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Chapter 1

Sets and Relations

1.1 Sets

Definition 1.1.1 (Subset). A set A is a subset of aset Bifzr € A — x € B. We write A € B or
Ac B.

Definition 1.1.2 (Proper subset). A proper subset is A € B but A # B, i.e., Ac B.

Remark. A = B is equivalent to saying that A € B and B < A.

1.2 Set Operations

Definition 1.2.1 (Union). AuB ={z |z € Aor x € B}

Definition 1.2.2 (Intersection). An B = {z |z € A and x € B}.
Definition 1.2.3 (Difference). AAB=A—-B={ac A|a¢ B}.
Definition 1.2.4 (Cartesian product). A x B = {(a,b) |a€ A,be B}.
Remark. A x B # B x A.

Definition 1.2.5 (Complement). The complement of A € U is A° = {a € U | a ¢ A} where U is
the universe.

Remark. AU A°=U; An A° = ; (A°)° = A.
Theorem 1.2.6 (De Morgan's Laws).
(Au B)° = A°n B¢,

(A~ B) = A° U B°.

1.3 Relations

Definition 1.3.1 (Relations). A relation between sets A and B is a subset R € Ax B. If (a,b) € R,
then a is related to b, or aRb, or a ~ b.

Example 1.3.2. R R xR. R = {(z,7) e R? |z e R}, i.e., aRb <= f(a) = b, where f : R —» R
and f(z) = x.
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Example 1.3.3. RS R?, aRb < b=2a3 ie., R = {(z,2%) | v € R}.

1.3.1 Functions

Definition 1.3.4 (Function). A function f : A — Bis arelation R € A x B such that Va e A,3b e
B such that (a,

b) €
Definition 1.3.5 (Bmary Operation). A binary operation on a set A is a function f: A x A — A.
Definition 1.3.6 (Disjoint). A, B < U are disjoint if An B = (.
(

Definition 1.3.7 (Partition). A partition of U is a collection of disjoint subsets of U whose union
is U.

Example 1.3.8. U = Z can be partitioned into {x € Z | z < 0},{x € Z | = > 0}.
Example 1.3.9. U = R can be partitioned by the sets {z} for each x € R.

Definition 1.3.10 (Equivalence Relation). A relation R € A x A is an equivalence relation if it is
(i) reflexive: aRa Vae A.

(ii) symmetric: aRb < bRa.

(iii) transitive: aRb and bRc — aRe.

Remark. Equivalence relation "are the same" as partition, i.e., they contain the same information.
(Why)?

e If R is an equivalence relation on A, then create partition of A: say a and b are in the same
subset of the partition <= aRb. This is a partition of A.

e Given a partition of A, make a relation R on A by saying aRb <= a and b are in the same
subset of the partition. Check R is an equivalence relation.

Example 1.3.11. If Z are partitioned into 0,1,...,n — I for some n > 2, the corresponding equiv-
alence relation is congruence modulo n. For aRb, write a = b (mod n).

1.4 Modular Arithmetic

Notation.

i = {x € Z | i is the remainder when z is divided by n} = {an +i | a € Z}.
Define Z,, = {0,1,...,n — 1}. Goal is to define + and x on Z,.

To do so, first, given z € Z, let T = {an + z | a € Z}. Then T =7 when = —y = kn for some k € Z,
ie., v —y € 0. Now for +/x: define + : Z,, x Z, — Z, that has the mapping (a,b) — a + b and
define x : Z, x Z, — Z that has the mapping (@, b) — ab.

Question. Definea@+b=a+b. Butifa=Zand b=7, thenisa+b=2 + y?

Question. Write out tables of binary operations for n = 3.



Chapter 2

Groups

2.1 Properties of + on R and x on R\{0}

(i) Closure: adding/ multiplying two elements gives another element (built in to definition of a
binary operation).

(ii) Commutativity:
(iii) Associativity
(iv) Identity

(v) Inverses

{a—i—(—a) =0 Va.
a 1

Q=

Definition 2.1.1. We say a binary operation p: A x A — A is:
« commutative if p(a,b) = p(b,a) Va,be A.
« associative if p(a,p(b,c)) = p(p(a,b),c) Va,b,ce A.
e has an identity if Je € A such that p(a,e) = p(e,a) =a Vae A.

o has inverses if 3 identity e € A and Ya € A,3b € A such that p(a,b) = p(b,a) = e. We denote

the inverse as a 1.

Example 2.1.2. A = Z,,p = addition mod n, i.e., p(i,j) =i + j.
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1. Associativity:

=@{+j)+k
=itj+k
=@{+J)+Fk
2. Identity: 0.
3. Inverses: i has inverse —i =n —1i. (e.g. n=2: inverseof T =—-1=2—-1=1.

4. Commutativity:

i+j=i+j=j+i=]+1

Example 2.1.3. A = Mat,(R) = set of n x n matrices with entries in R. p: A x A — A is matrix
multiplication. Associativity: matrix multiplication is associative. Identity: I, the identity
matrix. Inverses: No, consider the inverse for the zero matrix. Commutativity: AB # BA for
matrices.

Example 2.1.4. A = GL,(R) General linear group (invertible matrices). Associativity: yes.
Identity: yes. Inverses: yes. Commutativity: no.

Example 2.1.5. A = set of functions f : R — R, p(f,g9) = f og. Associativity: yes. Identity:
f(x) = z. Inverses:? Commutativity: no, e.g.?

2.1.1 Properties

o If pis a binary operation on A with identity e, and ab = ac = e and ba = ca = e. (ab means
p(a,b), ac means p(a,c)), then b = ¢. This is the cancellation law.

Remark. (Why?) ab =e = cab =ce = eb=c¢ = b = c. Hence, inverses are unique.
That is, if e, f € A are such that

ea=ae =a Vac A,
fa=af =a

then e = f.
(Why?) e =ef = f (f,e is identity).

e (ab)~t=0b"la"t

Definition 2.1.6 (Groups). A group is a set G with a binary operation p : G x G — G that is
associative, has an identity e, and has inverses. Write this as (G, p) or just G if the binary operation
is understood from context.

Definition 2.1.7 (Abelian). A group (G, p) is Abelian or communitative if p is commutative.
Notation: write p(a,b) as ab or a + b sometimes depending on the context.

Remark. Some authors have four properties: with the extra one being closure. For us, closure is
built in to the definition of p.
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Example 2.1.8. Examples of Abelian group:(R, +),(R\{0}, x), (Zn, +).
Examples of non-Abelian group: (GL,(R), x).

Examples of non-group: (Mat,(R), x), ({f : R > RR}, commposition), (N, +).
Definition 2.1.9 (Order). The order of a group is the cardinality of G as a set.
Notation: |G| = order of G. |R| = o0, |Z,| = n.

Theorem 2.1.10 (Cancellation Law). In a group G, if ab = ac, then b = ¢, i.e., we can cancel a.

Proof. a has inverse a~! € G. Hence,

1

ab=ac = a ‘ab=a"tac = eb=ec = b=c.

Example 2.1.11.
« GL,(R),GL,(C),GL,(Q) under matrix multiplication. (General linear groups)

e SL,(R),SL,(C),SL,(Q) under matrix multiplication. (Special linear groups, i.e. SL,(R) =
{A e GL,(R) | detA = 1}.) Matrix multiplication can be reimagined as a binary operation
SLy(R) x SL,(R) — SL,(R).

o Given aset [n] = {1,2,...,n}, let S,, = set of bijections [n] — [n]. For example, f : [3] — [3]
(f(1) =1, f(2) =3, f(2) = 3) is an element of S3. Define binary operation p on S3 by function
composition fg = fog, e.g. (fg)(1) = (fog)(1l)= f(g(1)). This forms a group (Sy,p), called
the symmetric group, e.g. for f above: fo fis (1 — 1,2 — 2,3 — 3), which is the identity
function.

Remark. It is a group. Associativity: function composition is associative. Identity: f(7)
i Vi. Inverse: every bijection has an inverse bijection (if f(i) = j, then define f~1(j) =
and so fo f~! = f~1o f = e. Hence, S, is a group.

These bijection can be thought of as permutations of the list {1,2,...,n}, e.g. f above
permutes 123 to 132. It also permutes 132 to 123. f takes the second slot to third slot

and the third slot to second slot. f permutes: 123 s 132 WL 123, There are n! different
permutations of 123 ---n and so |S,| = nl.

)

2.2 Subgroups

Definition 2.2.1 (Subgroup). A subgroup is a non-empty subset H of a group (G, p) such that
o H is closed under p: p(a,b) e H VYa,be H.
e Identity is in H.
e H has inverses: if a € H, then ™! € H.

Under these conditions, we can define a new binary operation: pyg : H x H — H defined by
pr(a,b) = p(a,b).
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Proposition 2.2.2. (H,py) is a group.

Proof. pp is a well-defined binary operation since H is closed under p. We also have the identity e €
H since given any a € H, we know that a=! € H. Hence, we have pg(a,a™') = p(a,a™') =ee H.
The inverse is also given. For associativity, we have py is associative because p is associative. [
Notation: H < G means H is a subgroup of G.

Example 2.2.3. (Z,+) < (Q,+) < (R, +) < (C, +).

Example 2.2.4. (Q\{0}, x) < (R\{0}, x) < (C\{0}, x).

Remark. Examples of non-subgroups: (R\{0}, x) < (R, +), (R\{0},+) € (R, +)

Example 2.2.5. SL,(R) < GL,(R) (under matrix multiplication).

Example 2.2.6. For any group G, {e¢} < G, called the trivial subgroup.

Definition 2.2.7 (Proper Subgroup). A subgroup H < G is a proper subgroup if H # G.

2.2.1 Subgroups of (Z, +)
Let a € Z and define aZ = {ax | x € Z} (multiples of a).

| Proposition 2.2.8. (aZ, +) < (Z,+) for any a € Z.

Proof. Non-emptiness: a € aZ, so aZ # (. Closure: given ax,ay € aZ, we want to check that
ax + ay € aZ. But axr + ay = a(x + y) € aZ. Inverses: given ax € aZ, we know that a(—=x) € aZ
and ax + a(—x) = ax —ax = 0, so a(—=x) is the inverse of ax and thus aZ has inverse. O

Theorem 2.2.9. If H < Z, then H = aZ for some a € Z.

Proof. Since H < Z, 0 € H (identity). If H = {0}. then H = 0Z and we are done. If not, let a be
the smallest positive integer in H (see explanation in the following remark). To show that H = aZ,
we need to show that H € aZ and aZ < H.

(aZ < H): given any ax € aZ, we have

a+---+a 1f$>0,
~——
x
ar = (_a)+...+(—a)+--- if £ <0,
x
0 if x=0.

When z > 0, ax € H since H is closed under addition. When = < 0, ax € H as —a € H since H has
inverse and H is closed under addition. When =z = 0, ax € H since H has identity. Hence, since
for all cases we have ax € H, this shows that aZ < H.

(H< aZ) : let b e H, write b = ax + r for some r,x € Z with r € {0,1,...,a — 1}. Note that
r=b+a(—x) € H since be H,a(—xz) € aZ < H and H is closed under addition. If r # 0, then r is
a positive integer in H smaller than a. But this contradicts our choice of a as the smallest positive
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integer in H. Hence, r = 0, and b = ax € aZ. Hence, H < aZ.
Therefore, we conclude that H = aZ. ]

Remark. For the second case, H contains a positive integer! (Why?) If not, then H only contains
0 and negative numbers, but then H has no inverses.

Given aZ,bZ # {0}, we can define aZ + bZ = {ax + by | x,y € Z}. As an exercise, show that
this is a subgroup of Z. Assuming that we have proved the claim, then by the theorem above,
aZ. + bZ = dZ for some d € Z and we can take d > 0.

Definition 2.2.10 (Greatest Common Divisor). If a # 0,b # 0, then d is the greatest common
divisor of a and b. We write d = ged(a, b).

Proposition 2.2.11. If a # 0,b # 0, d = gcd(a,b), then:
(i) d|a and d|b,
(ii) if e|a and e|b, then eld,

(iii) dx,y € Z such that az + by = d.

Proof. Recall that dZ = aZ + bZ.

(i) (1) a-14b-0€aZ+bZ =dZ,so a€dZ = ais a multiple of d = d|a.
(2) a-0+b-1€dZ,sobedZ = bisa multiple of d = d|b.

(ii) if ela and e|b, then elax + by = d.
(iii) d € dZ = aZ + bZ, so 3z, y € Z such that d = ax + by € aZ + bZ.
O

Remark. If ax + by = n, it is now always the case that n = ged(a,b). For example, ged(2,4) = 2,
but 2-2+4-1 =8 # ged(2,4).

Definition 2.2.12. a,b € Z are relatively prime if gcd(a,b) = 1.
Remark. gcd(a,b) =1 <= 3Jz,y € Z such that ax + by = 1.

Proposition 2.2.13. If p € Z is prime, then p|ab implies p|a or p|b.

Proof. If plab, and p t a, we want to show p|b. Since p has divisors +1 and +p, then ged(a,p) = 1
or p. But p 1 a by assumption, so ged(a,p) = 1. Hence, there exists x,y € Z such that ax + py = 1.
Then multiply both sides by b: abz + pby = b. Since p|ab and p|p, plabx + pby = b as required. [J

2.2.2 Cyeclic subgroups
Definition 2.2.14 (Cyclic subgroups). Let G be a group, a € G. Then

lay={...,a"%a e,a,a® ...} = {a" | neZ}.

is called the cyclic subgroup of G generated by a.

10
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Remark. (a) is the smallest subgroup of G containing a, i.e., if H < G and a € H, then {(a) € H
by closure and inverses.

Example 2.2.15. If f € Sy is f = (12)(3), then {f) = {e, f}.

Definition 2.2.16 (Order). If (o) < G is finite, let n € N be the smallest positive integer such that
a™ = e. This n is called the order of a, written |a|. If [{a)| = o0, then |a| = o0, and we say that a
has infinite order.

Proposition 2.2.17. Let |a| = n < 0.

14

(i) a* =a™ < £—m =0 (mod n). In particular, a’* =e < £=0 (mod n).

