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1

Introduction

1.1 Standard Form of Optimization

p∗ = minx f0(x)
subject to: fi(x) ≤ 0, i = 1, . . . ,m

where

• vector x ∈ Rn is the decision variable;

• f0 : Rn → R is the objective function, or cost;

• fi : Rn → R, i = 1, . . . ,m, represent the constraints;

• p∗ is the optimal value.

1.1.1 Least-squares Regression

Figure 1.1: Least-squares regression.

min
x

m∑
i=1

(
yi − x>z(i)

)2
where

• z(i) ∈ Rn, i = 1, . . . , n are data points;

• y ∈ Rm is a response vector;
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• x>z is the scalar product z1x1 + . . .+ znxn between the two vectors x, z ∈ Rn.

• Many variants exist.

• Once x is found, allows to predict the output ŷ corresponding to a new data point z : ŷ = x>z.

1.1.2 Linear Classification

Figure 1.2: Linear classification.

Support Vector Machine (SVM):

min
x,b

m∑
i=1

max
(

0, 1− yi
(
x>z(i) + b

))
where

• 0z(i) ∈ Rn, i = 1, . . . , n are data points;

• y ∈ {−1, 1}m is a binary response vector;

• x>z + b = 0 defines a separating hyperplane in data space.

• Once x, n are found, we can predict the binary output ŷ corresponding to a new data point z:
ŷ = sign

(
xTz + b

)
.

• Very useful for classifying data.
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1.1.3 Nomenclature

Figure 1.3: A toy optimization problem.

minx 0.9x21 − 0.4x1x2 − 0.6x22 − 6.4x1 − 0.8x2

s.t. −1 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 3.

• Feasible set: a set of possible values that satisfy the constraints. (light blue region)

• Unconstrained minimizer: x0.

• Optimal Point: x∗.

• Level sets of objective functions: {x | g(x) = c} for some c. (red lines)

• Sub-level sets: {x | g(x) ≤ c} for some c. (red region)

1.1.4 Problems with equality constraints

Sometimes the problem may have equality constraints, along with inequality ones:

p∗ = minx f0(x)
s.t. fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

where hi’s are given functions.
However, we can always reduce it to a standard form with inequality constraints only, using the following
method:

hi(x) = 0 =⇒ hi(x) ≤ 0, hi(x) ≥ 0.

1.1.5 Problems with set constraints

Sometimes, the constraints of the problem are described abstractly via a set-membership condition of
the form x ∈ X , for some subset X of Rn.

The corresponding notation is
p∗ = min

x∈X
f0(x),
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or, equivalently,
p∗ = min

x
f0(x)

s.t. x ∈ X .

1.1.6 Problems in maximization form

Some optimization problems come in the form of maximization (instead of minimization) of an objective
function, i.e.,

p∗ = max
x∈X

g0(x).

We can recast it as a standard minimization form using the following fact:

max
x∈X

g0(x) = −min
x∈X
−g0(x).

Thus we can reformulate the problem as the following:

−p∗ = min
x∈X

f0(x),

where f0 = −g0.

1.1.7 Feasible Set

The feasible set of a problem is defined as

X = {x ∈ Rn | fi(x) ≤ 0, i = 1, . . . ,m} .

Definition 1.1.1 (Infeasible). A problem is infeasible if the feasible set is empty, i.e., the constraints
cannot be satisfied simultaneously.

Remark. We take the convention that the optimal value is p∗ = +∞ for infeasible minimization
problems, while p∗ = −∞ for infeasible maximization problems.

1.1.8 Feasibility Problems

Sometimes an objective function is not provided. This means that we are just interested in finding a
feasible point, or determine that the problem is infeasible.

In this case, we set f0 to be a constant to reflect the fact that we are indifferent to the choice of
a point x, as long as it is feasible.

1.1.9 Solution to an optimization problem

The optimal value p∗ is attained if there exists a feasible x∗ such that

f0(x
∗) = p∗.

7
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1.1.9.1 Optimal Set

Definition 1.1.2 (Optimal Set). The optimal set is defined as

XOPT = {x ∈ Rn | f0(x) = p∗, f(x) ≤ 0, i = 1, . . . ,m},

or equivalently,
XOPT = arg min

x∈X
f0(x).

A point x is optimal if x ∈ XOPT.

1.1.9.2 Empty Optimal Set

The optimal set can be empty for two reasons:

1. The problem is infeasible.

2. The optimal value is only reached in the limit.

• For example, the problem
p∗ = min

x
e−x

has no optimal points because p∗ = 0 is only reached in the limit for x→ +∞.

• Another example is when constraints include strict inequalities:

p∗ = min
x
x s.t 0 < x ≤ 1.

In this case, p∗ = 0 but cannot be attained by any x that satisfies the constraints.

1.1.9.3 Sub-optimality

Definition 1.1.3 (Suboptimal). We say that a point x is ε-suboptimal for a problem if it is feasible,
and satisfies

p∗ ≤ f0(x) ≤ p∗ + ε.

In other words, x is ε-close to p∗.

1.1.9.4 Local vs. global optimal points

Definition 1.1.4 (Locally optimal). A point z is locally optimal if there exist a value R > 0 such
that z is optimal for problem

min
x
f0(x) s.t. fi(x) ≤ 0, i = 1, . . . ,m, |xi − zi| ≤ R, i = 1, . . . , n.

1.1.10 Problem Transformations

Sometimes we can cast a problem in a tractable formulation. For example, consider

max
x

x1x
3
2x3 s.t. xi ≥ 0, i = 1, 2, 3, x1x2 ≤ 2, x22x3 ≤ 1

8
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can be transformed into the following by taking the log, in terms of zi = log xi:

max
z

z1 + 3z2 + z3 s.t. z1 + z2 ≤ log 2, 2z2 + z3 ≤ 0.

Now the objective function and the constraints are all linear.

1.2 Convex Problems

Convex optimization problems are problems where the objective and constraint functions have the special
property of convexity.

Figure 1.4: Left. Convex function. Right. Non-convex function.

For a convex function, any local minimum is global.

1.2.1 Special convex models

Convex optimization problems with special structure:

• Least-Squares (LS)

• Linear Programs (LP)

• Convex Quadratic Programs (QP)

• Geometric Programs (GP)

• Second-order Cone Programs (SOCP)

• Semi-definite Programs (SDP).

1.3 Non-convex Problems

• Boolean/integer optimization: some variables are constrained to be Boolean or integers. Con-
vex optimization can be used for getting good approximations.

• Cardinality-constrained problems: we seek to bound the number of non-zero elements in a
vector variable. Convex optimization can be used for getting good approximations.

• Non-linear programming: usually non-convex problems with differentiable objective and func-
tions. Algorithms provide only local minima.

Remark. Most non-convex problems are hard.
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Vectors and Functions

2.1 Basics

Definition 2.1.1 (Vector). A vector is a collection of numbers, arranged in a column or a row,
representing the coordinates of a point in n-dimensional space. We write vectors in column format:

x =


x1
x2
...
xn

 ,
where each element xi is the i-th component of vector x and n is the dimension of x. If x is a
real vector, then we write x ∈ Rn. If x is a complex vector, then we write x ∈ Cn.

Definition 2.1.2 (Transpose). The transpose of a vector x is defined as

x> =
[
x1 x2 · · · xn

]
and the transpose of the transpose of x is itself, i.e., x>> = x.

2.2 Vector Spaces

Definition 2.2.1 (Vector Space). A vector space V is a set of vectors on which two operations:
vector addition and scalar multiplication, are defined.

2.2.1 Subspaces and Span

10
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Definition 2.2.2 (Subspace). A nonempty subset S of a vector space V is a subspace of V if, for
x,y ∈ S and any scalars α, β ∈ R,

αx+ βy ∈ S.

