i.e. ab “ 0 ùñ a “ 0 or b “ 0.

5.7.1 Properties of Integral Domains

• IDs have cancellation law: if a ‰ 0, ab “ ac, then b “ c. (since ab ´ ac “ 0 ùñ apb ´ cq “
0 ùñ b´ c “ 0 ùñ b “ c).

• If R is an ID, then if f, g P Rrxs, then degpfgq “ deg f ` deg g.

Theorem 5.7.4. If R is an integral domain, and F is the set of equivalence classes of fraction
in R, then F is a field with fractions addition/multiplication as given above, called the field of
fractions of R (or field of quotients).

Example 5.7.5. If R is an ID, then Rrxs is an integral domain. The field of fractions of Rrxs is
written Rpxq “ tf{g | f, g P Rrxs, g ‰ 0u{ „ called the ring of rational function over R.
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Example 5.7.6. Any field is an ID. If ab “ 0, a ‰ 0, then a´1ab “ a´10 ùñ b “ 0.
Example 5.7.7. Any subfield of an ID is an ID: Qrαs Ď C is an ID, as C is a field, its field of
fractions is written Qpαq.
Example 5.7.8. Zp is an ID when p is prime (also a field) but Zn is not an ID if n is composite.

5.8 Maximal Ideals
Question. If R is any ring, and I Ď R is an ideal, under what condition is R{I an ID/field?
Definition 5.8.1 (Maximal Ideal). An ideal I Ď R is a maximal ideal if I ‰ R and if I Ď J , then
J “ I or J “ R.
Example 5.8.2. I “ pxq Ď Zrxs is not maximal since pxq Ă p2, xq Ă Zrxs.
Exercise 5.8.3. p2, xq is maximal in Zrxs.
Example 5.8.4. I “ pxq Ď Qrxs is maximal. Why? If pxq Ď J Ď Qrxs, then J is an ideal
in rxs, and Q is a field, by the proposition, we have J “ pfq for some f P Qrxs. Notice that
x P pxq Ď J ùñ x P pfq ùñ Dg P Qrxs such that x “ fg. Then deg f “ 0,deg g “ 1 or
deg f “ 1,deg “ 0. If deg f “ 0, then f “ c ‰ 0 “ unit ùñ J “ pfq “ Qrxs. If deg f “ 1, then
f “ ax` b for some a, b, c P Q and g “ c, which implies that 1 ¨ x` 0 “ pax` bqc “ acx` bc ùñ
ac “ 1, bc “ 0 ùñ b “ 0, ac “ 1. Hence, f “ ax ùñ f P pxq ùñ pfq Ď pxq. Therefore,
J Ď I ùñ I “ J .

Proposition 5.8.5. R{I is a field ðñ I is a maximal ideal of R (or I “ R).

Proof. R{I “ t0u ðñ I “ R. So assume R{I ‰ t0u. Consider homomorphism π : R Ñ R{I
defined by πpaq “ a. We know that R{I is a field ðñ only proper ideal of R{I is p0q.
Claim. If J Ď R{I is an ideal, then π´1pJq “ ts P R | πpsq P Ju is an ideal of R that contains
I “ kerπ.

Proof of claim. If s, t P π´1pJq, then πps` tq “ πpsq ` πptq P J ùñ s` t P π´1pJq. If s P π´1pJq,
then πp´sq “ ´πpsq P J ùñ ´s P π´1pJq. If s P π´1pJq, r P R, then πprsq “ πprqπpsq P J ùñ

rs P π´1pJq. Since 0 P J, kerπ “ π´1p0q Ď π´1pJq. But kerπ “ I, so I Ď π´1pJq.

So if J Ď R{I is an ideal, then π´1pJq is an ideal such that I Ď π´1pJq Ď R. π is surjective
ùñ πpπ´1pJqq “ J .

If I is maximal, then π´1pJq is I or R. If π´1pJq “ I, then J “ πpIq “ p0. If π´1pJq “ R, then
J “ πpRq “ R{I. So R{I has only p0q and R{I as ideals, then R{I is a field.