(ii) {a) = {e,a,a?,...,a" '} and [{a)| = n.

Proof.
(i) If a* = a™, then a‘a™™ = a™a™™ = a"™ = e. Write £ — m = nk + r for some
r e {0,1,...,n —1}. Then a" = o= = g=m(g")"% = ¢.e* = e. If r # 0, then
a” = e, but r < n. This contradicts the definition of n as the order of a. Hence, r = 0 and
{—m=nk = {—m=0 (mod n). Conversely, if { —m =0 (mod n), then £ —m = nk for

some k, so a’™™ = (a")F = eF = e.

(ii) Exercise. (See book)

Exercise 2.2.18. If |a| = n, and £ € {0,...,n — 1}, then
o laf| =1 < (=0,
e if d = ged(n, 0), then |af| = 2.
Definition 2.2.19 (Cyclic group). A group G is cyclic if Ja € G such that G = {(a). We call a a

generator of G and say that G is generated by a.

Example 2.2.20. Z = (1) = {(—1), called an infinite cyclic group. Z, = (1) for any n, called a
cyclic group of order n.

2.2.3 Homomorphisms

Definition 2.2.21 (Homomorphism). Given groups (G, p) and (G’,p’), a homomorphism ¢ : G —
G’ is a function such that

¢(p(a,b)) = p'(¢(a), (b)) VYa,beG.

Remark. The point of a group homomorphism is to preserve the structure of the group. The idea
is that it doesn’t matter whether you multiply first then apply the map or apply the map then
multiply. This is what we mean when we say it “preserves the structure” of the group.

Example 2.2.22. ¢ : (Z,+) — (Zn,+) and ¢(x) = T. To check if this is a homomorphism, we
check if p(z +y) = ¢(x) + ¢(y), Vx,y € Z.

o(r) +o(y) =T +7.

11
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Since = + y = T + g by definition of + in Z,, ¢ is a homomorphism.
Example 2.2.23. ¢ : Z — Z, pi(x) = k.

px+y) =kx+y) =ke+ky = o) +e(y).
Hence, it is a homomorphism.
Example 2.2.24. exp : (R, +) — (R\{0}, x), exp(x) = €*.

exp(z +y) = e = e” - e¥ = exp(x) - exp(y).

Remark. Non-homomorphism example: exp : (Q, +) — (Q\{0}, x). This is not well-defined since
e” is generally not rational.

Example 2.2.25. det : GL,(R) — (R\{0}, x). det(AB) = det(A) det(B).

Example 2.2.26. Given any group G, and any element a € G, define ¢ : (Z,+) — G, p(x) = a”.
Same as for exp. The image of ¢ is (a).

Example 2.2.27. Let G and G’ be any groups and let ¢ : G — G’ be defined by a v~ eqr, Va € G.
We have ¢(ab) = e and p(a)p(b) = eqr - eqr = eqr. This is called the trivial homomorphism.

2.2.4 Properties of Homomorphism

Proposition 2.2.28. If ¢ : G — G’ is a homomorphism, then
(1) ¢la1,...,an) = p(a1)p(az) - plan).
(ii) ¢leq) = eqr.

(iii) p(a™!) = p(a)™t Vaed.

Proof.
(i) Induction on definition of homomorphism.

(i) Since p(eq) = ¢(eq - eq) = pleq)p(eq), we then multiply both sides by ¢(eq) ™'

1 -1

pleq)” oleq) pleq) = eqr = eaqro(ea) = v(eq).

N

pleg) = plea)

€q/ [Yel]

(iii) Given a € G. By (ii), we have

Since ¢ is a homomorphism,

which implies that p(a™!) = p(a)~ 1.

Remark.

12
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(1) The image of ¢ is p(G) = {p(a) | a € G} € G'. ¢(G) is a subgroup of G'.
(2) The kernel of ¢ is ker(p) = {a € G | p(a) = eqr} < G. ker(p) is a subgroup of G.
Proof.

(1) Closure: if p(a),¢(b) € (G), then p(a)p(b) = p(ab) € p(G). Inverses: if p(a) € p(G), then
pla)™h = p(a™) € 0(G).

(2) Closure: if a,b € ker(y), then

p(ab) = (a)p(b) = eqreqr = e = ab € ker(yp).

Inverses: if a € ker(p), then

pla) =pla) ' =eg =eq = a ' eker(p).

Example 2.2.29. det : GL,(R) — (R\{0}, x). The identity of (R\{0}, x) is 1, so

ker(det) = {A € GL,(R) | det A = 1} = SL,(R).

Proposition 2.2.30. If ¢ : G — G’ is a homomorphism, then ¢ is injective if and only if
ker(p) = {ea}-

Proof. If ¢ is injective, and a € ker(y), then p(a) = egr. But also p(eq) = eqr. ¢ being injective
implies that a = eg. Hence, ker(¢) = {eq}.

Conversely, if ker(¢) = {eg}, and ¢(a) = ¢(b) for some a,b € G. Multiplying both sides by ¢(b)~
gives

1

p(a)p(d) ™ = o))" = eqr,

which implies that ¢(a)p(b™!) = eqr = p(ab™!) = eqr = ab~! € ker(yp). Since ker(p) = {eq},
we know ab~! = e = a = b. Hence, ¢ is injective. O

2.2.5 Isomorphisms

Definition 2.2.31 (Isomorphism). An isomorphism ¢ : G — G’ is a bijective homomorphism.
Example 2.2.32. exp: (R, +) — (R-g, x) is an isomorphism.

Remark. If ¢ : G — G’ is an injective homomorphism, then ¢ : G — ¢(G) < G’ is an isomorphism.
Example 2.2.33. Let ¢ : (Z,+) — {a) < G be defined by x v~ a® for some a € G. ¢ is surjective.

¢ is injective if and only if a has infinite order. If |a| = n, then ¢ : (Z,,+) — {(a) < G defined by
T v a” is an isomorphism.

Example 2.2.34. Given A € GL,(R), the map f4 : (R",+) — (R", +) defined by ¥ v A7 is an
isomorphism. Homomorphism: fa(T + W) = A(T + W) = AU+ AW = fa(¥) + fa(W). Bijection:
Since A is invertible, 3 inverse matrix A~ € GL,(R). Then f4-1 is the inverse function to f4, i.e.,
fao fa-1 = fa-1 0 fa =idgn. Any invertible function is a bijection.

13
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Example 2.2.35. If a € GG, then the map ¢, : G — G defined by b v aba™! is an isomorphism.
This is called conjugation by a, and aba™! is the conjugate of b by a.

Exercise 2.2.36. Check ¢,(bc) = ¢4(b)pa(c) and check ¢, is a bijection. (Hint: find an inverse
function)

1

Proposition 2.2.37. If ¢ : G — G’ is an isomorphism, then ¢~ : G’ — G is also an isomor-

phism.

Proof. ¢~ ! exists and is a bijection, as ¢ is a bijection. Now we show that it is a homomorphism by

choosing x,y € G’ and show that o~ (zy) = o~} (z)¢ ! (y). For simplicity, let o~ (z) = a, p~1(y) =
b, o~ (zy) = c and we want to show that ¢ = ab. Now
c=ab < p(c) = p(ab) (¢ is a bijection)

< p(c) = p(a)p(b) (¢ is a homomorphism)

= ol¢ (xzy) = p(e  (@)e(v™ (v))

— Yy = 2Y.
Thus, ¢ = ab, which implies that ¢! is a homomorphism. Since it’s also bijective, it’s an isomor-
phism. O

Corollary 2.2.38. The relation G ~ G’ <= 3 isomorphism G — G’ is an equivalence relation.

Proof. Reflexive: G ~ G, asidg : G — G is an isomorphism. Symmetric: if G ~ G’ and ¢ : G — G’
is an isomorphism, then ¢ ~! : G’ — G is an isomorphism, so G’ ~ G. Transitive: if G ~ G', G' ~ G"
and ¢ : G > G, ¢ : G' > G” are isomorphisms, then ¢’ o ¢ : G — G” is an isomorphism, so
G~G". O

Definition 2.2.39. We say G and G’ are isomorphic if 3 an isomorphism ¢ : G — G’
Notation: G =~ G'.

Remark. There is no such notion of "homomorphic".

2.3 Integers mod n
Zn =1{0,1,...,n—1}.
The + operation is addition mod n, i.e.
i+j=k (modn) = i+j=k.
(Zy,, +) is an Abelian group.

Remark. Recall that the order |a| of an element @ € Z,, is the smallest integer m such that

at+a+---+a=_0 ,
m times identity

i.e., the smallest positive integer m such that am = 0 (mod n), i.e., the smallest positive m such that
lem(a,n) m o n

a - a ~ ged(a,n)”
. In particular, |a| is a factor of n (since |al - ged(a,n) = n).

am is a multiple of n. Then this implies that am = lem(a,n), or m =

n

Hence, |a| = ged(a,n)

14
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Remark. If a is such that ged(a,n) = 1, then |a| = m = n, which is the order of Z,. This

implies that (@) is a subgroup of order n, and thus (@) = Z,,. Hence, (a) = Z,, < gcd(a,n) = 1.

Remark. If p is prime, then ged(a,p) = 1. a # 0, a € {1,...,p — 1} implies that every non-zero
element of Z, is a generator.

2.3.1 Multiplication mod n

T is the multiplicative identity. @ € Z,, is invertible if there is a b € Z,, such that

a-b=1, ie,ab=1 (modn).

dbeZst.ab=1 (modn) < 3IbkeZs.t. ab=1+nk
— dkeZst. a-b+n(—k)=1

<= gcd(a,n) = 1.
Hence, @ € Z,, has a multiplicative inverse <= gcd(a,n) = 1.

Corollary 2.3.1. (Z,,\{0}, x) is a group <= n is prime.

Let Z) = {@a € Zy, | gcd(a,n) = 1}. This is a group under multiplication mod n.
Zy| = Haefl,....n—1}[ged(a,n) = 1} = ¢(n),
where ¢ is the Euler’s totient function.

Fact. For prime p, (Z, = Z,\{0}, x) is cyclic, so (Z,, x) = (Zp-1, +).

2.4 Roots of Unity

Definition 2.4.1 (Roots of Unity). The roots of unity is the set
Un)={zeC| " =1} ={* | k=0,1,...,n— 1},

which is a group under complex multiplication.

Remark. U(n) = (Zy,+) by isomorphism: f : U, — Zy,.
—_——

2.5 Symmetric Groups
Recall: S, is the group of bijections {1,...,n} — {1,...,n} under composition and that |.S,| = n!.

Proposition 2.5.1. The order of an element in S, is the lem of the cycle length it contains.

Example 2.5.2. |(12)(34)| = lem(2,2) = 2.
Example 2.5.3. |(1234)(56)(78)| = lem(4,2,2) = 4.

15
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Remark. (12)(34) can have two interpretations: (12)(34) = . ,or (12)(34) = o.
(12)(34) can have two interpretations: (12)(34) = o1 - o3, or (12)(34) = o

(12)(3)(4) (1)(2)(34)
Remark. (123) = (12)(23).

Definition 2.5.4 (Transposition). A transposition is an element 7 € S, such that 7 = (ab) for
some a,be {1,...,n}.

Remark. Any element of S,, can be written as a product of transpositions.
Example 2.5.5. (1234)(56) = (12)(23)(34)(56).

Definition 2.5.6 (Even/Odd). o € S,, is even/odd if it can be written as a product of an even/odd
number of transpositions.

Theorem 2.5.7. No ¢ € 5, is both odd and even.

Proof. The identity e € S,, has n disjoint cycles. We claim that if o € S, has m cycles, then n —m
is even/odd if and only o is even/odd. Since n — m cannot be both odd and even, o cannot be
both odd and even. O

2.5.1 Alternating Groups
Sy, = {even o} U {odd o}
{even o} n {odd ¢} = &.
There is a homomorphism sgn : S, — ({+1}, x), i.e.,
1 if o is even,
g —
—1 if o is odd.
Also note that

ker(sgn) = {o € S,, | sgn(o) = 1}

= {0 €S, | ois even}.

Remark. ker(sgn) is a subgroup of S,,, called the alternating group A, with order |A,| = %’

2.6 Symmetry Groups

2.6.1 Dihedral Group

Definition 2.6.1 (Dihedral Group). A Dihedral group is the group of symmetries of a regular
polygon, which includes rotations and reflections.

Remark. Sometimes it is called D,,, sometimes Dy,,.

Fact. |D2,| = 2n since a symmetry is determined by where a vertex gets sent (n choices) and if
it’s clockwise or counter-clockwise (2 choices).

For D,,,, we have elements:

16
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360°

e x = rotation by 2% = = — counter-clockwise, and z" = e.

« y = reflection in vertical axis, and y? = e.

n—1

o yxr =2x""1y.
Then

n xnfl

D2n={€,l’,l’2,...,$ Ly zy, ..., y}.

Remark. A symmetry in Dy, corresponds to a permutation of the vertices. Hence, we can think
of Ds, as a subgroup of Sy, i.e., Do, < S, for n = 3. In fact, Dg =~ S5.

2.7 Cosets

Definition 2.7.1 (Coset). If H < G, and a € G, then the set
aH = {ah | he H}
is the left coset of H associated to a. Similarly,
Ha = {ha | he H}
is the right coset of H associated to a.
Remark. These are sets, not subgroups.

Remark. If aH = H, then ae € aH = H, i.e., a € H. Conversely, if a € H, and h € H, then
a-(a'h)eaH = heaH = H CaH. Alsosinceae H, ahe HYhe H, soaH < H. Hence,
H=aH.

Conclusion. aH = H < a € H. Similarly, Ho=H < a€ H.

Proposition 2.7.2. If ¢ : G — G’ is a group homomorphism, and K : kerp < G, and a,b € G.
Then

ola) = (b)) < a 'be Kandb 'lae K « beaK and ac bK < aK = bK.

— eq = (p(a)) o (b)
— eq = p(a")p(b)
— eq = pla'b)
— a e K

ke Kst.a b=k
dk e K s.t. b = ak.

— beakK.