In other words, S is closed under addition and scalar multiplication.

Definition 2.2.3 (Linear Combination). A linear combination of a set of vectors S = {x(1), . . . ,x(m)}
in a vector space X is a vector

x =
m∑
i=1

αx(i),

where each αi is a given scalar.

Definition 2.2.4 (Span). The span of a set of vectors S = {x(1), . . . ,x(m)} in a vector space X
is the set of all vectors that is a linear combination of that set of vectors

span(S) =

{
x | ∃α1, . . . , αm s.t. x =

m∑
i=1

αix
(i)

}
.

Definition 2.2.5 (Direct Sum). Given two subspaces X ,Y ⊆ Rn, the direct sum of X ,Y, denoted
by X ⊕ Y, is the set of vectors of the form x+ y, where x ∈ X ,y ∈ Y. The direct sum is itself a
subspace.

2.2.2 Bases and Dimensions

Definition 2.2.6 (Linearly Independent). A set of vectors x(1), . . . ,x(m) in a vector space X is
linearly independent if

m∑
i=1

αix
(i) = 0 =⇒ α1 = . . . = αn = 0.

Definition 2.2.7 (Basis). Given a subspace of S of a vector space X , a basis of S is a set B of
vectors of minimal cardinality, such that span(B) = S.

Definition 2.2.8 (Dimension). The dimension of a subspace is the cardinality of a basis of that
subspace.
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If we have a basis {x(1), . . . ,x(d)} for a subspace S, then any element in the subspace can be expressed
as a linear combination of the elements in the basis. That is, any x ∈ S can be written as

x =

d∑
i=1

αix
(i),

for some scalars αi.

2.2.3 Affine Sets

Definition 2.2.9 (Affine Set). An affine set is a set of the form

A =
{
x ∈ X | x = v + x(0),v ∈ V

}
where x(0) is a given point and V is a given subspace of X . Subspaces are just affine spaces
containing the origin.

Geometric interpretation: An affine set is a flat plane passing through x(0).

The dimension of an affine set A is defined as the dimension of its generating subspace V.

2.2.4 Euclidean Length

Definition 2.2.10 (Euclidean Length). The Euclidean length of a vector x ∈ Rn is defined as

‖x‖2
.
=

√√√√ n∑
i=1

x2i .

2.2.5 Norms

Definition 2.2.11 (Norm). A norm on a vector space X is a real-valued function with special
properties that maps any element x ∈ X into a real number ‖x‖.

Definition 2.2.12. A function from X to R is a norm, if

• ∀x ∈ X , ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0;

• ∀x,y ∈ X , ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality);

• ∀x ∈ X , ‖αx‖ = |α|‖x‖ for any scalar α.

12
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Definition 2.2.13 (`p norms). `p norms are defined as

‖x‖p
.
=

(
n∑
i=1

|xi|p
)1/p

1 ≤ p <∞.

For p = 2, we have the Euclidean length

‖x‖2
.
=

√√√√ n∑
i=1

x2i ,

or p = 1 we get the sum-of-absolute-values length

‖x‖1
.
=

n∑
i=1

|xi|.

The limit case p =∞ defines the `∞ norm (max absolute value norm, or Chebyshev norm)

‖x‖∞
.
= max

i=1,...,n
|xi|.

The cardinality of a vector x is called the `0 (pseudo) norm and denoted by ‖x‖0.

2.3 Inner Product

Definition 2.3.1 (Inner Product). An inner product on a real vector space X is a real-valued
function which maps any pair of elements x,y ∈ X into a scalar denoted as 〈x,y〉. It satisfies the
following axioms: for any x,y, z ∈ X and scalar α

(i) 〈x,x〉 ≥ 0;

(ii) 〈x,x〉 = 0 if and only if x = 0;

(iii) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉;

(iv) 〈αx,y〉 = α 〈x,y〉;

(v) 〈x,y〉 = 〈y, z〉.

Definition 2.3.2 (Standard Inner Product). The standard inner product, also called the dot
product is defined as

〈x,y〉 = x>y =
n∑
i=1

xiyi.

An inner product naturally induces an associated norm: ‖x‖ =
√
〈x,x〉.
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2.3.1 Angle between vectors

The angle between x and y is defined via the relation

cos θ =
x>y

‖x‖2‖y‖2
.

There is a right angle between x and y when x>y = 0, i.e., x and y are orthogonal.
When θ = 0◦, or ±180◦, then y = αx for some scalar α, i.e. x and y are parallel. Then |x>y|
achieves its maximum value |α|‖x‖22.

2.3.2 Cauchy-Schwartz and Hölder Inequality

Theorem 2.3.3 (Cauchy-Schwartz’s Inequality). For any vectors x,y ∈ Rn, it holds that

| 〈x,y〉 | = |x>y| ≤ ‖x‖2‖y‖2,

Proof. Note that | cos θ| ≤ 1, then using the angle equation, we have

| cos θ| = |x>y|
‖x‖2‖y‖2

≤ 1 =⇒ |x>y| ≤ ‖x‖2‖y‖2.

Theorem 2.3.4 (Hölder’s Inequality). For any vectors x,y ∈ Rn and for any p, q ≥ 1 such that
1/p+ 1/q = 1, it holds that

| 〈x,y〉 | = |x>y| ≤
n∑
i=1

|xiyi| ≤ ‖x‖p‖y‖q.

2.3.3 Maximization of inner product over norm balls

Given a nonzero vector y ∈ Rn, we want to find some vector x ∈ Bp (the unit ball in `p norm) that
maximizes the inner product x>y, i.e., we want to solve the following:

max
‖x‖p≤1

x>y.

If the level set α = 0, then we are solving for

x>y = 0,

which are the set of vectors that are on a line that is orthogonal to y and passes through the origin.
However, if we have 6= 0, then we have

x>y = α =⇒ x0 = α
y

‖y‖p
.

Note that x0 is parallel to y. Then we can rewrite the equation as

y>(x− x0) = 0.

Geometrically, x − x0 represents the vectors on the that are shifted α away (towards y if α > 0 and
away from y otherwise) and are orthogonal to y.

14
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Question. What is the distance (margin) between the two separating hyperplanes w>x + b = 1 and
w>x+ b = −1?

Answer. 2
‖w‖2 . (why?)

2.4 Orthogonality and Orthonormality

2.4.1 Orthogonal Vectors

Definition 2.4.1 (Orthogonal). Two vectors x,y in an inner product space X are orthogonal if
〈x,y〉 = 0, i.e., x ⊥ y.

Definition 2.4.2 (Mutually Orthogonal). Nonzero vectors x(1), . . . ,x(d) are said to be mutually
orthogonal if

〈
x(i),x(j)

〉
= 0 whenever i 6= j. In other words, each vector is orthogonal to all

other vectors in the collection.

Proposition 3. Mutually orthogonal vectors are linearly independent.

Proof. Suppose for the sake of contradiction that x(1), . . . ,x(d) are orthogonal but linearly dependent
vectors. Then this implies that there exist scalars α1 . . . , αd that are not all identically zero, such that

d∑
i=1

αix
(i) = 0.

Taking the linear product of both sides of this equation with x(j) for j = 1, . . . , d, we have〈
d∑
i=1

αix
(i),x(j)

〉
= 0.

Since 〈
d∑
i=1

αix
(i),x(j)

〉
= 0,

this means that αi = 0 for all i = 1, . . . , d, hence a contradiction.

Definition 2.4.4 (Orthonormal). A collection of vectors S =
{
x(1), . . . ,x(d)

}
is orthonormal if,

for i, j = 1, . . . , d 〈
x(i),x(j)

〉
=

{
0 if i 6= j;
1 if i = j,

i.e., S is orthonormal if every element has unit norm, and all elements are orthogonal to each
other. A collection of orthonormal vectors S forms an orthonormal basis for the span of S.
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Figure 2.1: Orthogonal complement of S.