Conversely, if R{I is a field, then consider I Ă J Ď R, then πpJq ‰ p0q, and it’s an ideal in
R ùñ πpJq “ R{I (since R{I is a field). Then J “ π´1pπpJqq “ R. Hence, I is maximal.

Example 5.8.6. p0q Ď F is a maximal ideal, when F is a field.

5.9 Prime Ideals
Definition 5.9.1 (Prime ideal). An ideal I Ď R is a prime ideal if ab P I ùñ a P I or b P I.
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Proposition 5.9.2. R{I is an integral domain ðñ I is a prime ideal in R.

Proof. If I is prime, consider a, b P R{I such that ab “ 0 ùñ ab “ 0 ùñ ab P I. Why?
ab P kerpπ : R Ñ R{Iq “ I. I is prime implies that a P I or b P I. Then a “ 0 or b “ 0. Hence,
R{I is an ID.
Conversely, if R{I is an ID, consider a, b P R such that ab P I ùñ ab “ 0 in R{I, i.e. ab “ 0.
Then R{I is an ID implies that a “ 0 or b “ 0, which means that a P I or b P I. Hence, I is a
prime ideal.

Question. When are principal ideals prime/maximal?
Definition 5.9.3 (Prime). An element p P R is prime if p is not a unit or 0 and if p | ab, then p | a
or p | b.
Definition 5.9.4 (Irreducible). An element a P R is irreducible if a is not a unit or 0 and if a “ bc,
then one of b, c is a unit, i.e. there is no non-trivial factorization of a where trivial means that
a “ upu´1aq where u is a unit).
Remark. What we normally call "prime" for integers is actually "irreducible."

Proposition 5.9.5. If R is a ring, I “ paq, a ‰ 0 is a unit, then I is a prime ideal ðñ a is a
prime element.

Proof. Consider b, c P R such that a | bc ùñ bc “ paq. paq is prime implies that b P paq or c P paq,
which means that a | b or a | c, which tells us that a is prime.

Conversely, consider b, c P R such that bc P paq ùñ a | bc. Then a being a prime means that
a | b or a | c, which implies that b P paq or c P paq. Then paq is a prime ideal.

Proposition 5.9.6. If R is an integral domain, I “ paq for some unit a ‰ 0, then I being
maximal ùñ a is irreducible.

Proof. If I is maximal, I “ paq, then let a “ bc for some b, c P R. Assume that b is not a unit,
we show that c is a unit. a is a multiple of b ùñ a P pbq ùñ paq Ď pbq ùñ paq Ď pbq Ď R.
b not being a unit ùñ pbq ‰ R. Then paq being maximal ùñ paq “ pbq. Hence, b P paq and
b “ ad for some d P R. So a “ bc “ adc ùñ a ´ adc “ 0 ùñ ap1 ´ dcq “ 0. R begin ID and
a ‰ 0 ùñ 1´ dc “ 0 ùñ 1 “ dc, i.e. c is a unit.

Remark. The converse is false. Consider R “ Zrxs and a “ 2. Then 2 is irreducible in Zrxs.
If 2 “ fg, then f, g are both constant and one of them is a unit. But p2q is not maximal as
p2q Ă p2, xq Ă Zrxs.
Exercise 5.9.7. If all ideals in R are principal, then a being irreducible ùñ paq is maximal.

5.9.1 Irreducible and Prime Elements

Example 5.9.8. R “ Zr
?
´5s – Zrxs{px2 ` 5q “ tA ` B

?
´5 | A,B P Zu. R is an ID since

R Ď Cpx2 ` 5q Ď Zrxs is a prime ideal, which implies that x2 ` 5 is a prime element of Zrxs.
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Claim. 6 P R is not irreducible.

Proof. 6 “ 2 ¨3 “ p1`
?
´5qp1´

?
´5q and 2, 3, 1˘

?
´5 are irreducible and hence not units. Why?

We find all units in R: note that |z|2 “ zz. In R “ Zr
?
´5s, |a` b

?
´5|2 “ a2 ` 5b2 P Z.