—
—

Finally, assuming we have a € bK,b € aK, dk1,ko € K such that a = bk; and b = ake. Given
ak € aK, ak = (bk1)k = b(k1k) € bK = aK < bK. Similarly, given bk € bK, bk = (ako)k =
a(kok) € aK = bK < aK. Hence, aK = bK.

Conversely, note that a = ae € aK and b = be € bK. So if aK = bK, then a € aK = bK, and
bebK = aK. O

17
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Corollary 2.7.3. o= (¢(a)) = {be G | p(b) = p(a)} is equal to aK (or equivalently Ka) (since
o(a) = p(b) < beakK).

2.7.1 Properties of Cosets
Let G be a group, H < G be a subgroup of G. Define relation ~ on G by
a~b < acbH.
e Reflexive: a ~a < acaH.
e Symmetric: if a ~ b, then a € bH <= b€ aH by proposition. Hence, b ~ a.

e Transitive: if a ~ b, b ~ ¢, then a € bH and be cH <= aH = bH and bH = cH, which
implies aH =bH =cH < a€cH,ie.,a~c

Conclusion. Being in each other’s coset is an equivalence relation.
Recall: {equivalence relations} «— {partitions}. Here partition subsets are just the cosets.

Conclusion. Cosets of H partition G.

Definition 2.7.4 (Index). The number of cosets of H in G is the index of H in G, denoted by
[G: H].

Lemma 2.7.5. |aH| = |H|Va € G.

Proof. Set up a bijection by letting f : H — aH defined by h — ah. Injective: if f(h) = f(h'),
then ah = ah’ = h = h'. Surjective: given any ah € aH, then f(h) = ah, so f is surjective.

Hence, f is a bijection. O
Example 2.7.6. G = S5, H = {e, (12)} = {((12)). G = {e, (12),(13), (23), (123), (132)}.
={e,(12)} = (12)H.
(13)H = {(13)e, (31)(12) = (312) = (123)} = (123)H.
(23)H = {(23)e, (23)(12) = (321) = (132)} = (132)H.

Theorem 2.7.7 (Lagrange's Theorem). If H < G, and |G| is finite, then |H| divides |G]|.

Proof. The cosets of H partition G, so

|G| = Z |coset|.

cosets of H in G

By the lemma, all cosets have order |H|. The number of cosets = [G : H|, the index of H in G.
Hence,

G| = Z |H| = [H|-[G: H].
Thus, |H| divides |G|. O
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Remark. [G: H| = %

Corollary 2.7.8. If a € G, then |a| divides |G|.

Proof. |a| = [{a)|. Since {a) < G, by Lagrange, |[{a)| = |a| divides |G|. O

Corollary 2.7.9. If |G| = p, where p is prime, then G = Z,,.

Proof. If a € G, then |a| = 1 or |a| = p (since |a| divides |G| = p). But |a| =1 < a =a' =e.

If a # e, then |a| =p = [(a)| =p = |G| = {a) = G, i.e., G is cyclic, generated by a. Recall
that any cyclic group of order n is isomorphic to Z,. Hence, G = Z,,. O

Recall: if ¢ : G — G’ is a homomorphism, K = ker ¢, then aK = Ka Va € G.
(Why?) The proposition was that p~!(p(a)) = aK Va € G. But similarly, with right cosets,
0 Ye(a)) = Ka VYa € G, which implies aK = o~ (p(a)) = Ka Ya € G.

2.8 Normal Subgroups

Definition 2.8.1 (Normal subgroup). A subgroup H < G is called a normal subgroup if aH =
HaVa € G, denoted by H < G. Equivalently, H is a normal subgroup if aha™' € H for every
he H and a € G.

Question. Why are these equivalent?

Answer. If aH = Ha, then ah € aH = Ha, so 3h' € H such that ah = 'a — aha™! = h' € H.
Conversely, assume that aha™! € H for every a € G,h € H. Choose a € G and we show that
aH = Ha. Consider ah € aH. We have aha™! € H, which implies there is h' € H such that
aha™ = 1. Thus, ah = Wa € Hao = aH < Ha. Similarly, by considering a=' € G, we
have shown that a™'H < Ha~!. Multiply everything in these cosets by a on left and right: so
a(a™*H)a € a(Ha Y)a = Ha < aH. Hence, aH = Ha.

Example 2.8.2. The kernel of any homomorphism is normal.
Example 2.8.3. {0,4} < Zg is normal.
Example 2.8.4. {¢, (12)} < S3 is not normal.

Example 2.8.5. If G is abelian, then all subgroups are normal, since given H < GG, a € GG, then
aH ={ah |he H} ={ha|he H} = Ha,

so H < G is a normal subgroup.
Example 2.8.6. For any G, {e¢} < G and G < G since a{e} = {a} = {e}a and oG = G = Ga.
Question. Why do we care about normal subgroups?

Answer. Normal subgroups are perfect for doing algebra with cosets.
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If H < G, then

(aH)(bH) = {zy | x € aH,y € bH}
={a_h-b b |h 1K eH}
——
hb=bh”
={ab W |K,h" e H}
—
element in H

= abH,

o (aH)(bH) = abH as sets.

2.9 Quotient Groups

Notation. @ = aH and G/H = {a | a € G}. Define binary operation on G/H : @- b = ab.

Definition 2.9.1 (Quotient group). If H < G, then (G/H, ) is a group, called the quotient group
of G by H.

Theorem 2.9.2. The map 7 : G — G/H defined by a — @ is a group homomorphism with
kerm = H.

Proof. 7 is a homomorphism: 7(ab) = ab=a-b = m(a) - 7(b). To show kerm = H, we have

Thus, kerm = H. ]

Example 2.9.3. H ={0,4}<Zs=G. G/H={0+ H,1+ H,2+ H,3+ H}.

Theorem 2.9.4. Let H < G be a normal subgroup and G/H = {aH |a € G} = {a | a € G} be
the set of left cosets of H and binary operation G/H x G/H — G/H defined by (@, b) — ab.

Then this is a group, and the map 7 : G — G/H defined by a — @ is a surjective homomorphism
with kerm = H.

Remark. "Identify the quotient group" means "find a familiar group to which the quotient group is
isomorphic".

Example 2.9.5. Q: "ldentify S,,/A,". A: S,/A, = Zs.

Theorem 2.9.6 (First Isomorphism Theorem). If ¢ : G — G’ is a group homomorphism, and
K = ker ¢, then
G/K = im(p) = ¢(Q).

Proof. Assume that ¢ : G — G’ is surjective (if not, replace codomain by image of ¢). Let
K = ker p. We want to show that G/K ~ G'. Let 7 : G — G/K be the projection map defined
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by 7(a) = @. Consider G &> G/K % G’ where @ : G/K — G’ defined by %(@) = ¢(a). Then
p=pom.

We have to first check that @ is well-defined, i.e., if @ = b (i.e., aK = bK), check that (@)
(i.e.,o(a) = @(b)). By the proposition on cosets, we have ¢(a) = ¢(b) <= aK = bK (i.e.,
Now check that @ is an isomorphism. Homomorphism: since ¢ is a homomorphism, @(a - b) =
?(ab) = ¢(ab) = ¢(a)p((b) = 2(@)p(bh). Injective: we show that kerp = {€}. If p(a) = eq, then
o(a) = eqr, which implies that a € kerp = K and a € K <= aK = K <= a = e. Thus,
kerp = {e}. Surjective: if b € G’, then Ja € G such that ¢(a) = b since ¢ is surjective. Then
®(a) = p(a) = b. Hence, p : G/K — G’ is an isomorphism. O

2.10 Group Actions

Definition 2.10.1. If S is a set and G is a group, we say G acts on S (denoted by G C S) if there
exists a function G x S — S defined by (g, s) — g = s with the following properties:

e cxs=5 Vsel
o (ab)*s=ax(bxs) VYa,beG,VseS.

Remark. If G C S, then given any g € G, we have a function f; : S — S, where f;(s) =g*se S
such that f. = idg (identity function on S) and fup = foo fy Va,beG.
Example 2.10.2. G =5,,,5 ={1,...,n} and 0 i = o(i).

Remark. There may be many different actions of a fixed G on a fixed S.

2.10.1 Orbits

Definition 2.10.3 (Orbit). Given a group action G C S, and given s € S, the orbit of s is
Os; = {g=*s|ge G}. Thatis, Oy is the subset of S consisting of images of s under the action of all
elements of G, i.e., the image of the function G — S defined by g — ¢ * s.

Claim. If s’ € O, then Oy = O,.
Proof. If s’ € Oy, then 3g € G such that g * s = s’. Now act on both sides by g~

1

g la(gxs)=g"
—_—

/ — /
xs — s=g txg.

(97 1g)xs=s

Thus s € Og.
Given b * s € O, then

brs=>bx (g xs)=(bg)*s €O0,y.

Hence, Oy < Og, which implies O; = Oy O
Corollary 2.10.4. If O; n Oy # &, then Oz = Oy

Proof. If s € Os n Oy, then s” € Og4 and s” € Oy. By the claim, we have Oy = Og and Oy = Oy,
which implies Os; = Oy. O
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Fact. Orbits are either disjoint or equal. Hence, orbits partition S. If S is a finite set, then

S|=">. [0l

orbits O
Example 2.10.5. If G & S is the trivial action, then Oy = {g* s | g € G} = {s}.

Example 2.10.6. If G = S,,, S = {1,...,n}, then Oy = S, since if (1i) € S, for i € {2,...,n}, then
(1i) = 1 = (19)(1) = 1.

Definition 2.10.7 (Transitive). A group action G C S is transitive if 3 only one orbit, i.e., Og =
S Vs e S. Equivalently, for any s,s’ € S,3g € G such that g * s = 5.

Definition 2.10.8 (Stabilizer). If G & S is a group action, and s € S, then the stabilizer of s
Gs={9geG|g=*s=s}

Claim. G5 < (G is a subgroup of G.

Proof. G5 # & as e € Gg. If g,h € Gy, then (gh) s =g (hxs) =g*xs=s = ghe G, and Gy

is closed. If g € Gy, then g * s = 5. Act on both sides by ¢!

g x(grs) =g s

(97'g)xs=g 'xs

e*s=g_1*s

s=g_1*s.

Hence, g~! € G, and G, has inverses. O

Example 2.10.9. S, c {1,...,n}, thenifne {1,...,n}, G, ={o € S, | o(n) =n} =~ S,_1 since if
n is fixed, we can still freely permute {1,...,n —1} < {1,...,n}.

Fact. G; = S,-1 Vie{l,...,n}.

Proposition 2.10.10. If G & S and s € S:
(i) ifa,be G, then a*s =bxs < a 'be Gy;

(ii) if a * s = s/, then Gy = aGsa™! = {aga™' | g € G}

Proof.
(i) axs=bxs = s=als(bxs)=(a"'b)*s — a 'be G,
(ii) Want to show aGsa™! = Gy. If aga™! € aGsa™!, then g € Gy, so
(aga™ ) xs' =ax (g (atxs1))

—ax(g*s)
=CL*S=S/.

So aga™! € Gy and hence aGsa™! € Gy . Similarly, we can show that a7 'Gy(a™1)~! < Gi.

O
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Theorem 2.10.11 (The Orbit-Stabilizer Theorem). If G C S is a group action, and s € S, then
there is a bijection f : {aGs — O} defined by f(aGs) = a * s. Then

[G: Gg] = |Os|.
Proof. We first check that f is well-defined: if aGs = bGg, we want to check that a *+ s = b s.
From the proposition on cosets, aGs = bGs <= a~'b e G,. Then by the proposition on action:

a e Gy < axs=>bxs.
Now we check that f is a bijection. Injective: if f(aGs) = f(bGs), then

axs=bxs < aG; =bG; = f is injective.
Surjective: if ' € O4, we want aGy such that f(aGs) = s'. But
€0y = JacGst. axs=5,

so f(aGs) = axs = s'. Hence, f is surjective. Thus, f is a bijection.

Recall from the Lagrange’s theorem that for H < G:
G| = [H|-[G: H].

Here we have Gs < G, so

|G| = |Gs| : [G : Gs] = |Gs| : |Os|

Hence,

|G = 1Gs| -10s|_¥se 5]

Example 2.10.12 (Rubik's Cube). G = rotational symmetries of a cube, S = cube. Let s = vertex
€ S. Then O, = {vertices in S} = |Os| = 8 and |Gs| = 3. Then by O-S Theorem, we have
|G| = |G5’ ’ |Os| =3-8=24

2.10.2 Permutation Representations

Definition 2.10.13 (Permutation representation). A permutation representation of a group G is
a homomorphism ¢ : G — Perm(S) for some set S, where Perm(S) is the permutation group of
the set .9, i.e., the set of bijections S — S with composition of functions being the binary operation.

Theorem 2.10.14. Given group G and set S. There is a bijection

{actions of G on S} <= {permutation representations G — Perm(S)}

Proof. If we have an action G C S, then we want a corresponding homomorphism G — Perm(S).
Given a € G, recall that we have a function f, : S — S given by f,(s) = a * s.

Claim. f, is a bijection, i.e., f, € Perm(S).
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Proof of claim. f, has an inverse f,-1 : S — S since

(fa—l o fa)(S) = fa—l (fa(S))

Similarly, (fq o f,-1)(s) = s. O

So given a group action G C S, define ¢ : G — Perm(S) defined by ¢(a) = f,. We check that ¢ is
a homomorphism:

fab(s) = (ab) s
=ax(bxs)
= fa(fi(s))
= (fa o fo)(5).

So we have a function {G & S} — {homomorphisms G — Perm(S)} defined by action — (¢ : G —

Perm(S) s.t. p(a) = f,). Now given a permutation representation ¢ : G — Perm(S), we want

to define an action G & S. Define a * s = [ ¢(a) ](s). Now we check that this satisfies group
——

€Perm(S)
action properties: (1) ex s = [p(e)](s) =idg(s) =s Vse S. (2) ax (b*s) = [¢(a)]([¢D)](s))
(p(a) o p(b))(s) = (p(ab))(s) = (ab) = sVa,b e G,Vs € S. So this is indeed a group action G C S.
Hence, we get the desired function.