2.4.2 Orthogoanl Complement

Definition 2.4.5 (Orthogonal Complement). The set of vectors in X that are orthogonal to S is
called the orthogonal complement of S, denoted by S⊥.

Theorem 2.4.6 (Orthogonal Decomposition). If S is a subspace of an inner product space X , then
any vector x ∈ X can be written in an unique way as the sum of an element in S and one in the
orthogonal complement S⊥:

X = S ⊕ S⊥

for any subspace S ⊆ X .

Proof.

2.4.3 Projections

Definition 2.4.7 (Projection). Given a vector x in an inner product space X and a closed set
S ⊆ X , the projection of x onto S, denoted as ΠS(x), is defined as the point in S at minimal
distance from x:

ΠS(x) = arg min
y∈S
‖y − x‖,

called Euclidean projection.

Theorem 2.4.8 (Projection Theorem). Let X be an inner product space, let x be a given element
in X , and let S be a subspace of X . Then, there exists a unique vector x∗ ∈ S which is solution
to the problem

min
y∈S
‖y − x‖

Moreover, a necessary and sufficient condition for x∗ being the optimal solution for this problem
is that

x∗ ∈ S, (x− x∗) ⊥ S.

16
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Figure 2.2: Projection onto a subspace.

Proof.

Theorem 2.4.9 (Projection on affine set). Let X be an inner product space, let x be a given
element in X , and let A = x(0) + S be the affine set obtained by translating a given subspace S
by a given vector x(0). Then, there exists a unique vector x∗ ∈ A which is solution to the problem

min
y∈A
‖y − x‖

Moreover, a necessary and sufficient condition for x∗ to be the optimal solution for this problem is
that

x∗ ∈ A, (x− x∗) ⊥ S.

Figure 2.3: Projection on affine set.

Proof.

17
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2.4.3.1 Euclidean projection of a point onto a line

Figure 2.4: Euclidean projection of a point onto a line.

Let p ∈ Rn be a given point. We want to compute the Euclidean projection p∗ of p onto a line
L = {x0 + span(u)}, where ‖u‖2 = 1:

p∗ = arg min
x∈L
‖x− p‖2.

Since any point x ∈ L can be written as x = x0 + v, for some v ∈ span(u), the problem is equivalent
to finding a value v∗ such that

v∗ = arg min
v∈span(u)

‖v − (p− x0)‖2.

2.4.3.2 Euclidean projection of a point onto an hyperplane

A hyperplane is an affine set defined as

H =
{
z ∈ Rn | a>z = b

}
where a 6= 0 is called a normal direction of the hyperplane, since for any two vectors z1, z2 ∈ H it
holds that (z1 − z2) ⊥ a.

Our goal is that given p ∈ Rn we want to determine the Euclidean projection p∗ of p onto H.

The projection theorem requires p − p∗ to be orthogonal to H. Since a is a direction orthogonal
to H, the condition (p− p∗) ⊥ H is equivalent to saying that p− p∗ = αa, for some α ∈ R.

To find α, consider that p∗ ∈ H, thus a>p∗ = b, then consider the optimality condition

p− p∗ = αa

and multiply it on the left by a>, obtaining

a>p− b = α‖a‖2

whereby

α =
a>p− b
‖a‖22

18
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and

p∗ = p− a
>p− b
‖a‖22

a.

The distance from p to H is

‖p− p∗‖2 = |α| · ‖a‖2 =

∣∣a>p− b∣∣
‖a‖2

.

2.4.3.3 Projection on a vector span

Suppose we have a basis for a subspace S ⊆ X , that is

S = span
(
x(1), . . . ,x(d)

)
.

Given x ∈ X , the Projection Theorem states that the unique projection x∗ of x onto S is characterized
by (x− x∗) ⊥ S.

Since x∗ ∈ S, we can write x∗ as some (unknown) linear combination of the elements in the basis
of S, that is

x∗ =
d∑
i=1

αix
(i)

Then (x− x∗) ⊥ S ⇔
〈
x− x∗,x(k)

〉
= 0, k = 1, . . . , d :

d∑
i=1

αi

〈
x(k),x(i)

〉
=
〈
x(k),x

〉
, k = 1, . . . , d

Solving this system of linear equations (Gram equations) provides the coefficients α, and hence the
desired x∗.

2.5 Functions and Maps

Definition 2.5.1 (Function). A function takes a vector argument in Rn, and returns a unique
value in R. We write

f : Rn → R.

Definition 2.5.2 (Domain). The domain of a function f, denoted domf, is defined as the set of
points where the function is finite.

Definition 2.5.3 (Map). Maps are functions that return a vector of values. We write

f : Rn → Rm.

19



EECS 127: Convex Optimization Kelvin Lee

2.5.1 Sets related to functions

Definition 2.5.4 (Graph). The graph of f is the set of input-output pairs that f can attain, that
is:

f =
{

(x, f(x)) ∈ Rn+1 | x ∈ Rn
}

Definition 2.5.5 (Epigraph). The epigraph, denoted f, describes the set of input-output pairs
that f can achieve, as well as anything above:

f =
{

(x, t) ∈ Rn+1 | x ∈ Rn, t ≥ f(x)
}
.

Definition 2.5.6 (Level Set). A level set (or contour line) is the set of points that achieve exactly
some value for the function f . For t ∈ R, the t-level set of the function f is defined as

Cf (t) = {x ∈ Rn | f(x) = t} .

Definition 2.5.7 (t-sublevel set). The t-sublevel set of f is the set of points that achieve at most
a certain value for f :

Lf (t) = {x ∈ Rn | f(x) ≤ t} .

2.5.2 Linear and Affine Functions

Definition 2.5.8 (Linear). A function f : Rn → R is linear if and only if

• ∀x ∈ Rn, α ∈ R, f(αx) = αf(x);

• ∀x1,x2 ∈ Rn, f(x1 + x2) = f(x1) + f(x2).

Definition 2.5.9 (Affine). A function f is affine if and only if the function f̃(x) = f(x)− f(0) is
linear (affine = linear + constant). In addition, f is affine if and only if it can be expressed as

f(x) = a>x+ b,

for some unique pair (a, b) where a ∈ Rn and b ∈ R.

For any affine function f , we can obtain a and b as follows:

b = f(0),

ai = f(ei)− b, for i = 1, . . . , n.
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2.6 Hyperplanes and Halfspaces

Definition 2.6.1 (Hyperplane). A hyperplane in Rn is a set of the form

H =
{
x ∈ Rn | a>x = b

}
,

where a ∈ Rn,a 6= 0, and b ∈ R are given.

Figure 2.5: Hyperplane.

Definition 2.6.2 (Halfspace). A hyperplane H separates the whole space in two regions called
halfspaces (H− is a closed halfspace, H is an open halfspace).

H− =
{
x | a>x ≤ b

}
, H++ =

{
x | a>x > b

}
.

Figure 2.6: Halfspace.

2.7 Gradients
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Definition 2.7.1 (Gradient). The gradient of a function f : Rn → R at a point x where f is
differentiable, denoted with ∇f(x), is a column vector of first derivatives of f with respect to
x1, . . . , xn

∇f(x) =
[
∂f(x)
∂x1

· · · ∂f(x)
∂xn

]>
An affine function f : Rn → R, represented as f(x) = a>x + b, has a very simple gradient:
∇f(x) = a.

Example 2.7.2. The distance function ρ(x) = ‖x− p‖2 =
√∑n

i=1 (xi − pi)2 has gradient

∇ρ(x) =
1

‖x− p‖2
(x− p).