Units in R: if a P R is a unit, Db P R such that ab “ 1 ùñ |ab|2 “ |1|2 “ 1 ùñ |a|2|b|2 “
1 ùñ |a|2 “ |b|2 “ 1. Conversely, if |a|2 “ 1, then a ¨ a “ 1. If a “ x ` y

?
´5, then

a “ x´ y
?
´5 P R ùñ a is a unit. So a P R is a unit ðñ |a|2 “ 1.

In R “ Zr
?
´5s, |a|2 “ 1 ùñ x2 ` 5y2 “ 1 where x, y P Z, so y “ 0 and x “ ˘1. So the only

units in R are ˘1.

Claim. 2 is irreducible.

Proof. If 2 “ ab for some a, b P R, we want to show that a is a unit or b is a unit. But 2 “ ab ðñ
|2|2 “ |ab|2 ðñ 4 “ |a|2|b|2 ùñ t|a|2, |b|2u “ t1, 4u or t2, 2u. For the first case, one of them
must be a unit. The second case is impossible since it has no solution for x, y P Z. Hence, 2 is
irreducible.

Claim. 3 is irreducible.

Proof. Same proof as above.

Claim. 1˘
?
´5 are irreducible.

Proof. If 1˘
?
´5 “ ab, then 6 “ |1˘

?
´5|2 “ |a|2|b|2, we know |a|2, |b|2 ‰ 2, 3, so |a|2, |b|2 “ 1, 6

or 6, 1. Hence, one must be a unit and so 1˘
?
´5 are irreducible.

Claim. 2, 3, 1˘
?
´5 are not prime in R.

Proof. 2 | 6 “ p1 `
?
´5qp1 ´

?
´5q but 2 - 1 ˘

?
5. Why? If 1 ˘

?
´5 “ 2a for some a P R, then

6 “ |1˘
?
´5|2 “ |2a|2 “ 4|a|2. But 6 “ 4|a|2 has no solution for |a|2 P Z. Similarly, 3 - 1˘

?
´5,

but 3 | p1`
?
´5qp1´

?
´5q “ 6.

Remark. Irreducible does not imply prime, even in an integral domain.
Example 5.9.9. R “ Z4. 2 is prime. Why? 2 | 0 and 2 | 2. The only products giving 2 or 0 involve
a 2 or 0. But 2 is not irreducible. Why? 2 “ 2 ¨ 4 and 2, 4 are not units or 0.
Remark. Prime does not imply irreducible in general.

Proposition 5.9.10. In an integral domain, prime ùñ irreducible.

Proof. If p P R is prime, and R is an ID, let p “ ab. Then p | ab. p being a prime ùñ p | a or
p | b. WLOG, say p | a so a “ px for some x P Rp “ ab “ pxb ùñ pp1´ xbq “ 0. Since p ‰ 0, R
is an ID ùñ 1´ xb “ 0 ùñ xb “ 1 ùñ b is a unit. Hence, p is irreducible.
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Chapter 6

Factoring

6.1 Unique Factorization Domains

6.1.1 Euclidean Domains

Definition 6.1.1 (Size function). Given a ring R, a size function is a function σ : Rzt0u Ñ Ně0.
Definition 6.1.2 (Euclidean domain). A Euclidean domain is an integral domain R with a size
function σ such that the division algorithm works, i.e. if a, b P R, b ‰ 0, then Dq, r P R such that
a “ bq ` r and either r “ 0 or σprq ă σpbq.
Example 6.1.3. R “ Zr

?
´5s with σpx` y

?
´5q “ x2 ` 5y2 is NOT a Euclidean domain.

Proof. Suppose for contradiction that pR, σq is a ED. Let a “ 1`
?
´5, b “ 2. If 1`

?
´5 “ 2q` r,

we know that 2 - 1 `
?
´5, so r ‰ 0 ùñ σprq ă σp2q “ 4. σprq “ 2, 3 are impossible and so

σprq “ 1, i.e. r is a unit and so r “ ˘1. Then 1`
?
´5 “ 2q ˘ 1. But neither

?
´5 nor 2`

?
´5

is divisible by 2: σp2qq “ 4|q|2 but σp
?
´5q “ 5, σp2`

?
´5q “ 9 and 4 - 5, 4 - 9. Hence no such q

exists and so pR, σq cannot be a ED.