0«

2.10.3 Faithful Representation

Definition 2.10.15 (Faithful representation). An injective permutation representation ¢ : G —
Perm(S) is called a faithful representation. The corresponding action G C S is called a faithful
action.

Remark. A faithful representation preserves the maximal amount of information about the original
group.

Theorem 2.10.16 (Cayley's Theorem). Every group is isomorphic to a subgroup of a permuta-
tion group.

Proof. We are looking for a faithful representation G — Perm(S) for some S. Equivalently, we
need to find a faithful action G & S for some S.

Let S = G (as a set) and a* s = as (group multiplication). If axs = s, then as = s = a =e. So
our action G & S is faithful, which implies that the homomorphism representation G — Perm(S)
is faithful, and so G = im(¢) < Perm(S) = Perm(G). O

Remark. If |G| = n, then G = subgroup of S,,. Why? Perm(G) = S,,.

2.10.4 Conjugation and the Class Equation

Recall the conjugation action G & G defined by g * a = gag™!.
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Definition 2.10.17 (Centralizer). The stabilizer of a € G is called the centralizer of a, written
Z(a) ={g€ G |gag™" = a}
={9eGlga=ag}
The orbit of a € GG is called the conjugacy class of a, written
Cla) = {gag™' [ g€ G}.
Definition 2.10.18 (Center). The center of a group G is
Z(G)={9eG|ga=ag VYaceG}.
Remark.
e Z(G),Z(a) <G.
¢ Z(G) = Nueg Z(a), 50 Z(a) < Z(G).
o Z(a) contains Z(G) and {a).
o Ifbe Z(a), then (b) < Z(a).
o The O-S Theorem implies that |G| = |C(a)||Z(a)] VaeG.
e aeZ(G) < Z(a) =G < C(a) = {a}.
e Z(G) =G < G is Abelian.
e aeCla) YaeG, aseae ! =a.

Recall that the orbits of an action G C S partition S, which implies that the conjugacy classes
partition G.

If G is finite, then there are finitely many conjugacy classes, call them C1,Cs, ..., Ck.
Definition 2.10.19 (Class Equation). The equation:

Gl = |Cr[ +[Cal + - - + |Ci|

is called the class equation.

Remark.

e Since e € Z(G), C(e) = {e} assume C; = C(e), so |C1| = 1. In fact every element in Z(G)
corresponds to a +1 in class equation (as a € Z(G) < C(a) = {a}).

o By O-S theorem, each |C;| divides |G].

Example 2.10.20. If G is Abelian, Z(G) = G, so class equation is |G| =1+ 1+ ...+ 1.
—_—
|G| times
Example 2.10.21. G = S3 = {e, (12),(13),(23), (123),(132)}. C(e) = {e}. By O-S, |C((123))| =
sy We know that {(123)) < Z((123)) with order 3. By Lagrange, |Z((123))| divides |Ss| = 6.
Hence, |Z((123))| = 3 or 6. If it’s 6, then (123) € Z(S3). But (12)(123)(12)~! = (12)(12)(23)(12)
(32)(21) = (321) = (132) # (123). Hence |Z((123))| =3 = |C((123))| = 6/3 = 2.

25



MATH 113: Abstract Algebra Kelvin Lee

Fact. |a| = |[gag™!| Va,g€G.

|C((12))] = 1,2, or 3, as we only have 3 unused elements in S3. It’s not 1 as (12) is not in the
center. If it’s 2, then |C'((23))| or |C'((13))]| must be 1 as conjugacy classes partition G. But neither
(13) nor (23) is in Z(S3), so # 2. Hence, it’s 3. Thus,

|S3]=6=_1 +_ 2 + 3 .
— —— —
Cle)={e} C((123)) C((12))
The class equation is then 6 = 1 + 2 + 3!

Techniques:

G
+ 1C(@)] = 7y
o of Is & |Z(G)|.
e {(ay< Z(a)and Z(G) < Z(a). Thus by Lagrange, |a| and |Z(G)| divide |Z(a)|.
e |C(a)| and |Z(a)| divide |G].
2.10.4.1 Normal Subgroups and Class Equations

Proposition 2.10.22. If H < G is a normal subgroup, and a € H, then C(a) € H. And H is
a union of conjugacy classes.

Proof. If a € H, then gag~' € H Vge G. But {gag™' | g€ G} = C(a) = C(a) < H. Since

every a € H is contained in some conjugacy class C(a), we see H = | J,.;y C(a). O
Corollary 2.10.23. A5 is a simple group, i.e., it has no proper non-trivial normal subgroups.

Proof. We can work out the class equation for As to be:
60 =1+12+ 124 15+ 20.
IF H < As, then |H| divides |A5] = 60, and H = C(e)|J---,s0 |[H| =1+ . No

combination of 12,15,20
combination divides 60 except |H| = 1, |H| = 60. O

2.10.4.2 p-Groups

Definition 2.10.24 (p-group). A p-group is a group G with |G| = p¥, for some prime p, integer
k=1

Proposition 2.10.25. If G is a p-group, then |Z(G)| > 1.

Proof. Class equation for G:
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If |Z(G)| = 1, then every other term in class equation is larger than 1. Since they all divide |G| = p*
and p is prime, they are all powers of p. Thus,

Pr=1+4p" +ppy - +p™ (= 1Y),

which implies that
L=ph—pt—p2 - —pm.
The RHS is divisible by p, but LHS is not. Hence, a contradiction. Thus |Z(G)| > 1. O

Proposition 2.10.26. If |G| = p?, then G is Abelian.

Proof. G Abelian < Z(G) =G < |Z(G)| = p®. If G is not Abelian, then |Z(G)| = p as it’s
at least 1 (by proposition) and it’s not p?>. Choose a ¢ Z(G). Then Z(a) contains Z(G) and a, which
implies |Z(a)| = p+ 1. But |Z(a)| divides p?, which means that |Z(a)| = p?. Hence, Z(a) = G and
so a € Z(G), which contradicts a ¢ Z(G). Therefore, |Z(G)| = p?, and G is Abelian. O

2.11 Product Groups

Let (G, p), (G',p’) be two groups. We can construct the set G x G’. Define binary operation p x p’ :
p X p/((a7 CL,), (b7 b/)) = (p((l, b)7p,(a/> b/))
1

This makes G x G’ into a group, where the identity is (eg,eq) and the inverse is (a,a’)™' =
(a=t,a7Y).

Definition 2.11.1 (Product group). The group (G x G',p x p') is called the product group of
(G,p) and (G',p')

Remark. |G x G'| = |G| - |G|

Inclusion maps

ig:G—GxqG G — G x G
a— (a,e) a — (e,d)
Projection maps
7q:GxG -G T Gx G -G
(a,d’) — a (a,a’) — d

For the kernel, we have
kermg = {(a,d') € G x G' | ng(a,d’) = eq}
={(eg,d) e Gx G |d €G"}
=G (isom. is tg : G — im(1g) < G x G').
Similarly, kermg =~ G. Then by the First Isomorphism Theorem, G x G'/kermg =~ G’ and
G x G’/kerﬂ(;/ ~ .
Let |a| = n in G and |a/| = m in G'. Note that (a,a’)* = (eq,eq/) in G x G'. So if (a,a')F =
(e, eqr), then k must be a multiple of n and m. Hence,

|(a,a’)] = lem(n,m).
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Example 2.11.2. In Zy x Zs,

= ((1,2)) is cyclic, which implies Zg x Zs = Zg.

Proposition 2.11.3. If m, n are relatively prime, then Z,, X Z, = Zny.

Proof. Consider (1,1) € Zy, x Zy,.
(1, D] = lem([1], [T])

= lem(m,n) = mn.

Thus, Z,, X Z, is cyclic, which then implies it’s = Z,y. O
Proposition 2.11.4. If gcd(m,n) # 1, then Z,, X Zy % Zn.

Proof. Zyy has an element of order mn. If (a@,b) € Z, x Zy,, then

|(@,b)] = lem([al, [b])
< lem(m,n)

mn <
= —— mn.
ged(m, n)

So Zy, X Z, has no element of mn. O

Remark. Zo x Zo % Z4. But Zg x Zsg has a subgroup {(0,0), (1,0)} =~ Zs.

Proposition 2.11.5. If |G| = p?, then G =~ L2 or G = Ly X Zyp.

Proof. Given a # e in G, by Lagrange we have |a| = p or p?. If a € G with |a| = p?, then G is
cyclic and G' = Z,». If not, then pick a € G with |a| = p, and pick b € G such that b ¢ {a).

Claim. {a) n {b) = {e}.

Proof. Intersection I is a subgroup as well, so I < {a), I <(b). |I| divides [{a)| = |[{b)| = p, which
implies |I| =1 or p. If it’s p, then {(a) = I = (b). But b ¢ {a). Hence, |I| =1andso I = {e}. O

Claim. {a't/ | 0 <i,j <p— 1} is a set of order p.

Proof. If a'b/ = a"'b' for some 4,7, 7, ', a'~" = b ~7. But {a) n (b) = {e}. Then a'~" = b/'~7 = ¢,
soi=1',j=j. Thus, G = {a'b/} since |G| = p*. O

Now write down a function ¢ : Z, x Z, — G defined by ¢((7,)) = a'b/. ¢ is a bijection and
oi+7,7+7) = a' byt = a'a" Vb = a'ba’ b = p((i,7))e((7, 7)), s0 ¢ is an isomorphism. [
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Chapter 3

Symmetry

3.1 Isometries

Definition 3.1.1 (Isometry). An isometry of R" is a rigid motion, i.e., a bijection f : R" — R"
that preserves distance:

|7 =gl = [f(&) = FDI v, 7eR"
Definition 3.1.2 (Symmetry). If A € R", then a symmetry of A is an isometry f : R” — R" such
that f(A) = A (as sets), i.e., f(d)e A Vae A (and if f(¥) e A, X € A).
Example 3.1.3 (Translation). Translation is an isometry: f3(Z) = & + ¥ for a fixed ¥ € R™.

Example 3.1.4 (Orthogonal linear maps). Define O(n) = {A € GL,(R) | AT = A~'}, which is the
orthogonal group. Given A € O(n), define f4 : R™ — R"™ defined by f4(Z) = AZ.

Claim. f4 is an isometry.

Proof. |Z| = vZ-Z. Given Z,¥ € R", we show that |AZ — Ay|| = |# — ¢|. But |AZ — Ay| =
|A(Z = §)|l. Since AT - Ay = (AZ)T(AY) = TT(ATA)y = 77§ = -7, AT - 9)| = |7 - 7] [

Theorem 3.1.5. If f : R™ — R™ is an isometry that fixes the origin (i.e.,f(ﬁ) = 6), then
f = fa, for some A € O(n).

Proof. Given f : R — R" such that f(0) = 0. We want to show: (1)f is linear <« f(Z) = A%
for some A € GL,(R), (2) f preserves dot products (= A€ O(n)).
We prove (2) by choosing Z, 5 € R™,

Hf(f)—f(g)H=V( ( 7) = f(9) - (f(Z) = f(9))

= —4) - (@—1).
Pick j =0 = f() = £(0) = 0. Expanding (7 —§) - (¥ - §) = (f(Z) - f() - (f(@) — f(§)), we
get Z- 4 = f(&) - f(¥). Hence, f preserves the dot product.
(1) is left as an exercise. O

Corollary 3.1.6. Every isometry of R" is f(Z) = AZ + ¢, where 7 € R" and A € O(n).
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Proof. If f(0) = @, then let T(Z) = & — . Then

=T(7) =0.
So T o f is an isometry that fixes 0. Then by the theorem, T o f = f4 for some A € On) = f=
T~ Yo fa,ie., f(£) =T fa()) = T7HAT) = AT+ ¥. O

Remark. This uses the fact that set of isometries is closed under composition. In fact, it’s a group,
called Isom(R"™) or E(n).

3.1.1 Orientation
Claim. The determinant of A € O(n) is £1.

Proof. (det A)? = det A-det AT =det AAT =det AA~! =det[ =1 = det A = +1. O

Definition 3.1.7. If det A = 1, f4 is called orientation preserving. If det A = —1, f4 is called
orientation reversing.

We have a homomorphism ¢ : O(n) — ({£1}, x) and ker p = {A € O(n) | det A = 1}, which is
called the special orthogonal group SO(n).
Dimension 2

Theorem 3.1.8. If A € O(2), then f4 is a rotation about 0 or a reflection o rotation.

Proof. Let v = f4((1,0)). Let £ be the line which contains ¢ and ¢’ be the line perpendicular to .
Then f4((0,1)) is a unit vector on ¢' (& or —f). If f4((0,1)) = w, then f4 rotates (1,0) and (0, 1)
by a fixed angle 6. Since f4 is linear and (x,y) = x(1,0) + y(0,1), fa(x,y) = x¥ + yw, so fa is
rotation by 6. If f4((0,1)) = —, then let R = reflection in ¢, then (Ro f4)((1,0)) = R(¥) = ¥ and
(Ro f4)((0,1)) = R(—w) = . Hence Ro f4 is a rotation, as above, which implies that f4 = R~'o
rot. = refl. o rot.. O

Corollary 3.1.9. If f : R? — R? is any isometry, then f is one of identity, translation, rotation,
reflection, glide reflection (refl o trans).

Proof. Exercise. O

Fact. Any isometry of R? fixes (f(%) = &) 0,1 or infinitely many points.

Dimension 3

Theorem 3.1.10. If A € SO(3), then f4 is a rotation about an axis through the origin.

Corollary 3.1.11. If A€ O(3) has det A = —1, then f4 = reflo rot..
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Chapter 4

More Group Theory

4.1 The Sylow Theorems

Recall that i fH < G is a subgroup, then by Lagrange, |H| divides |G|. But the converse is false.

Definition 4.1.1. If G is a group, |G| = p®m, where p is prime, e > 0. and p { m. Then a subgroup
H < G with |H| = p° is called a Sylow p-subgroup of G. Equivalently, H is a p-group, and

pt[G: H] =g

Theorem 4.1.2 (First Sylow Theorem). If p | |G|, then G has a Sylow p-subgroup.