2.7.1 Affine approximation of non-linear functions

A non-linear function f : Rn → R can be approximated locally via an affine function, using a first-order
Taylor series expansion:

Theorem 2.7.3 (First-order Taylor Series Expansion). If f is differentiable at point x0, then for
all points x in a neighborhood of x0, we have that

f(x) = f (x0) +∇f (x0)
> (x− x0) + ε(x)

where the error term ε(x) goes to zero faster than first order, as x→ x0, that is

lim
x→x0

ε(x)

‖x− x0‖2
= 0

In practice, this means that for x sufficiently close to x0, we can write the approximation

f(x) ' f (x0) +∇f (x0)
> (x− x0) .

2.7.2 Geometric interpretation of the gradient

Geometrically, the gradient of f at a point x0 is a vector ∇f(x0) perpendicular to the contour line of f
at level α = f(x0), pointing from x0 outwards the α-sublevel set (i.e., it points towards higher values
of the function).
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Figure 2.7: Left. Graph of a function. Center. Its contour lines. Right. Gradient vectors (arrows) at
some grid points.

The gradient ∇f (x0) also represents the direction along which the function has the maximum rate of
increase (steepest ascent direction).

Let v be a unit direction vector (i.e., ‖v‖2 = 1 ), let ε ≥ 0, and consider moving away at distance ε
from x0 along direction v, that is, consider a point x = x0 + εv. We have that

f (x0 + εv) ' f (x0) + ε∇f (x0)
> v, for ε→ 0,

equivalently,

lim
ε→0

f (x0 + εv)− f (x0)

ε
= ∇f (x0)

> v.

Whenever ε > 0 and v is such that ∇f (x0)
> v > 0, then f is increasing along the direction v, for small

ε.

Remark. The inner product ∇f (x0)
> v measures the rate of variation of f at x0, along direction v,

and it is called the directional derivative of f along v.

If v is orthogonal to ∇f(x0), the rate of variation is zero: along such a direction the function value
remains constant. Contrary, the rate of variation is maximal when v is parallel to ∇f (x0) , hence along
the normal direction to the contour line at x0.

Figure 2.8: The gradient ∇f(x0) is normal to the contour line of f at x0, and defines the direction of
maximum increase rate.
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Matrices and Linear Maps

3.1 Matrix Basics

Definition 3.1.1 (Matrix). A matrix is a collection of numbers, arranged in columns and rows in
a tabular format:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

 ,
where m is the number of rows and n is the number of columns. If A contains only real elements,
we write A ∈ Rm,n and A ∈ Cm,n if A contains complex elements.

Definition 3.1.2 (Transpose). The transposition operation is defined as

A>ij = Aji,

where Aij is the element of A positioned in row i and column j.

3.1.1 Matrix Products

Definition 3.1.3 (Matrix Multiplication). Two matrices can be multiplied if conformably sized,
i.e., if A ∈ Rm,n and B ∈ Rn,p, then the matrix product AB ∈ Rm,p is defined as a matrix whose
(i, j)-th entry is

(AB)ij =
n∑
k=1

AikBkj .

Remark. The matrix product is non-commutative, i.e., AB 6= BA.
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Definition 3.1.4 (Identity Matrix). The n×n identity matrix (denoted In, or I), is a matrix with
all zero elements, except for the elements on the diagonal, which are equal to one. This matrix
satisfies AIn = A for every matrix A with n columns, and InB = B for every matrix B with n
rows.

3.1.2 Matrix-vector Product

Definition 3.1.5 (Matrix-vector Product). Let A ∈ Rm,n be a matrix with columns a1, . . . ,an ∈
Rm and b ∈ Rn a vector. The matrix-vector product is defined as

Ab =
n∑
k=1

akbk, A ∈ Rm,n, b ∈ Rn

which is a linear combination of the columns of A, using the elements in b as coefficients.

Similarly, we can multiply matrix A ∈ Rm,n on the left by (the transpose of) vector c ∈ Rm as follows:

c>A =
m∑
k=1

ckα
>
k , A ∈ Rm,n, c ∈ Rm

forming a linear combination of the rows αk of A, using the elements in c as coefficients.

3.1.3 Matrix Representations

A matrix A ∈ Rm,n can be expressed in the following two forms:

A =
[
a1 a2 · · · an

]
, or A =


α>1
α>2

...
α>m

 ,
where a1, . . . ,an ∈ Rm denote the columns of A, and α>1 , . . . ,α

>
m ∈ Rn denote the rows of A.

AB can be written as
AB = A

[
b1 . . . bp

]
=
[
Ab1 . . . Abp

]
.

In other words, AB results from transforming each column bi of B into Abi.
Similarly, we can also write

AB =

 α>1
...
α>m

B =

 α>1B
...

α>mB

 .
Finally, the product AB can be given the interpretation as the sum of so-called dyadic matrices (matrices
of rank one, of the form aiβ

>
i , where β>i denote the rows of B :

AB =
n∑
i=1

aiβ
>
i , A ∈ Rm,n, B ∈ Rn,p.
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For any two conformably sized matrices A,B, it holds that

(AB)> = B>A>.

Then for a generic chain of n products, we have

(A1A2 · · ·Ap)> = A>p · · ·A>2 A>1 .

3.2 Matrices as linear maps

We can interpret matrices as linear maps (vector-valued functions), or operators, acting from an input
space to an output space.

Recall that a map f : X → Y is linear if any points x and z in X and any scalars λ, µ satisfy
f(λx+ µz) = λf(x) + µf(z).

Any linear map f : Rn → Rm can be represented by a matrix A ∈ Rm,n, mapping input vectors x ∈ Rn
to output vectors y ∈ Rm :

Figure 3.1: Linear map defined by a matrix A.

Affine maps are simply linear functions plus a constant term, thus any affine map f : Rn → Rm can be
represented as

f(x) = Ax+ b,

for some A ∈ Rm,n, b ∈ Rm.

3.2.1 Range, rank, and nullspace

Definition 3.2.1 (Range). The range of a matrix A is defined as

R(A) = {Ax | x ∈ Rn},

which is a subspace.

Definition 3.2.2 (Rank). The rank of R(A), denoted by rankA, is the dimension of A, which is
the number of linearly independent columns of A.

Remark. The rank is also equal to the number of linearly independent rows of A; that is,

rankA = rankA>.

Thus,
1 ≤ rankA ≤ min(m,n).
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Definition 3.2.3 (Nullspace). The nullspace of a matrix A, denoted N (A) is defined as:

N (A) = {x ∈ Rn | Ax = 0},

which is also a subspace.

Corollary 3.2.4. R(A>) and N (A) are mutually orthogonal subspaces, i.e., N (A) ⊥ R(A>).

Corollary 3.2.5.
Rn = N (A)⊕N (A)⊥ = N (A)⊕R(A>).

Theorem 3.2.6 (Fundamental Theorem of Linear Algebra). For any given matrix A ∈ Rm,n, it
holds that N (A) ⊥ R

(
A>
)

and R(A) ⊥ N
(
A>
)
, hence

N (A)⊕R
(
A>
)

= Rn

R(A)⊕N
(
A>
)

= Rm.

Consequently, we can decompose any vector x ∈ Rn as the sum of two vectors orthogonal to each
other, one in the range of A>, and the other in the nullspace of A :

x = A>ξ + z, z ∈ N (A)

Similarly, we can decompose any vector w ∈ Rm as the sum of two vectors orthogonal to each
other, one in the range of A, and the other in the nullspace of A> :

w = Aϕ+ ζ, ζ ∈ N
(
A>
)
.

Figure 3.2: Illustration of the fundamental theorem of linear algebra in R3.