6.1.2 Principal Ideal Domain

Definition 6.1.4 (Principal ideal domain). A principal ideal domain (PID) is an integral domain
in which all ideals are principal.

Theorem 6.1.5. A Euclidean domain is a PID.

Theorem 6.1.6. In a PID, irreducible ùñ prime.

Corollary 6.1.7. Zr
?
´5s is not a ED with any size function σ.

Definition 6.1.8 (Associate). An associate of an element a P R is b P R such that b “ au for some
unit u P R. a | b and b | a ùñ a, b are associates.
Remark. Not all PIDs are EDs.
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6.1.3 Unique Factorization Domain

Definition 6.1.9 (Unique factorization domain). An integral domain R is a unique factorization
domain if

• every a P R can be written as a finite product of irreducibles.

• a1a2 ¨ ¨ ¨ an “ b1b2 ¨ ¨ ¨ bm, where each ai and bj are irreducible, then n “ m, and after reorder-
ing, ai “ uibi for some unit ui P R for each i “ 1, . . . , n.

Example 6.1.10. Zr
?
´5s is NOT a UFD, since 6 “ 2¨3 “ p1`

?
´5qp1´

?
´5q and 2 ‰ up1˘

?
´5q

for any unit u P R.

Theorem 6.1.11. Every PID R is also a UFD.

Theorem 6.1.12. In a UFD, irreducible ùñ prime.

6.1.4 Types of Rings

Fields Ă EDs Ă PIDs Ă UFDs Ă ID Ă Ring.

Example 6.1.13. Zrxs is a UFD that’s not a PID since p2, xq Ď Zrxs is not principal.
Example 6.1.14. Q is a field, so Qrxs is a ED, and thus a UFD.
Example 6.1.15. Zp is a field, so Zprxs is a UFD.
Definition 6.1.16 (Primitive). fpxq “

řn
k“0 akx

k P Zrxs is primitive if

• deg f ą 0, i.e. not constant

• gcdpa1, . . . , anq “ 1

• an ą 0

Remark. If deg f ą 0, an ą 0, then f is primitive ðñ p - f for any prime integer p ðñ Ψppfq ‰

0 for any prime p, where Ψp : Zrxs Ñ Zprxs is defined by
ř

akx
k ÞÑ

ř

ak pmod pqxk.

Proposition 6.1.17.

(i) n P Zrxs is prime in Zrxs ðñ n P Z is prime.

(ii) f, g are primitive ùñ fg primitive.

Lemma 6.1.18. Every non-constant f P Qrxs can be written uniquely as f “ cff0 where
cf P Q and f0 P Zrxs Ď Qrxs is primitive.
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Theorem 6.1.19. If f, g P Zrxs Ď Qrxs and f, g have a common non-constant factor in Qrxs,
then they have a common non-constant factor in Zrxs.

Theorem 6.1.20. Zrxs is a UFD.

Remark. Zrxs is a UFD, and each f P Zrxs, f ‰ ˘1 can be uniquely written as f “ ˘p1p2 ¨ ¨ ¨ pmf1f2 ¨ ¨ ¨ fn,
where pi P Z are positive primes and fj P Zrxs are primitives.
Remark. Similarly R is a UFD ùñ Rrxs is a UFD.

Corollary 6.1.21. Rrx1, . . . , xns is a UFD.

6.2 Factoring in Zrxs

Suppose fpxq “ anx
n ` ¨ ¨ ¨ ` a0, an ‰ 0. Then we know that px ´ aq | f ðñ fpaq “ 0, where

a P Z. More generally, b1x ` b` 0 | f ðñ fp´b0{b1q “ 0 ùñ b1 | an and b0 | a0.

Proposition 6.2.1. If f “ anx
n ` ¨ ¨ ¨ ` a0 P Zrxs, an ‰ 0 and p is a prime such that p - an.