Theorem 4.1.3 (Cauchy's Theorem). If p | |G|, then G contains an element of order p.

Proof. 1If p | |G|, then the first Sylow theorem implies that there exists H < G with |H| = p°.
If a € Hya # e, then |a|| |H| = p° and |a| # 1, which implies |a| = p* for some k. Then
ja?" | = p. O

Definition 4.1.4. Syl,(G) = set of Sylow p—subgroups of G.

Theorem 4.1.5 (Second Sylow Theorem). Let p | |G| be primte.

(i) All Sylow p—subgroups are conjugate, i.e., if H, H' € Syl,(G), then Ja € G such that
aHa ' = H'.

(ii) Every p—subgroup (H < G, |H| = p’ for some /) is contained in some Sylow p—subgroup.

Corollary 4.1.6. If H € Syl,(G), then

Syl,(G) = {H} < H < G is normal.

Proof. If a € G, aHa ! < G, and |aHa™!| = |H|, aHa™! € Syl,(G). H < G is normal <=
aHa™' = H Vae G <= Syl,(G) = {H} since any H' € Syl,(G) is H' = aHa™!, for some
a€ (. ]
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Theorem 4.1.7 (Third Sylow Theorem). Let p | |G| = p®m be prime, and let n, = |Syl,(G)|.
Then

« np | m.

e np =1 (mod p).

e n, =[G : Ng(H)] for any H €Syl,(G) where Ng(G) is the normalizer of H in G:
Ng(H) ={aeG|aHa ' = H}.

H< (G < Ng(H)ZG = [G:Ng(H)]Zl.

4.1.1 Applications
4.1.1.1 Wilson’s Theorem

Theorem 4.1.8 (Wilson's Theorem). A number p € N is prime < (p—1)! = —1 (mod p).

Proof. If n € N is composite, then 3 prime ¢ < n such that ¢ | n. Then if (n — 1)! = —1 (mod n),
then (n—1)! = —1+nk for some k. But n = ¢/ for some ¢, so (n—1)! = —1+¢q(¢tk) = (n—1)!= -1
(mod ¢). Sinceg<n—1,(n—1)!'=(n—1)---(¢+1)g(¢—1)---2-1. so (n — 1)! is a multiple of
g, and so (n — 1)! =0 (mod ¢), so we have a contradiction and thus (n — 1)! # —1 (mod n).

If p € N is prime, consider S,, the symmetric group. |S,| = p!. Since p | p! and p? t p!,
any H e Syl,(Sp) has order p, generated by a p-cycle in S,. There are (p — 1)! p-cycles in S,
because any p-cycle can be written as (1ligiz...i,), where {ia,...,ip} = {2,...,p} and there are
(p — 1)! ways of choosing i, ..., If H,H' € Syl,(S,), and H # H’, then H n H' = {e} (since
H n H < H and < H' and so its order is 1 or p. But its not p, as H # H’, so it’s 1). Hence
np = |Syl,(Sp)| = (p%ll)! = (p—2)!. By Third Sylow theorem, n, =1 (mod p). Hence, (p—2)! =1
(mod p)so (p—1)(p—2)!=p—1 (mod p), ie, (p—1)=—1 (mod p). O

Lemma 4.1.9. If H . K < G, and H n K = {e}, and |G| = |H||K|, then G = H x K.

Theorem 4.1.10. If |G| = 15, then G = Z;5.

Proof. If |G| = 15 = 5-3. Let H € Syl3(G), K € Syl5(G). Thenng | 5,n3 =1 (mod 3) = n3 =1,
so H< G, and ns | 3, n5 =1 (mod 5) = O

Proposition 4.1.11. If |G| = 300, then G is not simple, i.e., G has a non-trivial proper normal
subgroup.
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Theorem 4.1.12 (Fundamental Theorem of Finitely Generated Abelian Groups). Any finitely
generated abelian group is isomorphic to Z x -+ 7Z XZy, X -+ X Ly, where k> 0,n; > 2.

m=0
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Chapter 5
Rings

Definition 5.0.1 (Ring). A ring is a set R with binary operations + and x satisfying:
(i) (R,+) is an Abelian group where the identity is denoted by 0 and the inverse of a € R by —a.
(ii) (R, x) is a group possibly without inverses, or monoid, i.e. it’s associative, has identity.

a(b+c¢) =ab+ac

(iii) + and x satisfy distributivity properties:
(b+c)a =ba+ ca.

Definition 5.0.2 (Commutative ring). A commutative ring is a ring where the multiplication is
commutative.

Remark. Unless otherwise stated, all rings will be commutative. "Ring" = "commutative ring".
Example 5.0.3 (Communative rings). (Z,+, x), (Q, +, x), (R, +, x), (C, +, x).
Example 5.0.4. (Z,, +, x) where +, x are mod n, additive identity = 0 and multiplicative identity
=1
Note that from now on all rings are commutative.
Example 5.0.5 (Gaussian Integers). Z[i] = {a + bi | a,be Z} < C.
Remark. Although every C number has a multiplicative inverse in C, that inverse might not be in
Z1].
Example 5.0.6. 27! = § € C, but £ ¢ Z[4].
Example 5.0.7. Z[3]| = {a+b-3 | a,b € Z}. Not good! Multiplication isn’t closed! 3-3 = I ¢ Z[3].
Fix: Z[3] ={ao+a1-t+ax- 3+ +an 5 |n>0,a €L}
Remark. For Z[i], we don’t need more than a+bi since powers of i are simple: ag+a1i+agi®+azi® =
(ap — az) + (a1 — az)i.
Definition 5.0.8 (Subring). A subring of (R, +, x) is a subset S € R that is closed under +, x,
has additive inverses, and contains 1, i.e., (S,4) < (R, +) and S is closed under x and 1 € S.
Example 5.0.9. Z < Q < R < C are subrings.
Example 5.0.10. Z < Z[i] = C. Z< Z[3]| < Q.

1

Remark. Z [%] is the smallest subring of Q containing Z and 3, i.e., if $ = Q is a subring, and
Z < S and 5 € S, then Z [%] € S. Similarly, Z[i] is the smallest subring of C containing both Z
and 1.

34



MATH 113: Abstract Algebra Kelvin Lee

Remark. If S < C is a subring, then Z = S. Why? All subrings contain 1, have additive inverses,
and are closed under addition.

e 1+1,1+1+1,...€8
e —1,-1+(-1),...€8
e 08, as (5,4) < (R,+).
Similarly for subrings of Q, R, etc. Hence Z [%] is the smallest subring of Q containing % and Z[i]

is the smallest subring of C containing i.

Example 5.0.11. Choose o € C. Z[«] is the subring of C generated by «, or Z adjoin «, is the
smallest subring of C containing a. In particular, Z[a] = {d jaia’ | n>0,a;, € Z} = {f() |
f(z) is an integer polynomial}. For example, Z[v/2] = {a + bv/2 | a,b € Z} (since 2 = 2, V2P =
2¢/2, V2= 4,..., so higher powers aren’t needed). Z[{/2] = {a + by/2 + cV/4 | a,b,c € Z}.
Example 5.0.12. Similar definition for Q[a] and R[] : smallest subrings of C containing Q (or R)
and a: {X7 gai’ | n=0,a; € Q(or a; € R)}.

5.1 Polynomial Rings

Definition 5.1.1 (Polynomial ring). If x is a variable (not a specific element of C), then Z[x] is the
polynomial ring in variable x with Z coefficients, i.e. if f € Z[z], then f(x) = ap+a1z+- - -+ a,z™,
for some n > 0, a; € Z. Similarly, if R is any ring, then R[z] is the polynomial ring in variable z
with coeflicients in R.

Example 5.1.2. In Z4[z], we have elements 2, +1 = 222 +z+3 and (22+1)+ (222 +2+3) = 222+ (2+
Da+(1+3) = 22243z and 22+1) 222 +2+3) = (2:2)2> +(1-2+-2-1)2% +(2:3+1-1)z+(1-3) = 3z+3.
Example 5.1.3. (R[z])[y]: polynomials in y with coefficients in R[z] (polynomials in « with coeffi-
cients in R). For example, y?+ (1+z)y+ (—23) € (R[z])[y]. After expanding, we get polynomials in
variable z and y with Z coefficients: —a®+y%+xy+y or can group z: —a+yz+(y>+y) € (R[y])[x].
Instead of distinguishing all these rings, we just write R[x,y]. In general, consider the ring
R[x1,...,xy] of polynomials in variables x1,...,z, with coefficients in R.

There is a subring of R[z] that can be identified with the ring R. r € R <= f(x) = r € R[z]. We
often write R € R[z] is a subring.

Example 5.1.4. Ring of Laurent polynomials: R[z,xz~'] is the ring
no '
{Z a;x’ | ny = 0,ny =20,a; € R} .

—n1

5.1.1 Division of Polynomials with Remainder

If Ris aring, f,g € R[z] and f is monic, then there exist unique polynomials ¢, € R[x] such that
g(z) = f(x)q(x) + r(z) and r(z) = 0 or degr < deg f.

Proof. Polynomial long division. O
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Corollary 5.1.5. If f(z) € R[z], and a € R, then the remainder of dividing f by x — « is
f(a) € R < R[z].

Proof. x — a € R[z] is monic, so write f(z) = (z — a)g(x) + r(z), where r = 0 or degr <
deg (z — a) = 1. Either way, r is constant. So plug in z = a : f(a) = (@ — @)¢(a) + r(a) =
r(a) = f(a). But r is constant, so r = f(«). O

Corollary 5.1.6. If f € R[x] and a € R, then f(a) =0 <= f is divisible by = — «.

Proof. = : By corollary above. Conversely, if f = (z—a)g for some g, then f(a) = (a—a)g(a) =
0. O

Definition 5.1.7 (Characteristic). The characteristic of a ring R is the smallest positive integer n
such that 1 +1+---+1 =0 (i.e. order of 1 in (R, +)).
(N

n times
Notation. charR = n. If no such n exists, we say charR = 0.

Example 5.1.8. charZ = 0, charZ,, = n. charR[z] =charR. If R = {0}, then R is the zero ring, in
which 1 = 0, then charR = 1.

Exercise 5.1.9. If R is a ring in which 1 = 0, then R = {0}.

Definition 5.1.10 (Unit). A unit in a ring R is an element a € R that has a multiplicative inverse,
i.e. 3b € R such that ab =1 = ba.

Example 5.1.11. In Z, units are 1. In Q,R, C, units are any a # 0. In Z,, units are any @ with
ged(a,n) = 1. In Z[i], units are 1, +i.

5.2 Fields

Definition 5.2.1 (Field). A field is a ring where every non-zero element is a unit.
Example 5.2.2. Q,R,C,Z,, not Z, Z[i], Zy,.

If f,g € R[z], and leading coefficients of f is any unit v € R, then we can do division:

9/f =g/ww " f = ug)/(uf)

monic

so write f = u - f, where f is monic (i.e. factor out u). Then divide g = fq + 7. Then g =
utufq+r = f(u=lq) + r. In particular, we can do division for any fg € R[z], when R is a field.

5.3 Ring Homomorphisms
Definition 5.3.1 (Ring homomorphism). ¢ : R — R’ is a ring homomorphism if
e pla+b)=¢p(a)+¢®) (¢: (R, +) — (R',+') is a group homomorphism)

 p(ab) = p(a)p(b)
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o ¢(1g) = 1gs, where 1p is the multiplicative identity in R and 1p is the multiplicative identity
in R.
© is a ring isomorphism if it’s a ring homomorphism and is bijective.

Example 5.3.2. ¢ : Z — Z defined by ¢(n) = kn. ¢ is a ring homomorphism <= k =1 as
we need (1) = 1. We also need ¢(n)p(m) = p(nm) = knm = k?mn = knm = k=0, or 1.
—_—

=(kn)(km)
But k£ = 0 doesn’t work.

Example 5.3.3. ¢ :Z — Z,, defined by ¢(x) = T is a ring homomorphism.

Example 5.3.4. If R is any ring, there is a unique ring homomorphism ¢ : Z — R, where ¢(0) =
Or, (1) =1g,o(—1) = —1lg and p(n > 0) =1+ - -+ 1lg and p(n <0) = (—=1gr) +--- + (—1R).
Why unique? As a group, Z is cyclic generated by 1, so ¢(1) determines entire homomorphism and
we need p(1) = 1p.

Example 5.3.5. If R is any ring of characterisitc n, then there’s a unique ring homomorphism
¢ : Ly — R sending 1 — 1p.

Example 5.3.6. If R is any ring, and r € R is any element, then ¢, : R[x] — R defined by

©(f(x)) = f(r) is a ring homomorphism. (f + g)(r) = f(r) + g(r) and (fg)(r) = f(r)g(r).
Multiplicative identity in R[z] is f(z) = 1g — f(r) = 1g.

Example 5.3.7. If ¢ : R — R’ is any ring homomorphism, then we can write a ring homomorphism:
¢ : R[z] — R'[z] that maps Y] a;z° — > ¢(a;)zt.

Definition 5.3.8. If ¢ : R — R’ is a ring homomorphism, then the kernel of ¢ is
kero ={re R | p(r) =0g}

Note that ¢ is also a group homomorphism (R, +) — (R, +'), and its kernel as a group homomor-
phis = kernel as a ring homomorphism.

Remark. ker ¢ is NOT a subring of R since ¢(1g) = 1g # Og (unless R’ = {0}).

Remark. If s € kerp, and r € R, then p(rs) = p(r)p(s) = ¢(r) - 0p = Opp = rs € ker .
Similarly, sr € ker ¢, but sr = rs.

5.3.1 Ideals
Definition 5.3.9 (Ideal). An ideal I of a ring R is a non-empty subset I € R satisfying:
e (I,+) is a subgroup of (R, +)

o If sel, re R, then rsel (ie. I is closed under scaling by elements of R)

o Equivalently, I € R is a non-empty subset such that whenever s1,...,s,€ 1, r1,...,m7, € R,
then 7151 + -+ - 4+ rp8y € I (ie. linear combinations of elements of I with coefficients in R is
still in T)

Example 5.3.10. The principal ideal generated by a € R is
(a) ={ra|re R}.