3.3 Determinants
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Definition 3.3.1 (Determinants). The determinant of a generic (square) matrix A ∈ Rn,n can be
computed by defining det{a} = a for a scalar a, and then applying the following inductive formula
(Laplace’s determinant expansion):

det{A} =
n∑
j=1

(−1)i+jaij det
{
A(i,j)

}
,

where i is any row, chosen at will, and A(i,j) denotes a (n− 1)× (n− 1) submatrix of A obtained
by eliminating row i and column j from A.

A ∈ Rn,n is singular ⇐⇒ det{A} = 0 ⇐⇒ N (A) is not equal to {0}.

For any square matrices A,B ∈ Rn,n and scalar α:

det{A} = det
{
A>
}

det{AB} = det{BA} = det{A} det{B}
det{αA} = αn det{A}.

Figure 3.3: Linear mapping of the unit square. The absolute value of the determinant equals the area
of the transformed unit square.

3.3.1 Matrix Inverses

If A ∈ Rn,n is nonsingular (i.e., det{A} 6= 0), then the inverse matrix A−1 is defined as the unique
n× n matrix such that

AA−1 = A−1A = In.

If A,B are square and nonsingular, then

(AB)−1 = B−1A−1.

If A is square and nonsingular, then

(A>)−1 = (A−1)>

det{A} = det{A}> =
1

det{A−1}
.
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3.3.2 Eigenvalues and Eigenvectors

Definition 3.3.2 (Eigenvalue/Eigenvector). λ ∈ C is an eigenvalue of matrix A ∈ Rn,n, and
u ∈ Cn is a corresponding eigenvector, if it holds that

Au = λu, u 6= 0,

or equivalently, (λIn −A)u = 0,u 6= 0.

Definition 3.3.3 (Characteristic Polynomial). Eigenvalues can be characterized as those real or
complex numbers that satisfy the equation

p(λ)
.
= det (λIn −A) = 0

where p(λ) is a polynomial of degree n in λ, known as the characteristic polynomial of A

Any matrix A ∈ Rn,n has n eigenvalues λi, i = 1, . . . , n, counting multiplicities. To each distinct
eigenvalue λi, i = 1, . . . , k, there corresponds a whole subspace φi

.
= N (λiIn −A) of eigenvectors

associated to this eigenvalue, called the eigenspace.

3.3.3 Diagonalizable Matrices

Theorem 3.3.4. Let λi, i = 1, . . . , k ≤ n be the distinct eigenvalues of A ∈ Rn,n. Let µi,
i = 1, . . . , k denote the coreesponding algebraic multiplicites. Let φi = (λiIn − A), and U (i) =[
u
(
1i) · · · u

(i)
νi

]
be a matrix containing by columns a basis of φi, being νi

.
= dimφi. It holds that

νi ≤ µi and, if νi = µi, i = 1, . . . , k, then

U =
[
U (1) · · ·U (k)

]
is invertible, and

A = UΛU−1

where

Λ =


λ1lµ1 0 · · · 0

0 λ2Iµ2 · · · 0
...

...
. . .

...
0 · · · 0 λkIµk

 .

3.3.4 Matrices with special structure

• Square, diagonal triangular (upper or lower)

• Symmetric: a square matrix A such that A = A>.

• Orthogonal: a square matrix A such that AA> = A>A = I.

• Dyad: a rank-one matrix A = uv>, where u,v are vectors.
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• Block-structured matrices: block diagonal, block triangular, etc.

3.4 Matrix factorizations

A factorization can be interpreted as a decomposition of the map into a series of successive stages.

Figure 3.4: Matrix decomposition.

3.4.1 QR decomposition

Definition 3.4.1 (Orthogonal-triangular decomposition (QR)). Any square A ∈ Rn,n can be de-
composed as

A = QR,

where Q is an orthogonal matrix, and R is an upper triangular matrix. If A is nonsingular, then
the factors Q,R are uniquely defined, if the diagonal elements in R are imposed to be positive.

3.4.2 SVD

Definition 3.4.2 (Singular Value Decomposition). Any non-zero A ∈ Rm,n can be decomposed as

A = U Σ̃V >,

where V ∈ Rn,n and U ∈ Rm,m are orthogonal matrices, and

Σ̃ =

[
Σ 0r,n−r

0m−r,r 0m−r,n−r

]
, Σ = diag(σ1, . . . , σr),

where r is the rank of A, and the scalars σi > 0, i = 1, . . . , r are called singular values of A. The
first r columns u1, . . . ,ur of U (v1, . . . ,vr of V ) are called the left/right singular vectors, and
satisfy

Avi = σiui A>ui = σivi, i = 1, . . . , r.

3.5 Matrix Norms

A function f : Rm,n → R is a matrix norm if, analogously to the vector case, it satisfies three standard
axioms. Namely, for all A,B ∈ Rm,n and all α ∈ R:

(i) f(A) ≥ 0, and f(A) = 0 if and only if A = 0;
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(ii) f(αA) = |α|f(A);

(iii) f(A+B) ≤ f(A) + f(B).

Many of the popular matrix norms also satisfy a fourth condition called sub-multplicativity: for any
conformably sized matrices A,B

f(AB) ≤ f(A)f(B).

3.5.1 Frobenius Norm

Definition 3.5.1 (Frobenius norm). The Frobenius norm ‖A‖F is nothing but the standard Eu-
clidean (`2) vector norm applied to the vector formed by all elements of A ∈ Rm,n :

‖A‖F =
√

traceAA> =

√√√√ m∑
i=1

n∑
j=1

|aij |2.

The Frobenius norm also has an interpretation in terms of the eigenvalues of the symmetric matrix
AA> :

‖A‖F =
√

traceAA> =

√√√√ m∑
i=1

λi (AA>).

For any x ∈ Rn, it holds that ‖Ax‖2 ≤ ‖A‖F ‖x‖2. (consequence of the Cauchy-Schwartz inequality
applied to

∣∣a>i x∣∣). The Frobenius norm is sub-multiplicative: for any B ∈ Rn,p, it holds that

‖AB‖F ≤ ‖A‖F ‖B‖F .

3.5.2 Operator norms

The so-called operator norms give a characterization of the maximum input-output gain of the linear
map u → y = Au. Choosing to measure both inputs and outputs in terms of a given `p norm, with
typical values p = 1, 2,∞, leads to the definition

‖A‖p
.
= max

u6=0

‖Au‖p
‖u‖p

= max
‖u‖=1

‖Au‖p

By definition, for every u, ‖Au‖p ≤ ‖A‖p‖u‖p. From this property follows that any operator norm is
sub-multiplicative, that is, for any two conformably sized matrices A,B, it holds that

‖AB‖p ≤ ‖A‖p‖B‖p

This fact is easily seen by considering the product AB as the series connection of the two operators
B,A:

‖Bu‖p ≤ ‖B‖p‖u‖p, ‖ABu‖p ≤ ‖A‖p‖Bu‖p ≤ ‖A‖p‖B‖p‖u‖p,
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Matrices II

4.1 Orthogonalization

Definition 4.1.1 (Orthonormal basis). A basis (ui)
n
i=1 is said to be orthogonal if u>i uj = 0 if

i 6= j. If in addition, ‖ui‖2 = 1, we say that the basis is orthonormal.

Definition 4.1.2 (Orthogonalization). Orthogonalization refers to a procedure that finds an or-
thonormal basis of the span of given vectors.
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Symmetric Matrices

Definition 5.0.1 (Symmetric). A square matrix A ∈ Rn,n is symmetric if A = A>.