Then Ψppfq is irreducible in Zprxs ùñ f is irreducible in Qrxs.

Fact. If a, b ‰ 0 are not squares in Zp, then ab is a square in Zp, so if 2 and 3 are not squares in
Zp. then 6 “ 2 ¨ 3 is.

6.3 Eisenstein Criterion
Here’s a rule to check if f P Zrxs is irreducible in Qrxs.

Theorem 6.3.1 (Eisenstein Criterion). If f “ anx
n`¨ ¨ ¨`a0 P Zrxs, an ‰ 0 and p P Z is a prime

such that

• p - an

• p | a0, . . . , an´1

• p2 - a0,

then f P Qrxs is irreducible.

6.3.1 Gaussian Primes

Question. What are the prime elements of Zris
Answer. Zris is a Euclidean Domain, so primes “ irreducibles.
Example 6.3.2. 2 P Z is prime but 2 “ p1` iqp1´ iq P Zris is not prime.
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Remark. If n P Z is composite, then P Zris is not prime.

Lemma 6.3.3. If p P Z is prime, then p P Zris is prime ðñ x2`1 is irreducible in Zprxs ðñ
´1 is not a square mod p.

6.3.2 Non-integer Primes

• a` bi prime ðñ ˘pa` biq,˘ipa` biq prime, so ˘p,˘pi are prime ðñ p ” 3 pmod 4q for
prime p.

• a` bi P Zris ðñ a´ bi P Zris prime.

• a` bi P Zris prime ðñ a2 ` b2 P Z is a prime integer.
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Chapter 7

Fields

Definition 7.0.1 (Field). A field is a ring in which all non-zero elements are units.
Definition 7.0.2 (Field extension). If F Ď K, and F,K are fields, then K is field extension of F ,
denoted by K{F .
Definition 7.0.3 (Finite field). If |F | ă 8, then F is a finite field.
Example 7.0.4. Zp is a finite field where p is prime.

Example 7.0.5. F Ď F pxq “ tfpxqgpxq | f, gF rxs, g ‰ 0u{ „ is called a functions field.

Definition 7.0.6 (Algebraic/Transcendental). If K{F is a field extension, and α P K, then α is
algebraic over F if α is the root of a polynomial in F rxs. Otherwise, it’s transcendental over F .
Example 7.0.7. 1

2 ,
?

2,
?

3, i are algebraic over Q since they are roots to x´ 1
2 , x

2´2, x2´3, x2`1.
Example 7.0.8. π is transcendental over Q but is algebraic over R.
Another way to think about algebraic/transcendental is to consider the evaluation map ϕα : F rxs Ñ
K defined by fpxq ÞÑ fpαq. α P K is algebraic over F ðñ ϕα is NOT injective.
Remark. Image of ϕαi s F rαs, which is the ring of polynomials in α with coefficients in F .
Remark. If α is transcendental over F , then ϕα is injective, so F rxs – impϕαq “ F rαs.
Definition 7.0.9 (Irreducible polynomial). If K{F is a field extension, and α P K is algebraic over
F , then the unique monic irreducible polynomial f P F rxs with fpαq “ 0 is called the irreducible
polynomial of α over F .
Equivalence of "f is irreducible":

• pfq is a maximal ideal in F rxs.

• f has minimal degree over all polynomials g with gpαq “ 0.

Definition 7.0.10 (Degree). The degree of α over F is the degree of its irreducible polynomial.
Example 7.0.11. deg

?
2 over Q is 2.

Example 7.0.12. α “
?
i has degree 4 over Q (x4 ` 1), but degree 2 over Qris (x2 ´ i).

Example 7.0.13. degα “ 1 over F ðñ α P F since degα “ 1 ðñ x´ a P F rxs has α as a root
for some a P F ðñ α P F .
Definition 7.0.14 (Adjoin). F pαq is the smallest subfield of K containing F and α. We call it F
adjoin α.
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Remark. F pαq is the field of fractions of F rαs.