Also denoted aR or Ra. Closed under +: ra + r'a = (r + 1')a € (a); Additive inverse: (—r)a =
—ra € (a); Closed under scaling by elements of R: v'(ra) = (r'r)a € (a). Non-empty: (a) # &, as
1-a =ac€ (a). Hence, (a) is an ideal.
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Definition 5.3.11 (Unit/zero ideal). The unit ideal is (1) = R. The zero ideal is (0) = {0}.
Definition 5.3.12 (Proper ideal). A proper ideal is any I c R.

Proposition 5.3.13. (a) = R <= a is a unit.

Proof. 1f (a) = R, then 1 € (a) = 3b € R such that ba = 1. This b is the multiplicative inverse
to a. Hence, a is a unit.

Conversely, if a is a unit, let a~! be its multiplicative inverse. Then given any r € R, r = (ra )a €
(a) = 1€ (a). Hence, R < (a). But of course (a) < R. Hence, R = (a). O

Remark. A proper ideal is mever a subring. Ideals are almost subrings except a subring must
contain 1. Subrings are generally not ideals, as they are not required to be closed under scaling by
R.

Example 5.3.14. Z < Q,2€ Z, i € Q but i -2 = % ¢ 7. Hence, Z is not an ideal but it is a subring.

Remark. What stops an ideal from being a subring is containing the multiplicative identity, whereas
what stops a subring from being ideal is being closed under scaling by any element of R.

Example 5.3.15. ¢, : R[z] — R defined by ¢, (f(z)) = f(r). The kernel is

ker(p,) = {f € R[z] | f(r) = 0}
={feR[z]|z—r]|f}
={(z —n)g(z) | g € R[z]}
- (x—7)

—
principal ideal generated by  — r € R[x]

X

X

Example 5.3.16. ¢ : Z[z] — C defined by ¢(f(x)) = f(i).

kero = {f e Z[z] | f(i) = 0}
= {f e Z[x] = Clz] | f(2) = 0}
={feZlz] = Clz] [z —i| f(i)}-

But (z —i) € C[z] but (z — i) & Z[z]. In fact, we are looking for (x — i) N Z[z].
If (x—1) | f € Z|x] < C|z], then f = (z—i)g(x) where g(x) is from C[x]. Take complex conjugates:

f(@) = (& —1) - g().

Since f has real coefficients, so f(z) = f(x) = (x — i) - g(z) = (x +i)g(x), which implies (z +1) | f.
Hence, (z — i) and (x + 1) are factors of f, which implies (z —i)(x +4) | f, i.e. 22 + 1| f. Hence,
kerp < (2% 4+ 1). But if (22 + 1)g(z) € (2 + 1), then plug in # = i : (i + 1)g(i) = 0 =
(22 + 1)g(w) € ker . Hence, (22 + 1) < ker ¢, and so ker ¢ = (22 + 1).

C
C

Definition 5.3.17. The ideal generated by a1,...,a, € R is
(a1,...,an) ={ra; + - +rpa, | 7 € R}.

Example 5.3.18. (2,2) € Z[z] contains all polynomials with an even constant term. (2) € Z[z]
contains all polynomials with even coefficients. (z) € Z[z] contains all polynomials with 0 constant
term.
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Claim. (2, z) is not a principal ideal.

Proof. If it is principal, (2,z) = (f) for some f € Z[x]. Then z € (f) and 2 € (f), so 2 = fg for
some g = f is constant (deg fg = deg f + degg) and in fact f = +1 or +2 as f | 2. If f = +1,
then f is a unit, so (f) = Z[x]. But (2,z) # Z[z], as (2,z) only contains polynomials with even
constant term. If f = £2, then f | =, so = +2¢ for some g. But no solution for g as i%:c ¢ Z|x].
Hence, no such f exists, and (2, z) is not principal. O

Example 5.3.19. If ¢ : Z[x]| — Z,, is defined by ¢(f(z)) = f(0), what is ker ¢? Certainly ¢(n) =0
and p(z) = 0. This implies that (n,z) € kery. o(fn + gr) = p(f)e(n) + p(g)p(x) = 0 for any
fr9€Z[z]. Alsoif f(z) = ama™+---+a1z+ap € ker , then f(0) = ap =0 (mod n) = ap =nk
for some k = f(z) = x(amz™ ' + -+ + a1) + nk € (n,z). Hence, kerp < (n,z) and hence
ker ¢ = (n, ).

Recall that a field is a ring in which all non-zero elements have multiplicative inverses.

Theorem 5.3.20. A ring is a field <= the only ideals of R are R and (0).

Proof. If R is a field, take I < R such that I # (0). Consider a € I, a # 0. Then R is a field, so a
is a unit. For any r € R,ra € (a) and ra € I = (a) € I. But a is a unit = (a) = R. Hence,
I=R.

Conversely, take a € R,a # 0. Then (a) # (0) asa € (a) but a ¢ (0) = (a) = R = aisa
unit. U

Corollary 5.3.21. If ¢ : ' — R is a ring homomorphism, where F' is a field, then ¢ is injective
(or R = {0}).

Proof. ker ¢ is an ideal of F. If R # {0}, then ¢(1r) = 1r # Og, so kerp # F. Then by the
theorem above, ker ¢ = (0). Hence, ¢ is injective (proved for groups, but also holds here). O

Remark. There isn’t always a ring homomorphism from R — R’ for rings R, R’ (unlike the case
for groups).

Proposition 5.3.22. If F' is a field, then every ideal in F[z] is a principal ideal, i.e. if I  F[x]
is an ideal, then I = (f) for some f € F[x].

Proof. The idea is to emulate the proof that subgroups of Z are {a) for some a. Let I < F[z] be
an ideal, I # (0). Choose f € I of smallest degree. We want to show I = (f). If g € (f), then
g = fh for some h € F[z]. Since fe I,he F[z],fheI. Hence, g€ I and so (f) < I.

If g € I, use division algorithm to write g = fq+r for some ¢, € F[x], where r = 0 or degr < deg f
(this uses "F'is a field", so leading coefficient of f is always a unit). If r = 0, then g = fq e (f). If
r#0,thenr= g — f g € 1. But now r € I and degr < deg f, which contradicts to

—
el el  eF[z]

the choice of f as having the smallest degree in I. So can’t have r # 0, so r =0 and g € (f) =

I < (f). Hence, I = (f). O

Definition 5.3.23 (gcd). If F'is a field, f, g € F[x] not both 0, then the greatest common divisor
of f,gis ged(f,g) = d € F|z], where (f,g) = (d) and d is monic.
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5.4 Quotient Rings

Recall that an ideal I < R in a ring is:
e (I,+) < (R, +) is a subgroup. Since R is abelian, (I,+) < (R, +).
e Forany se I,r € R, we have rs € I.
o Ideals are to rings what normal subgroups are to groups.

Definition 5.4.1 (Quotient Rings). Let R be aring, I € R anideal. Then (R, +)/(I,+) is a quotient
group. The cosets of I : a + I, for a € 1.

Notation: a =a+ 1 ={a+s|sel}.

R/I has an Abelian group structure and it is a ring.

Remark. 7 : R — R/I defined by 7(a) = @ is a surjective ring homomorphism and ker 7w = I.

Theorem 5.4.2 (First Isomorphism Theorem). If ¢ : R — R’ is a ring homomorphism I = ker ¢,
then R/I =~ im(yp).

Example 5.4.3. If ] = (0) = {0}, then R/I =~ R. Why? ¢ : R — R is an isomorphism, so
ker ¢ = (0), ¢ is surjective. By the theorem, R/(0) ~ R.

Example 5.4.4. ¢ : Z — Z, defined by p(k) = k. kero = {ke Z | k
(mod n)} = {kn | k€ Z} = (n). 1st Isomorphism Theorem — Z/(n) =~

Claim. Z[z]/(z —2) = Z.

— 0} ={kecZ|k=0
.

Proof. o : Z|x] — Z defined by @o(f(z)) = f(2). @2 is surjective and ker ¢y = (x — 2). By 1st
Isomorphism Theorem, Z[z]/(z — 2) = Z. O

Takeaways:

o (2[2)/())/(9) = Zlz]/(f.9) = (Zl=]/(9))/(f)-

o Zlz]/(x —a) = Z VYa € Z via 1st Isomorphism Theorem on ¢, : Z[x] — Z defined by
va(f(2)) = f(a).

o If ¢: R — R’ is an isomorphism, then R/(a) = R'/(y(a)).

Example 5.4.5. Identify R = Z[z]/(2? — 3,2z + 4). Let’s understand and simplify I = (2% —
3,22 +4), i.e. find a simpler set of generators for I. Note that 2(2? —3) + (2 —2)(2z +4) € I, i.e.
20 —6+4r +8—22% —dr =2¢€ I
Claim. (2° — 3,2z +4) = (2> - 3,2)

N _ N _
" "

1 g

Proof. Need to show 22 —3,2¢€ I and 22 —3,204+4 € I'. 22 -3 eI and € I as it’s a generator. We
already showed 2€ I. 20 +4=0-(22—-3)+ (v +2)-2e . Hence, [IC ', I'Cc ] = [=1. O

Alternative proof: Since 2 € I, we can write (v2 — 3,2z +4) = (22 — 3,22 +4,2) = (22 - 3,2). O
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So R = Z[x]/I = Z[x]/(2,2% - 3) = (Z[z]/(2))/(22 — 3) and Z[z]/(2) = Zs[x] (since ¢ : Z[z] —
Zs[z] defined by o(>]a;x') = Y. @;x is surjective and ker = {polynomials with even coefficients} =
(2)). Then R = Zy[z]/(z?+ 1) (since in Zy[z], 22 — 3 = 22 +1). Elements of R are f for f € Zs[z].
Say f = ap+a1z+---+a,z"™ where a; € {0,1} for each 7. In R, 22 + 1 = 0, since we’re quotienting

by (22 +1) = 22 = —1 =1 (identity in R)

Il
®
<
3
=]
8
+ + :
rN.

Q [}
AndB g
S Q
\ S~~———

8 8|

5.5 Product Rings

Definition 5.5.1 (Product rings). Given rings R and R’, the product ring R x R’ has underlying
set R x R’ and binary operations:

o (a,d’)+ (b,V) = (a+0bad +V)
o (a,d’)-(bV) = (ab,d'V’).
o identities for addition (Og,0g/) and (1g, 1x/) for multiplication.

Question. Given a ring, can I determine whether it’s isomorphic to a product ring?

5.5.1 Idempotents

Definition 5.5.2 (Idempotent element). An idempotent element is e € R such that ¢ = e.
Example 5.5.3. 02 = 0,12 = 1 are always idempotents. Zs x Zs has non-trivial idempotents:
(0,1),(1,0).

Remark.

o If e is idempotent, then so is ¢/ = 1 —e. Check: (¢/)2 = (1—¢€)? =1—-2e+e?=1—-2¢e+e=
l—e=¢. e =0.

o ee/ =0. Check: e/ =e(l—¢e)=e—e?=e—e=0.

o The principal ideal (e) generated by e is itself a ring with multiplicative identity e. (not a
subring of R). Check: every ideal is a ring except that it’s missing a multiplicative identity,
so check that e is a multiplicative identity for elements of (e): given b € (e),b = ae for some
a € R. Then eb = e(ae) = ae? = ae = b.
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Theorem 5.5.4. If e € R is idempotent, then R =~ (e) x (¢').

Proof. Define ¢ : R — (e) x (¢/) defined by ¢(a) = (ae,ae’). ¢ is a homomorphism: ¢(a + b) =
((a+b)e, (a+ b)e') = (ae + be,ae’ + be’) = (ae,ae’) + (be,be’) = ¢(a) + ¢(b). ¢(ab) = (abe,abe’) =
(abe?, ab(e')?) = ((ae)(be), (ac’(be")) = (ae,ac’)(be,be’) = (a)p(b). (1) = (le, le') = (e,€),
multiplicative identity in (e) x (€e’). ¢ is injective: if p(a) = (0,0), then ae = 0 and ae’ = 0 =
0=ae+ae =ale+e)=ale+(1—¢€)) =a = a=0. Hence, ker p = (0) and so ¢ is injective.
¢ is surjective: if (ae,be’) € (e) x (€’), then let ¢ = ae + be’. Then

o(c) = ((ae + be')e, (ae + be')e’)
= (ae® + bee', aee’ + b(e')?)
= (ae, be').

Hence, ¢ is bijective, and hence an isomorphism. ]

Remark. If ¢ = 1, then ¢ = 0 (or vice versa), so by the theorem, R =~ (1) x (0) = R x {0}
(isomorphism is r — (r,0)).

How to think about this? If R =~ R; x R, then we have idempotents e = (1,0) and ¢’ = (0,1)
and any element (a, b) of Ry x Ry can be written as ae+be’. Hence, R can be written as a non-trivial
product <= d non-trivial idempotents in R.

Example 5.5.5. R = Zg. e = 3 is idempotent, as 32 = 9 = 3. Thus, ¢ =1 -3 = =2 = 4 is
also idempotent and by the theorem, Zg =~ (3) x (4) =~ Zg x Zs3. Similarly, Z,,, =~ Z,, X Z, when
ged(m,n) =1 as rings.

5.6 Adjoining Elements

Example 5.6.1. Say we have Z and we want to "enlarge" Z to a larger ring that contains a multi-
plicative inverse to 2.

Idea: A multiplicative inverse a to 2 satisfies 2o = 1, i.e. 2aa—1 = 0, i.e. « is a root of 2z — 1.
Consider Z[z], let R = Z[x]/(2x — 1). Let a = T = x + (2 — 1) (coset associated to z). Then

20 —1=0 = 2-T—1=0,ie 2a0=11in R.
Remark. R = Z[3].
In general, if R is a ring, and « is a solution to fi(x) = 0, fa(x) = 0,..., fu(z) = 0 (where

fi € R[x]). Then R’ = R[z]/(f1, f2,-.., fn) is called a ring extension of R by adjoining « to R.
We write R’ = R[a].