5.1 The Spectral Theorem

Theorem 5.1.1 (Spectral Theorem). Let A ∈ Rn,n be symmetric, let λi ∈ R, i = 1, . . . , n, be
the eigenvalues of A (counting multiplicities). Then, there exist a set of orthonormal vectors
ui ∈ Rn, i = 1, . . . , n, such that Aui = λiui. Equivalently, there exist an orthogonal matrix
U = [u1 · · ·un] (i.e., UU> = U>U = In

)
such that

A = UΛU> =
n∑
i=1

λiuiu
>
i , Λ = diag (λ1, . . . , λn) .
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Singular Value Decomposition

6.1 Dyads

Definition 6.1.1 (Dyad). A matrix A ∈ Rm,n is called a dyad if it can be written as

A = p>

for some vectors p ∈ Rm,∈ Rn. Element-wise we have

Aij = piqi, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

6.1.1 Sums of dyads

The SVD theorem, discussed below, states that any matrix can be written as a sum of dyads:

A =
r∑
i=1

pi
>
i

for vectors pi,i that are mutually orthogonal. This allows us to intepret data matrices as sums of simpler
matrices (dyads).

Theorem 6.1.2 (Singular Value Decomposition). Any matrix A ∈ Rm,n can be factored as

A = U Σ̃V >

where V ∈ Rn,n and U ∈ Rm,m are orthogonal matrices and Σ̃ ∈ Rm,n is a matrix having the
first r

.
= rank(A) digaonal entries (σ1, . . . , σr) positive and decreasing in magnitude, and all other

entries zero:
Σ̃ = []
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Linear Equations

7.1 Set of solutions of linear equations

Generic linear equations can be expressed in vecctor format as

Ax = y,

where x ∈ Rn is the vector of unknowns, y ∈ Rm is a given vector, and A ∈ Rm,n is a matrix containing
the coefficients of the linear equations.

Key issues are: existence, uniqueness of solutions; characterization of the solution set:

S
.
= {x ∈ Rn | Ax = y}.

Let a1, . . . ,an ∈ Rm denote the columns of A, i.e. A =
[
a1 · · · an

]
. Ax is simply a linear

combination of the columns of A, with coefficients given by x:

Ax = x1a1 + · · ·+ xnan.

Remark. Ax ∈ R(A). Thus, S 6= ∅ ⇐⇒ y ∈ R(A).

The linear equation
Ax = y, A ∈ Rm,n

admits a solution if and only if rank (
[
A y

]
) = rank(A) and N (A) = {0}.

When this existence condition is satisfied, the set of all solutions is the affine set

S = {x = x̄+Nz},

where x̂ is any vector such that Ax̂ = y and N ∈ Rn,n−r is a matrix whose columns span the nullspace
of A (AN = 0).

Overall, the system has a unique solution if rank(
[
A y

]
) = rank(A) and N (A) = {0}.
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7.2 Use case in optimization

Consider an optimization problem with linear equality constraints:

min
x
f0(x) : Ax = b,

with f0 : Rn → R, and A ∈ Rm,n, b ∈ Rm, and x ∈ Rn the variable. We assume that the problem is
feasible, i.e., the solution set of Ax = y is not empty.

Since the solution set is affine, any solution is of the form x0 + Nz, with x0 a particular solution
and N a matrix whose columns span the nullspace of A.
We can formulate the above problem as an unconstrained one:

min
z
f0(x0 +Nz).

7.3 Solving via SVD

The linear equation Ax = y can be fully analyzed via SVD. If A = U Σ̃V > is the SVD of A, then
Ax = y is equivalent to

Σ̃x̃ = ỹ,

where x̃
.
= V >x, ỹ

.
= U>y.

Since Σ̃ is a diagonal matrix

Σ̃ =

[
Σ 0r,n−r

0m−r,r 0m−r,n−r

]
, Σ = diag(σ1, . . . , σr) � 0,

the system above is very easy to solve.
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Convexity

8.1 Affine Sets

Definition 8.1.1 (Affine Set). A set C ⊆ Rn is affine if the line through any two distinct points in
C lies in C, i.e. if for any x1,x2 ∈ C and λ ∈ R, we have λx1 + (1− λ)x2 ∈ C.

Definition 8.1.2 (Affine Combination). A point of the form

λ1x
(1) + · · ·+ λmx

(m)

where
∑m

i=1 λi = 1 is an affine combination of the points x(1), . . . ,x(m).

Definition 8.1.3 (Affine Hull). The set of all affine combinations of points in some set C ⊆ Rn is
called the affine hull of C, denoted aff C:

aff C =

{
m∑
i=1

λix
(i)
∣∣x(1), . . . ,x(m) ∈ C,

m∑
i=1

λi = 1

}
.

8.2 Convex Sets

Definition 8.2.1 (Linear Hull). Given a set of points in Rn:

P = {x(1), . . . ,x(m)},

the linear hull (subspace), or span generated by these points is the set of all possible linear
combinations of the points:

spanP =

{
m∑
i=1

λix
(i)
∣∣x(1), . . . ,x(m) ∈ P, λ1, . . . , λm ∈ R}.
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Definition 8.2.2 (Convex Set). A set C is convex if for any x1,x2 ∈ C and any λ ∈ [0, 1]:

λx1 + (1− λ)x2 ∈ C,

i.e., the line segment between any two points in C lies in C.

Figure 8.1: Convex and nonconvex sets. Left. Convex. Middle. Not convex as the line segment
between the two points in the set is not contained. Right. Not convex as it contains some boundary
points but not other.

Remark. Subspaces, halfspaces, and affine sets, such as lines and hyperplanes are convex, as they
contain the entire line between any two distinct points in it, and thus also the line segment in R2.
Hence, every affine set is convex. However, not every convex set is affine.

Definition 8.2.3 (Convex Combination). A point of the form

λ1x
(1) + · · ·+ λmx

(m)

where
∑m

i=1 λi = 1 and λi ≥ 0 is a convex combination of the points x(1), . . . ,x(m).

Definition 8.2.4 (Convex Hull). The convex hull of a set C, denoted conv C, is the set of all
convex combinations of points in C:

conv C =

{
m∑
i=1

λix
(i) |x(i) ∈ C, λi ≥ 0, i = 1, . . . ,m,

m∑
i=1

λi = 1

}
.

Remark. conv P is always convex and it is the smallest convex set that contains P, i.e., if C is any
convex set that contains P, then conv P ⊆ C.
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Figure 8.2: Left. The convex hull of a set of 15 points is the pentagon. Right. The convex hull of the
kidney shped set is the shaded set.

8.3 Cones

Definition 8.3.1 (Cone). A set C is a cone if λx ∈ C for every x ∈ C and λ ≥ 0.

Definition 8.3.2 (Convex Cone). A set C is a convex cone if it is convex and it is a cone.
Equivalently, it means that for any x1,x2 ∈ C and λ1, λ2 ≥ 0, we have

λ1x1 + λ2x2 ∈ C.

Definition 8.3.3 (Conic Combination). A point of the form

λ1x
(1) + +λmx

(m)

with λ1, . . . , λm ≥ 0 is a conic combination of x(1) . . . ,x(m).

Definition 8.3.4 (Conic Hull). The conic hull of a set C is the set of all conic combinations of
points in C, i.e., {

m∑
i=1

λixi |xi ∈ C, λi ≥ 0, i = 1, . . . ,m

}
,

which is also the smallest convex cone that contains C.

Figure 8.3: The conic hulls of the two sets of figure 1.2.
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8.4 Hyperplanes and Halfspaces

Definition 8.4.1 (Hyperplane). A hyperplane is a set of the form

{x | a>x = b},

where a ∈ Rn,a 6= 0, and b ∈ R, i.e., the solutions set of a nontrivial linear equation among the
components of x (and hence an affine set).

Geometric interpretation: The hyperplane is a set of points with a constant inner product to a given vec-
tor a, which can also be viewed as a normal vector; the constant b determines the offset from the origin.