Theorem 7.0.15. If K{F is a field extension, α P K is algebraic over F with minimal polyno-
mial f P F rxs, then F rxs{pfq – F rαs, and hence F rαs “ F pαq is a field.

Recall that

Theorem 7.0.16. If α is algebraic over F , f is the minimal polynomial of α over F with
deg f “ n, then t1, α, α2, . . . , αn´1u is a basis for F pαq as a vector space over F , i.e. F pαq “
tA0 `A1α` ¨ ¨ ¨ `An´1α

n´1 | Ai P F, i “ 0, . . . , n´ 1u.

Remark. If |F | ă 8, then |F pαq| “ |F |n, since there are |F | choices for each coefficients Ai.

Proposition 7.0.17. If F is a field, K{F and L{F are field extensions, α P K,β P L are both
algebraic over F , then there exists isomorphism ϕ : F pαq Ñ F pβq such that ϕpαq “ β and
ϕpaq “ a for all a P F ðñ the minimal polynomials of α, β over F are equal.

Definition 7.0.18 (Isomorphic extensions). If F is a field, K{F,L{F are two extensions, then they
are isomorphic extensions if D isomorphism ϕ : K Ñ L such that ϕpaq “ α for all a P F . We
call ϕ a F -isomorphism.

7.1 Degrees of Field Extensions
Definition 7.1.1. The dimension of V over F is dimFV “ |S|, where S is any basis.
Definition 7.1.2 (Degree). The degree of a field extension K{F is the dimension of K as a vector
space over F , i.e. dimFK, denoted by rK : F s.
Example 7.1.3. F “ Q,K “ Qp

?
2q “ Qr

?
2s. The basis for K over F is t1,

?
2u (since K “

F rxs{px2 ´ 2q, deg x2 ´ 2 “ 2) ùñ rp
?

2q : Qs “ 2.
Fact. If F is any field, K “ F rxs{pfq, where f is irreducible, deg f “ n, then rK : F s “ n.

Proposition 7.1.4. rK : F s “ 1 ðñ K “ F .

Proposition 7.1.5. If charF ‰ 2, and K{F is a field extension, then rK : F s “ 2 ðñ K “

F pδq, where δ2 “ d P F , and d has no square root in F .

Theorem 7.1.6. If α is algebraic over F , then rF pαq : F s ă 8. If α is transcendental over F ,
the rF pαq : F s “ 8,

Theorem 7.1.7 (Tower Law). If F P K Ď L are fields, then rL : F s “ rL : Ks ¨ rK : F s
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Corollary 7.1.8. If K{F is a field extension, and α P K and rK : F s “ n, then rF pαq : F s ď n.

7.1.1 Algebraic Extensions

Definition 7.1.9 (Algebraic). A field extension K{F is algebraic over F if every element α P K is
algebraic over F .

7.2 Straightedge and Compass Constructions
Definition 7.2.1 (Constructible). A point α P C is constructible if it can be constructed with
straightedge and compass constructions in a finite number of steps.
Example 7.2.2. ´1 P C is constructible.

Theorem 7.2.3. The set of constructible numbers forms a subfield of C.

Corollary 7.2.4. The field of constructible numbers is closed under taking ?, i.e., if α P field,
then so is

?
α.

Theorem 7.2.5. If α P C is constructible, then rQpαq : Qs “ 2k for some k ě 0.

Remark. The converse is not true.

Corollary 7.2.6. 3
?

2 is NOT constructible.

Corollary 7.2.7. It is not possible to double the cube via straightedge and compass, i.e., given
a cube of volume V , it is not possible to construct a cube of volume 2V .

Corollary 7.2.8. There is no trisection algorithm with straightedge and compass.

Remark. But bisection of angles is possible.

Theorem 7.2.9. α P C is constructible ðñ D sequence of extensions Q “ F0 Ď F1 Ď ¨ ¨ ¨ Ď Fn
such that α P Fn and rFi : Fi´1s “ 2 for i “ 1, . . . , n.