Example 5.6.2. Want a ring extension of Z by an element « satisfying 2o = 6,6 = 15, i.e.
200 — 6 = 0,6 — 15 = 0. So ring extension is R = Z[z]|/(2x — 6,6z — 15). Then o = T € R is the
desired element. For example, if we have 6 — 2ac — 2 = 15 — 6 — 6. Then 2a = 3, but we also
have 2a =6 = 3=6in R = 3=01in R.

Example 5.6.3. Ring extension of Z by « satisfying 2o = 0, i.e. R = Z[z]/(2z). However,
Z|x]/(x) = Z. But in R, T # 0, but 2z = 0.

Example 5.6.4. If R is an extension of R by « satisfying o? = 1, then R ~ R x R. As an exercise,
check R[z]/(z?> —1) =R x R.
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Hence, it’s important to understand R[z]/(f) for f € R[z]. If f is monic, i.e. f = 2" +
|.

an—17"" 1 + - + ag. Let o denote a root of f, i.e. a =7 € R[z]/(f). Denote R[z]/(f) = R«

Then R[a] has a basis {L,a,a?,...,a" 1} over R. Why? if g = Y, ax2® € R[x ] then g = Y, @xz",

then g = >, a5T apz. If k > n, then 78 = 7" - 7" = oo = (—@,— 10" ! — -+ —Gla — @) aF ™
n

since f=0 = 2" 4ap_12" 14+ - +a =0 = o +a,a" !+ —i—ag—Osolvefora
Repeat until g has no powers of « larger than n — 1. (also need to check linear independence)
Question. If g, h € R[a], what is g - h?

Answer. Write gh = fq + r, for some ¢, € R[a] where r = 0 or degr < deg f. Then gh = fq +
F=T.

Example 5.6.5. Consider Zs, and adjoin a square root of 3. R = Zs[V/3] = Zs[z]/(22 — 3). Let
a = T € R. Then by above, 23 — 3 monic = {I,a} is a basis for R == elements of R are
{A+ Ba | A, B € Zs} and where o? = 3.

Claim. R is a field of order 25.

Proof. A+ 0a = A is a unit for all A # 0, since Zs is a field. So assume B # 0. Then (A +
Ba)(A — Ba) = A* —B°a? = A° — 3B°. We can think of this as being in Zs, and it’s invertible
if #0. If A —3B° = 0in Zs, then 3 = A°(B )2 = (AB ). But 3 is not a square in Zs, so
A -3B°#0 — (A+Ba)A-Ba)(A-3B)1=1 — A+ Baisauitin R — Risa
field. O

5.7 Fractions

Definition 5.7.1 (Fraction). Given a ring R, a fraction is ¢, for a,b € R,b # 0. Consider { as a.

7~£<:) — ay ¢ _ adtbc a ¢ _ ac
Let v ad = bc. Define § + ¢ = “572¢, ¢ - ¢ = 172

Problem: What if b,d # 0, but bd = 07 For example in Z4, 2-2 = 0, but 2 # 0.
Definition 5.7.2 (Zero-divisor). A zero-divisor is a € R such that ab = 0 for some b # 0.

Remark. 0 is always a zero-divisor unless R = {0}.

Definition 5.7.3 (Integral Domain). An integral domain or ID, is a ring R with no non-trivial
zero-divisors, i.e. ab=0 = a=0o0r b= 0.
5.7.1 Properties of Integral Domains

o IDs have cancellation law: if a # 0,ab = ac, then b = ¢. (since ab—ac =0 = a(b—c) =
0 = b—c=0 = b=c).

o If Ris an ID, then if f, g € R[x], then deg(fg) = deg f + degg.

Theorem 5.7.4. If R is an integral domain, and F' is the set of equivalence classes of fraction
in R, then F is a field with fractions addition/multiplication as given above, called the field of
fractions of R (or field of quotients).

Example 5.7.5. If R is an ID, then R[xz] is an integral domain. The field of fractions of R[xz] is
written R(x) = {f/g | f,g € R[z],g # 0}/ ~ called the ring of rational function over R.
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Example 5.7.6. Any field is an ID. If ab = 0,a # 0, then a " lab=a"'0 = b= 0.

Example 5.7.7. Any subfield of an ID is an ID: Q[a] € C is an ID, as C is a field, its field of
fractions is written Q(«).

Example 5.7.8. Z, is an ID when p is prime (also a field) but Z,, is not an ID if n is composite.

5.8 Maximal Ideals

Question. If R is any ring, and I < R is an ideal, under what condition is R/I an ID/field?

Definition 5.8.1 (Maximal Ideal). An ideal I < R is a maximal ideal if I # R and if I < J, then
J=1orJ=R.

Example 5.8.2. I = (z) € Z[z] is not maximal since (z) < (2,z) < Z[x].

Exercise 5.8.3. (2, z) is maximal in Z[z].

Example 5.8.4. ] = (z) < Q|z] is maximal. Why? If () < J < Q|z], then J is an ideal
in [z], and Q is a field, by the proposition, we have J = (f) for some f € Q[z]. Notice that
ze€(x)cJ = xze€(f) = g € Q[x] such that x = fg. Then degf = 0,degg = 1 or
degf=1,deg=0. If degf =0, then f = ¢ # 0 =unit = J = (f) = Q[z]. If deg f =1, then
f = ax + b for some a,b,c e Q and g = ¢, which implies that 1-z + 0 = (az + b)c = acx + bc =
ac = 1,bc =0 = b =0,ac =1. Hence, f = axr = fe () = (f) € (z). Therefore,
JcIl = I=J.

Proposition 5.8.5. R/ is a field <= I is a maximal ideal of R (or I = R).

Proof. R/I = {0} < I = R. So assume R/I # {0}. Consider homomorphism 7 : R — R/I
defined by 7(a) = a@. We know that R/I is a field <= only proper ideal of R/I is (0).

Claim. If J € R/I is an ideal, then 771(J) = {s € R | m(s) € J} is an ideal of R that contains
I =kerm.

Proof of claim. If s,t e 7= 1(J), then 7(s +t) = n(s) +n(t) e J = s+ten '(J). If se v 1(J),
then 7(—s) = —7(s) e J = —sen 1(J). lf se n~1(J),r € R, then 7(rs) = w(r)n(s) e ] =
rsen Y(J). Since 0 € Jkerm =7~ 1(0) € 7 1(J). But kerm =1, s0 I < 7 1(J). O

So if J € R/I is an ideal, then w—!(.J) is an ideal such that I < 7#=1(J) € R. 7 is surjective
= 7n(r 1(J)) = J.

If T is maximal, then 7= 1(J) is I or R. If 7=1(J) = I, then J = n(I) = (0. If 7=!(J) = R, then
J =m(R) = R/I. So R/I has only (0) and R/I as ideals, then R/I is a field.

Conversely, if R/I is a field, then consider I < J < R, then 7(J) # (0), and it’s an ideal in
R = 7(J) = R/I (since R/I is a field). Then J = 7~ (7(J)) = R. Hence, I is maximal. O

Example 5.8.6. (0) € F is a maximal ideal, when F' is a field.

5.9 Prime Ideals

Definition 5.9.1 (Prime ideal). An ideal I € R is a prime idealif abe I — aelorbel.
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Proposition 5.9.2. R/I is an integral domain <= I is a prime ideal in R.

Proof. If T is prime, consider @,b € R/I such that ab =0 = ab =0 = abe I. Why?
ab € ker(m : R — R/I) = I. [ is prime implies that a € I or b e I. Then a 0

R/I is an ID.

Conversely, if R/I is an ID, consider a,b € R such that abe I = ab = 0 in R/I, i.e. @b = 0.
Then R/I is an ID implies that @ = 0 or b = 0, which means that a € I or b € I. Hence, I is a
prime ideal. O

Question. When are principal ideals prime/maximal?

Definition 5.9.3 (Prime). An element p € R is prime if p is not a unit or 0 and if p | ab, then p | a
orp|b.

Definition 5.9.4 (Irreducible). An element a € R is irreducible if a is not a unit or 0 and if a = be,
then one of b, c is a unit, i.e. there is no non-trivial factorization of a where trivial means that

a = u(u~'a) where u is a unit).

Remark. What we normally call "prime" for integers is actually "irreducible."

Proposition 5.9.5. If R is a ring, I = (a),a # 0 is a unit, then I is a prime ideal <= a is a
prime element.

Proof. Consider b, c € R such that a | bc = bc = (a). (a) is prime implies that b € (a) or c € (a),
which means that a | b or a | ¢, which tells us that a is prime.

Conversely, consider b,c € R such that bc € (a) = a | bc. Then a being a prime means that
a | bor a| c, which implies that b € (a) or ¢ € (a). Then (a) is a prime ideal. O

Proposition 5.9.6. If R is an integral domain, I = (a) for some unit a # 0, then I being
maximal = a is irreducible.

Proof. 1f I is maximal, I = (a), then let a = bc for some b,c € R. Assume that b is not a unit,
we show that ¢ is a unit. @ is a multiple of b = a€ (b)) = (a) € (b)) = (a) < (b) € R.
b not being a unit = (b) # R. Then (a) being maximal = (a) = (b). Hence, b € (a) and
b = ad for some d € R. Soa =bc =adc = a—adc=0 = a(l —dc) =0. R begin ID and
a#0 = 1—dc=0 = 1 =dc, ie. cis a unit. ]

Remark. The converse is false. Consider R = Z[z] and @ = 2. Then 2 is irreducible in Z[z].

If 2 = fg, then f,g are both constant and one of them is a unit. But (2) is not maximal as
(2) € (2,x) < Z[x].

Exercise 5.9.7. If all ideals in R are principal, then a being irreducible = (a) is maximal.

5.9.1 Irreducible and Prime Elements

Example 5.9.8. R = Z[/-5] =~ Z[z]/(z? +5) = {A+ By/-5 | A,B € Z}. R is an ID since
R < C(2? 4 5) € Z[z] is a prime ideal, which implies that 22 + 5 is a prime element of Z[x].
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Claim. 6 € R is not irreducible.

Proof. 6 =2-3 = (1++/=5)(1—+/=5) and 2, 3,14 +/=5 are irreducible and hence not units. Why?
We find all units in R: note that |z|> = 2Z. In R = Z[+/=5], |a + by/—5|?> = a® + 5b* € Z.

Units in R: if @ € R is a unit, 3b € Rsuch that ab =1 = |ab]? = [12 =1 = |a|*|b]* =
1 = |a]> = |b*> = 1. Conversely, if |a|> = 1, then a-a@ = 1. If a = = + yy/—5, then
G=2x—y/—be€R = aisaunit. Soa€ Ris aunit < |a*> = 1.

In R=Z[V-5], |a? =1 = 2?+5y?> =1 where z,y € Z, so y = 0 and z = +1. So the only
units in R are +1. O

Claim. 2 is irreducible.

Proof. 1f 2 = ab for some a,b € R, we want to show that a is a unit or b is a unit. But 2 = ab <
1212 = |ab|? <= 4 = |a]?|b? = {|a|? |b]*} = {1,4} or {2,2}. For the first case, one of them
must be a unit. The second case is impossible since it has no solution for x,y € Z. Hence, 2 is
irreducible. O

Claim. 3 is irreducible.
Proof. Same proof as above. O
Claim. 1 + /-5 are irreducible.

Proof. If 1 £ /=5 = ab, then 6 = |1 + /=5|? = |a|?|b|?, we know |a|?, |b]? # 2,3, so |a|?, |b|> = 1,6
or 6,1. Hence, one must be a unit and so 1 + 4/—5 are irreducible. ]

Claim. 2,3,1 + 4/—5 are not prime in R.

Proof. 2|6 = (1 ++/=5)(1 —+/=5) but 241+ +/5. Why? If 1 + /=5 = 2a for some a € R, then
6 = |1 + /=5 = |2a|? = 4]|al?. But 6 = 4|a|? has no solution for |a|? € Z. Similarly, 311 + /=5,
but 3| (1 + v/—5)(1 — v/=5) = 6. O
Remark. Irreducible does not imply prime, even in an integral domain.

Example 5.9.9. R = Z4. 2 is prime. Why? 2|0 and 2 | 2. The only products giving 2 or 0 involve
a 2 or 0. But 2 is not irreducible. Why? 2 = 2.4 and 2,4 are not units or 0.

Remark. Prime does not imply irreducible in general.

Proposition 5.9.10. In an integral domain, prime = irreducible.

Proof. If p € R is prime, and R is an ID, let p = ab. Then p | ab. p being a prime = p | a or
p | b. WLOG, say p | a so a = pz for some z € Rp = ab = prb = p(1 —xb) = 0. Since p # 0, R
isanID = 1—2b=0 = zb=1 = b is a unit. Hence, p is irreducible. ]

46



Chapter 6

Factoring

6.1 Unique Factorization Domains

6.1.1 FEuclidean Domains

Definition 6.1.1 (Size function). Given a ring R, a size function is a function o : R\{0} — Nx.

Definition 6.1.2 (Euclidean domain). A Euclidean domain is an integral domain R with a size
function o such that the division algorithm works, i.e. if a,b € R,b # 0, then 3¢, € R such that
a = bg + r and either r = 0 or o(r) < o(b).

Example 6.1.3. R = Z[/—5] with o(x + y/=5) = 22 + 5y is NOT a Euclidean domain.

Proof. Suppose for contradiction that (R,0) isa ED. Let a = 1++/=5,b=2. If 1 ++/—5 = 2q +r,
we know that 211+ +/—=5,s07 #0 = o(r) < 0(2) = 4. o(r) = 2,3 are impossible and so
o(r) =1, ie. risaunit and so r = +1. Then 1 + /=5 = 2¢ £ 1. But neither /—5 nor 2 + /=5
is divisible by 2: ¢(2q) = 4|q|? but o(v/=5) = 5,0(2 ++/—5) =9 and 415,41 9. Hence no such q
exists and so (R, o) cannot be a ED. O
6.1.2 Principal Ideal Domain

Definition 6.1.4 (Principal ideal domain). A principal ideal domain (PID) is an integral domain

in which all ideals are principal.

Theorem 6.1.5. A Euclidean domain is a PID.

Theorem 6.1.6. In a PID, irreducible = prime.