Figure 8.4: Hyperplane in R2, with normal vector a. x − x0 (arrow) is orthogonal to a for any x in
the hyperplane.

A hyperplane divides Rn into two halfspaces, defined as follows:

Definition 8.4.2 (Halfspace). A halfspace is a set of the form

{x | a>x ≤ b},

where a 6= 0, i.e., the solution set of a nontrivial linear inequality.
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Figure 8.5: The halfspace determined by a>x ≤ b (shaded) extends in the direction −a.

Remark. Halfspaces are convex, but not affine.

Proof. Let x1,x2 be two points in a halfspace. Then for any λ ∈ [0, 1], we have

a>(λx1 + (1− λ)x2) = λa>x1 + (1− λ)a>x2

≤ λb+ (1− λ)b

= b.

Thus, halfspaces are convex.

8.5 Operations Preserving Convexity

Proving convexity using the definition is very difficult and so we need some tools to help us with that.
In particular, operations that preserve convexity will come in handy.

8.5.1 Intersection

Theorem 8.5.1. If C1, . . . , Cm are convex sets, then their intersection

C =
m⋂
i=1

Ci

is also a convex set.

Remark. This also holds for possibly infinite families of convex sets.

If C(α), α ∈ A ⊆ Rq, is a family of convex sets, parameterized by α, then C =
⋂
α∈A Cα is convex.

Proof. Let {Ci}mi=1 be convex sets. For any x1,x2 ∈
⋂m
i=1 Ci, λ ∈ [0, 1], x1 ∈ Ci and x2 ∈ Ci implies

λx1 + (1− λ)x2 ∈ Ci
for i = 1, 2, . . . ,m by convexity of Ci. Hence,

λx1 + (1− λ)x2 ∈
m⋂
i=1

Ci.

Thus,
⋂m
i=1 Ci is convex.
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Example 8.5.2 (Second-order cone). The second-order cone in Rn+1:

Kn = {(x, t) | x ∈ Rn, t ∈ R, ‖x‖2 ≤ t}

is convex since it is the intersection of half-spaces (which are convex):

Kn =
⋂

u:‖u‖2≤1

{
(x, t) | x ∈ Rn, t ∈ R,u>x ≤ t

}
.

8.5.2 Affine Transformation

Theorem 8.5.3. If a map f : Rn → Rm is affine, and C ⊂ Rn is convex, then the image set

f(C) = {f(x) | x ∈ C}

is convex.

Proof. Any affine map has a matrix representation

f(x) = Ax+ b.

Then for any y1,y2 ∈ f(C), there exists x1,x2 ∈ C such that y1Ax1 + b, y2 = Ax2 + b. Hence, for
λ ∈ [0, 1], we have

λy1 + (1− λ)y2 = A(λx1 + (1− λ)x2) + b = f(x),

where x = λx1 + (1− λ)x2 ∈ C.

Remark. The projection of a convex set C onto a subspace is representable by means of a linear map,
hence the projected set is convex.

8.6 Convex Functions

Definition 8.6.1 (Domain). The domain of a function f : Rn → R is defined as

domf = {x ∈ Rn | −∞ < f(x) <∞}.

Definition 8.6.2 (Convex Function). A function f : Rn → R is convex if domf is a convex set,
and for all x,y ∈ domf and all λ ∈ [0, 1] it holds that

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).
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Figure 8.6: Convex function.

Definition 8.6.3 (Concave Function). A function f is concave if −f is convex.

8.6.1 Domain of a convex function

Convex functions must be +∞ outside their domain in order for the convexity inequality to hold even
if x or y 6∈ domf . The function

f(x) =

{
−
∑n

i=1 log xi if x > 0,

+∞ otherwise,

is convex, but the function

f(x) =

{
−
∑n

i=1 log xi if x > 0,

−∞ otherwise,

is not.

Remark. To check the convexity of a extended-value function f , domf must be convex and anything
outside the domain must be +∞.

8.6.2 Epigraph

One method of proving convexity of a function is to prove the convexity of its epigraph.

Definition 8.6.4 (Epigraph). Recall that the epigraph of a function f : Rn → (−∞,+∞) is the
set

epi f = {(x, t) | x ∈ domf, t ∈ R, f(x) ≤ t}.

Remark. f is a convex function if and only if epi f is a convex set.
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Example 8.6.5 (Log-sum-exp). Consider the log-sum-exp function arising in logistic regression:

f(x) = log

(
n∑
i=1

exi

)
.

The epigraph is the set of pairs (x, t) characterized by the inequality t ≥ f(x), which can be
rewritten as

epi f =

{
(x, t) ∈ Rn × R |

n∑
i=1

exi−t ≤ 1

}
,

which is convex, due to the convexity of the exponential function.

8.6.3 Sublevel Sets

Definition 8.6.6 (α-sublevel set). For α ∈ R, the α-sublevel set of f is defined as

Sα
.
= {x ∈ Rn | f(x) ≤ α}.

8.7 Operations Preserving Convexity (continued)

8.7.1 Non-negative Linear Combinations

Theorem 8.7.1. If fi : Rn → R, i = 1, . . . ,m, are convex functions, then the function

f(x) =
m∑
i=1

αifi(x), αi ≥ 0, i = 1, . . . ,m

is also convex over
⋂
i dom fi.

Proof. This follows from the definition of convexity, since for any x,y ∈ dom and λ ∈ [0, 1],

f(λx+ (1− λ)y) =
m∑
i=1

αifi(λx+ (1− λ)y)

≤
m∑
i=1

αi(λfi(x) + (1− λ)fi(y))

= λf(x) + (1− λ)f(y).

8.7.2 Affine Variable Transformation

Theorem 8.7.2. Let f : Rn → R be convex, and define

g(x) = f(Ax+ b), A ∈ Rn,m, b ∈ Rn.

Then g is convex over dom g = {x | Ax+ b ∈ dom f}.
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8.7.3 Pointwise Maximum

Theorem 8.7.3. If (fα)α∈A is a family of convex functions indexed by parameter α, and A is a
set, then the pointwise max function

f(x) = max
α∈A

fα(x)

is convex over the domain {
⋂
α∈A dom fα} ∩ {x | f(x) <∞}.

Proof. The epigraph of f is the set of pairs (x, t) such that

∀α ∈ A, fα(x) ≤ t.

Hence, the epigraph of f is the intersection of the epigraphs of all the functions involved, therefore f is
convex.

Remark. A convex function can be thought of as the maximum of possibly infinite number of linear
functions (tangent lines of all points on the function).

Example 8.7.4 (Sum of k largest elements). Consider the function f : Rn → R with values

f(x) =
k∑
i=1

x[i]

where x[i] denotes the i-the largest element in x. Then

f(x) = max
u
u>x : u ∈ {0, 1}n,1>u = k.

For every u,x→ u>x is linear, hence f is convex.

Example 8.7.5 (Largest eigenvalue of a symmetric matrix). Consider the function f : Sn → R,
with values for a given X = X> ∈ Sn given by

f(X) = λmax (X),

where λmax denotes the largest eigenvalue.
The function is the pointwise maximum of linear functions of X:

F (X) = max
u:‖u‖2=1

u>Xu = λmax (X).

Hence, f is convex.

8.7.4 First-order Conditions
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Theorem 8.7.6. If f is differentiable (that is, domf is open and the gradient exists everywhere
on the domain), then f is convex if and only if

∀x,y ∈ domf, f(y) ≥ f(x) +∇f(x)>(y − x).