Theorem 7.2.10. α P C is constructible ðñ rK : Qs “ 2m for some m where K “

Qpα1, α2, . . . , αnq, and α1, . . . , αn are the roots of the minal polynomial of α over Q.
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Theorem 7.2.11 (Guass-Wantzel). A regular n-gon is constructible ðñ n “ 2kp1p2 ¨ ¨ ¨ pn ě 3
where k ě 0 and pi are distinct Fermat primes (pi “ 22m ` 1, for some m and prime).

Let δn “ ei2π{n (nth root of unity).

Lemma 7.2.12. If p prime, rQpδpaq : Qs “ pa´1pp´ 1q.

Lemma 7.2.13. δpa is constructible ðñ p “ 2, a ě 2, or p “ 22m ` 1, a “ 1.

7.3 Finite Fields
Let p be a prime, q “ pk, k ě 1. Then a field of order q is Fq “ Zprxs{pfq, where f P Zprxs is
an irreducible polynomial of degree k. Since the quotient ring has basis

 

1, α, . . . , αk´1( over Zp
(where α “ x is a root of f), the quotient ring is

 

A0 `A1x` ¨ ¨ ¨ `Ak´1α
k´1 | Ai P Zp

(

. Hence,
|Fq| “ pk “ q.
Example 7.3.1. F25 “ Z5rxs{px

2 ´ 3q.
Definition 7.3.2 (Splitting fields). If f P F rxs andK{F is a field extension, then f splits completely
in K if f P Krxs factors into a product of linear polynomials of degree 1.

Theorem 7.3.3. If F is a field, f P F rxs is a monic polynomial ,deg f ą 0, then D field extension
K{F in which f splits completely.

Theorem 7.3.4. Let p be prime, q “ pn, n ě 1.

(i) If K is a field of order q, then xq´x P Krxs splits completely in K, with q distinct roots.

(ii) If |K| “ q, then the multiplicative group Kzt0u is cyclic, i.e. – pZq´1,`q.

(iii) D field K or order q and all such fields are isomorphic.

(iv) A field of order q contains a subfield of order pm ðñ m | n.

(v) The irreducible factors of xq ´ x P Zprxs are all the irreducible polynomials in Zprxs
whose degree divides n.

Remark. If |K| “ q “ pn, we can assume K “ Zprxs{pfq and f has degree n and is irreducible.

Lemma 7.3.5. f P F rxs has a multiple root at α ðñ fpαq “ 0 and f 1pαq “ 0.
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7.4 Simple and Separable Extensions
Definition 7.4.1 (Simple extension). If F is a field, K{F a field extension, then K is a simple
extension of F if Dα P K such that K “ F pαq.
Example 7.4.2. K “ Qp

?
2,
?

3q, F “ Q. Then K is simple as K “ Qp
?

2`
?

3q.
Question. How to check if K{F is simple?
Answer. Via separable extension.
Definition 7.4.3 (Separable). A polynomial f P F rxs is separable if it has distinct roots in any
field in which it splits completely.
Example 7.4.4. x2 ´ 2 P Z3rxs is irreducible as it has no root in Z3 and px2 ´ 2q1 “ 2x ‰ 0, so its
separable.
Example 7.4.5. x2 ´ t P pZ2ptqqrxs is irreducible as t has no square root in Z2ptq. But px2 ´ tq1 “
2x “ 0 as 2 “ 0 in Z2. So x2 ´ t is not separable.

In general f P F rxs is NOT separable ðñ charF “ p ą 0 and f “ gpxpq for some g P F rxs.
Definition 7.4.6 (Separable extension). An algebraic field extensionK{F is a separable extension
if @α P K, the minimal polynomial of α over F is separable.
Example 7.4.7. If charF “ 0, then all algebraic K{F are separable.

Theorem 7.4.8. If K{F is a finite-degree separable field extension, and |F | “ 8, then K is a
simple extension, i.e. α P K such taht K “ F pαq. α is primitive.

Corollary 7.4.9. If F “ Q, rK : F s ă 8, then K is a simple extension of Q.

Theorem 7.4.10. If K{F is a finite-degree extension, then K is a simple extension of F ðñ

there are finitely many fields L with FL Ď K.
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