Corollary 6.1.7. Z[+/—5] is not a ED with any size function o.

Definition 6.1.8 (Associate). An associate of an element a € R is b € R such that b = au for some
unit € R. a |band b|a = a,b are associates.

Remark. Not all PIDs are EDs.
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6.1.3 Unique Factorization Domain

Definition 6.1.9 (Unique factorization domain). An integral domain R is a unique factorization
domain if

e every a € R can be written as a finite product of irreducibles.

e ajaz---ay = biby--- by, where each a; and b; are irreducible, then n = m, and after reorder-
ing, a; = u;b; for some unit u; € R for each ¢ =1,...,n.

Example 6.1.10. Z[\/—5] is NOT a UFD, since 6 = 2-3 = (1++/—5)(1—+/—5) and 2 # u(1+£+/—5)
for any unit u € R.

Theorem 6.1.11. Every PID R is also a UFD.

Theorem 6.1.12. In a UFD, irreducible = prime.

6.1.4 Types of Rings
Fields ¢ EDs < PIDs ¢ UFDs < ID < Ring.

Example 6.1.13. Z[z] is a UFD that’s not a PID since (2,x) < Z[z] is not principal.
Example 6.1.14. Q is a field, so Q[z] is a ED, and thus a UFD.
Example 6.1.15. Z,, is a field, so Z,[z] is a UFD.
Definition 6.1.16 (Primitive). f(z) = Y.j_,arz”® € Z[x] is primitive if

e deg f > 0, i.e. not constant

o ged(ag, ... ap) =1

e a, >0
Remark. If deg f > 0, a, > 0, then f is primitive <= p{ f for any prime integer p <= VU, (f) #
0 for any prime p, where ¥, : Z[z] — Z,[x] is defined by 3} azz* — Y a; (mod p)z*.
Proposition 6.1.17.

(i) n € Z[x] is prime in Z[x] <= n € Z is prime.

(ii) f, g are primitive = fg primitive.

Lemma 6.1.18. Every non-constant f € Q[z] can be written uniquely as f = cffy where
cy € Qand fy € Z[xz] < Q[x] is primitive.
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Theorem 6.1.19. If f, g € Z[z] < Q[z] and f, g have a common non-constant factor in Q[z],
then they have a common non-constant factor in Z[z].

Theorem 6.1.20. Z[x] is a UFD.

Remark. Z[x]isa UFD, and each f € Z[z], f # +1 can be uniquely written as f = +p1p2---pmfifa--

where p; € Z are positive primes and f; € Z[x] are primitives.

Remark. Similarly R is a UFD = R][z] is a UFD.

Corollary 6.1.21. R[z1,...,x,] is a UFD.

6.2 Factoring in Z|z]

Suppose f(x) = apnz™ + -+ + ag,an # 0. Then we know that (z —a) | f < f(a) = 0, where
a € Z. More generally, b1, +b+ 0| f < f(—=bo/b1) =0 = b1 | a, and by | ap.

Proposition 6.2.1. If f = a,2™ + -+ 4+ ag € Z[z],a, # 0 and p is a prime such that p 1 a,.
Then W, (f) is irreducible in Z,[z] = f is irreducible in Q[x].

Fact. If

a,b # 0 are not squares in Z,, then ab is a square in Zp, so if 2 and 3 are not squares in
Zyp. then 6 =2

-3 is.
6.3 Eisenstein Criterion

Here’s a rule to check if f € Z[z] is irreducible in Q[z].

Theorem 6.3.1 (Eisenstein Criterion). If f = ap2™ +---+ag € Z[z],a,, # 0 and p € Z is a prime
such that

« ptan
e plag,...,an-1
* p*tao,
then f € Q[z] is irreducible.

6.3.1 Gaussian Primes

Question. What are the prime elements of Z[i]
Answer. Z[i] is a Euclidean Domain, so primes = irreducibles.

Example 6.3.2. 2 € Z is prime but 2 = (1 4 ¢)(1 — ¢) € Z[i] is not prime.
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Remark. If n € Z is composite, then € Z[i] is not prime.

Lemma 6.3.3. If p € Z is prime, then p € Z[i] is prime <= 2% +1 is irreducible in Z,[r] <
—1 is not a square mod p.

6.3.2 Non-integer Primes

o a-+biprime <= =(a+ bi),+i(a+ bi) prime, so +p, £pi are prime <= p =3 (mod 4) for
prime p.

o a+bielZli] < a—bieZ[i] prime.

o a+bieZ[i] prime < a? + b? € Z is a prime integer.
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Chapter 7

Fields

Definition 7.0.1 (Field). A field is a ring in which all non-zero elements are units.

Definition 7.0.2 (Field extension). If F' € K, and F, K are fields, then K is field extension of F
denoted by K/F.

Definition 7.0.3 (Finite field). If |F| < oo, then F' is a finite field.
Example 7.0.4. 7Z, is a finite field where p is prime.

Example 7.0.5. F C F(z) = {% | f,gF[x],g # 0}/ ~ is called a functions field.

Definition 7.0.6 (Algebraic/Transcendental). If K/F is a field extension, and o € K, then « is
algebraic over F if « is the root of a polynomial in F[z]. Otherwise, it’s transcendental over F.
Example 7.0.7. %, v/2,4/3,i are algebraic over Q since they are roots to z — %, 2 —2,22 -3, 22+ 1.
Example 7.0.8. 7 is transcendental over QQ but is algebraic over R.

Another way to think about algebraic/transcendental is to consider the evaluation map ¢, : Flx] —
K defined by f(z) — f(a). a € K is algebraic over F' <= ¢, is NOT injective.

Remark. Image of p,i s F[a], which is the ring of polynomials in o with coefficients in F.
Remark. If « is transcendental over F', then ¢, is injective, so F[z] = im(p,) = F[a].

Definition 7.0.9 (Irreducible polynomial). If K/F is a field extension, and « € K is algebraic over
F, then the unique monic irreducible polynomial f € F[x] with f(a) = 0 is called the irreducible
polynomial of « over F'.

Equivalence of "f is irreducible":
o (f) is a maximal ideal in F[x].
o f has minimal degree over all polynomials g with g(a) = 0.

Definition 7.0.10 (Degree). The degree of « over F' is the degree of its irreducible polynomial.
Example 7.0.11. deg+/2 over Q is 2.
Example 7.0.12. o = +/i has degree 4 over Q (z* + 1), but degree 2 over Q[i] (22 — i).

Example 7.0.13. dega =1 over FF <= « € F since dega =1 <= x —a € F[z] has « as a root
for some a e F < ae€F.

Definition 7.0.14 (Adjoin). F(«) is the smallest subfield of K containing F' and . We call it F’
adjoin «.
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Remark. F'(«) is the field of fractions of F[«].

Theorem 7.0.15. If K/F is a field extension, o € K is algebraic over F' with minimal polyno-
mial f € F[z], then F[z]/(f) = F[a], and hence F|a]| = F(«) is a field.

Recall that

Theorem 7.0.16. If « is algebraic over F, f is the minimal polynomial of o over F' with
deg f = n, then {1,a,a?,...,a" '} is a basis for F(a) as a vector space over F, i.e. F(a) =
{Ao—I-AlOé—l-"-—l-An,lOén_l |AZ€F,’L :O,...,n—l}.

Remark. If |F| < oo, then |F ()| = |F|", since there are |F| choices for each coefficients A;.

Proposition 7.0.17. If F is a field, K/F and L/F are field extensions, « € K, 3 € L are both
algebraic over F', then there exists isomorphism ¢ : F(a) — F(f) such that p(a) = § and
p(a) = a for all a € FF <= the minimal polynomials of a, 8 over F are equal.

Definition 7.0.18 (Isomorphic extensions). If F' is a field, K/F, L/F are two extensions, then they
are isomorphic extensions if 3 isomorphism ¢ : K — L such that ¢(a) = « for all a € F. We
call ¢ a F-isomorphism.

7.1 Degrees of Field Extensions

Definition 7.1.1. The dimension of V' over F'is dimpV = |S|, where S is any basis.

Definition 7.1.2 (Degree). The degree of a field extension K /F is the dimension of K as a vector
space over F, i.e. dimpK, denoted by [K : F].

Example 7.1.3. F = Q, K = Q(+/2) = Q[v2]. The basis for K over F is {1,/2} (since K =
Fl[z]/(2? —2), dega® —2 =2) = [(+/2):Q] =2.
Fact. If F' is any field, K = F[x]/(f), where f is irreducible, deg f = n, then [K : F'] = n.

Proposition 7.1.4. [K : F]=1 — K =F.

Proposition 7.1.5. If charF # 2, and K/F is a field extension, then [K : F] =2 < K =
F(8), where 62> = d € F, and d has no square root in F.

Theorem 7.1.6. If « is algebraic over F', then [F'(a) : F] < co0. If a is transcendental over F,
the [F(a) : F] = o0,

Theorem 7.1.7 (Tower Law). If F e K < L are fields, then [L: F| = [L: K| - [K : F]
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Corollary 7.1.8. If K/F is a field extension, and a € K and [K : F] = n, then [F(«) : F] < n.

7.1.1 Algebraic Extensions

Definition 7.1.9 (Algebraic). A field extension K /F is algebraic over F if every element o € K is
algebraic over F'.

7.2 Straightedge and Compass Constructions

Definition 7.2.1 (Constructible). A point a € C is constructible if it can be constructed with
straightedge and compass constructions in a finite number of steps.

Example 7.2.2. —1 € C is constructible.

Theorem 7.2.3. The set of constructible numbers forms a subfield of C.

Corollary 7.2.4. The field of constructible numbers is closed under taking ) ies if a € field,
then so is \/a.

Theorem 7.2.5. If a € C is constructible, then [Q(a) : Q] = 2¥ for some k > 0.

Remark. The converse is not true.

Corollary 7.2.6. {/2 is NOT constructible.

Corollary 7.2.7. It is not possible to double the cube via straightedge and compass, i.e., given
a cube of volume V, it is not possible to construct a cube of volume 2V.

Corollary 7.2.8. There is no trisection algorithm with straightedge and compass.

Remark. But bisection of angles is possible.
Theorem 7.2.9. o € C is constructible <= 3 sequence of extensions Q = Fpy € F; € ---C F,

such that « € F,, and [F; : F;_1] =2fori=1,...,n.

Theorem 7.2.10. o € C is constructible <= [K : Q] = 2™ for some m where K =
Q(aq,9,...,ay), and aq,. ..,y are the roots of the minal polynomial of o over Q.
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Theorem 7.2.11 (Guass-Wantzel). A regular n-gon is constructible <= n = 2*p;ps---p, >3
where k > 0 and p; are distinct Fermat primes (p; = 22” + 1, for some m and prime).

Let 8, = €27/™ (nth root of unity).

Lemma 7.2.12. If p prime, [Q(5pe) : Q] = p*~L(p — 1).

Lemma 7.2.13. ¢, is constructible <= p=2,a>2,orp = 22" +1,a=1.

7.3 Finite Fields

Let p be a prime, ¢ = p¥,k > 1. Then a field of order q is F, = Z,[x]/(f), where f € Z,[z] is
an irreducible polynomial of degree k. Since the quotient ring has basis {1, Q... ,ozk_l} over Zy
(where a = T is a root of f), the quotient ring is {Ao + A+ AP A e Zp}. Hence,
|Fq| = pk =4q.

Example 7.3.1. Fo5 = Zs[z]/(2? — 3).

Definition 7.3.2 (Splitting fields). If f € F[z] and K /F is a field extension, then f splits completely
in K if f € K[z] factors into a product of linear polynomials of degree 1.

Theorem 7.3.3. If F'is a field, f € F[x] is a monic polynomial ,deg f > 0, then 3 field extension
K /F in which f splits completely.

Theorem 7.3.4. Let p be prime, g = p"™*,n > 1.
(i) If K is a field of order g, then 27 —x € K[z] splits completely in K, with ¢ distinct roots.
(ii) If |K| = g, then the multiplicative group K\{0} is cyclic, i.e. = (Zg—1,+).

)

)
(iii) 3 field K or order ¢ and all such fields are isomorphic.
(iv) A field of order g contains a subfield of order p <= m | n.
)

(v) The irreducible factors of ¢ — z € Z,|z] are all the irreducible polynomials in Z,|z]
whose degree divides n.

Remark. If |K| = ¢ = p", we can assume K = Z,[z]/(f) and f has degree n and is irreducible.

Lemma 7.3.5. f € F[z] has a multiple root at « < f(«) =0 and f'(a) = 0.
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7.4 Simple and Separable Extensions

Definition 7.4.1 (Simple extension). If F' is a field, K/F' a field extension, then K is a simple
extension of F'if Ja € K such that K = F(a).

Example 7.4.2. K = Q(1/2,4/3), F = Q. Then K is simple as K = Q(v/2 + v/3).

Question. How to check if K/F is simple?

Answer. Via separable extension.

Definition 7.4.3 (Separable). A polynomial f € F[x] is separable if it has distinct roots in any
field in which it splits completely.

Example 7.4.4. 22 — 2 € Z3[z] is irreducible as it has no root in Z3 and (22 —2)" = 2z # 0, so its
separable.

Example 7.4.5. 22 —t € (Z(t))[z] is irreducible as ¢ has no square root in Zs(t). But (2? —t)' =
22 =0as 2 =0 in Zy. So 2? —t is not separable.

In general f € F[z] is NOT separable < charF' = p > 0 and f = g(aP) for some g € F[z].

Definition 7.4.6 (Separable extension). An algebraic field extension K /F' is a separable extension
if Va € K, the minimal polynomial of a over F' is separable.

Example 7.4.7. If charF' = 0, then all algebraic K/F are separable.
Theorem 7.4.8. If K/F is a finite-degree separable field extension, and |F| = oo, then K is a
simple extension, i.e. @ € K such taht K = F(«). « is primitive.

Corollary 7.4.9. If F = Q, [K : F] < o0, then K is a simple extension of Q.

Theorem 7.4.10. If K/F is a finite-degree extension, then K is a simple extension of F' <=
there are finitely many fields L with FIL € K.
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