Proof. Assume that f is convex. Then, the definition implies that for any λ ∈ (0, 1]

f(x+ λ(y − x))− f(x)

λ
≤ f(y)− f(x)

which, for λ → 0 yields ∇f(x)>(y − x) ≤ f(y) − f(x) - Conversely, take any x,y ∈ domf and
λ ∈ [0, 1], and let z = λx+ (1− λy)

f(x) ≥ f(z) +∇f(z)>(x− z), f(y) ≥ f(z) +∇f(z)>(y − z)

Taking a convex combination of these inequalities, we get

λf(x) + (1− λ)f(y) ≥ f(z) +∇f(z)>0 = f(z)

which concludes the proof.

8.7.5 Second-order Conditions

Theorem 8.7.7. If f is twice differentiable, then f is convex if and only if its Hessian matrix ∇2f
is positive semi-definite everywhere on the (open) domain of f , that is if and only if ∇2f � 0 for
all x ∈ domf .

Example 8.7.8. A generic quadratic function

f(x) =
1

2
x>Hx+ c>x+ d

has Hessian ∇2f(x) = H. Hence f is convex if and only if H is positive semidefinite.
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Convex Optimization Problems

9.1 Trouble with nonlinear models

General optimization model:

p∗ = min
x
f0(x)

subject to: fi(x) ≤ 0, i = 1, . . . ,m,

with fi’s arbitrary nonlinear functions.

• Algorithms may deliver very suboptimal solutions for unconstrained problems.

• Can fail for constrained problems-find no feasible point even though one exists.

9.2 Convex Problem

9.2.1 Standard Form

p∗ = min
x
f0(x)

subject to: fi(x) ≤ 0, i = 1, . . . ,m,

Ax = b,

where

• f0, . . . , fm are convex functions;

• Th equality constraints are affine, and represented via the matrix A ∈ Rq×n and vector b ∈ Rq.

Remark. There is an implicit constraint on x, that it belongs to the domain of the problem, which is
the set

D
.
=

m⋂
i=0

domfi.

Since fi’s are convex, the domain is convex.
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9.2.2 Convexity of Conic Optimization Problems

The class of convex problems includes the conic optimization problems we’ve seen so far: LP, QP,
QCQP, and SOCP, where

LP ⊆ QP ⊆ QCQP ⊆ SOCP.

Since the SOCP class includes all the others, it suffices to show that SOCPs are convex problems. Recall
the SOCP model:

p∗ = min
x∈Rn

c>x

s.t.: ‖Aix+ bi‖2 ≤ c>i x+ di, i = 1, . . . ,m,

with Ai, bi, ci,di matrices of appropriate size. Convexity of the problem stems from the fact that for
every i,

x→ ‖Aix+ bi‖2 − (c>i x+ di)

is a convex function.

9.2.3 Feasibility and Boundedness

• If the feasible set X is empty, the problem is infeasible: no solution that satisfies the constraints
exists. Then it is customary to set p∗ = +∞. When X is nonempty, the problem is feasible.

• We usually do not know in advance if the feasible set X is empty or not; the task of determining
this is referred to as a feasibility problem.

Remark. If the problem is feasible and p∗ = −∞, the problem is unbounded below. Note that it can
also happen that the problem is feasible but stil no optimal solution exists, in which case we say that
the optimal value p∗ is not attained at any finite point.

9.2.4 Active vs. Inactive Constraints

• If x∗ ∈ Xopt is such that fi(x
∗) < 0, we say that the i-th inequality constraint is inactive (or

slack) at the optimal solution x∗.

• Conversely, if fi(x
∗) = 0, we say that the i-th inequality constraint is active at x∗.

9.2.5 Optimal Set

• The optimal set is defined as the set of feasible points for which the objective function attains
the optimal value:

Xopt = {x ∈ X : f0(x) = p∗}

Equivalently,
Xopt = arg min

x∈X
f0(x)

• For convex problems, the optimal set is a convex set.
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9.2.6 Local and Global Optima

Theorem 9.2.1. Consider the optimization problem: minx∈X f0(x). If f0 is a convex function
and X is a convex set, then any locally optimal solution is also globally optimal. Moreover, the set
Xopt of optimal points is convex.

Proof. Proof. Let x∗ ∈ X be a local minimizer of f0, let p∗ = f0 (x∗) , and consider any point
y ∈ X . We need to prove that f0(y) ≥ f0 (x∗) = p∗. By convexity of f0 and X we have that, for
θ ∈ [0, 1],xθ = θy + (1− θ)x∗ ∈ X , and

f0 (xθ) ≤ θf0(y) + (1− θ)f0 (x∗)

Subtracting f0 (x∗) from both sides of this equation, we obtain

f0 (xθ)− f0 (x∗) ≤ θ (f0(y)− f0 (x∗))

Since x∗ is a local minimizer, the left-hand side in this inequality is nonnegative for all small enough
values of θ > 0. We thus conclude that the right hand side is also nonnegative, i.e., f0(y) ≥ f0 (x∗) ,
as claimed. Also, the optimal set is convex, since it can be expressed as the p∗-sublevel set of a convex
function:

Xopt = {x ∈ X : f0(x) ≤ p∗}

Example 9.2.2 (Feasible problem with empty feasible set).
The problem

p∗ = min
x∈R

e−x

s.t.: x ≥ 0.

is feasible with p∗ = 0. However, the optimal set is empty since p∗ is not attained at any finite
point (it is only attained in the limit, as x→∞).

9.3 Problem Transformations

• An optimization problem can be transformed, or reformulated, into an equivalent one by means
of several useful tricks, such as:

– monotone transformation of the objective (e.g., scaling, logarithm, squaring) and constraint
functions;

– change of variables;

– addition of slack variables;

– epigraphic reformulation;

– replacement of equality constraints with inequality ones;

– elimination of inactive constraints;

– discovering hidden convexity.
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9.3.1 Monotone Objective Transformation

Theorem 9.3.1. Consider an optimization problem in standard form. Let ϕ : R → R be a
continuous and strictly increasing function over X , and consider the transformed problem

g∗ = min
x∈Rn

ϕ(f0(x))

s.t: fi(x) ≤ 0, i = 1, . . . ,m,

Ax = b.

The original and transformed problems have the same set of optimal solutions.

Proof. Suppose x∗ is optimal i.e., f0 (x∗) = p∗. Then, x∗ is feasible, thus it holds that ϕ (f0 (x∗)) =
ϕ (p∗) ≥ g∗. Assume next that x̃∗ is optimal, i.e., ϕ (f0 (x̃∗)) = g∗. Then, x̃∗ is feasible, thus it holds
that f0 (x̃∗) ≥ p∗ Now, since ϕ is continuous and strictly increasing over X , it has a well-defined inverse
ϕ−1, thus we may write ϕ (f0 (x̃∗)) = g∗ ⇐⇒ ϕ−1 (g∗) = f0 (x̃∗) , which yields

ϕ−1 (g∗) ≥ p∗

Since ϕ is strictly increasing and ϕ
(
ϕ−1 (g∗)

)
= g∗, the latter relation also implies that g∗ ≥ ϕ (p∗) ,

which implies that it must be ϕ (p∗) = g∗. This means that for any optimal solution x∗ it holds that

ϕ (f0 (x∗)) = g∗

which implies that x∗ is also optimal for the problem. Vice-versa, for any optimal solution x̃∗, it holds
that

f0 (x̃∗) = ϕ−1 (g∗) = p∗

which implies that x̃∗ is also optimal.

Example 9.3.2 (Least-squares). The least-squares problem, with objective f0(x) = ‖Ax − y‖2,
where A ∈ Rm×n, b ∈ Rm are given. We apply the result with the function z ≥ 0→ ϕ(z) = z2,
which is increasing on R+.

Example 9.3.3 (Logistic Regression). A random variable ẏ ∈ {−1, 1} has a distribution modelled
as

p = P(y = 1) =
1

1 + exp (−(w>x+ b))
= 1− P(y = −1)

where w ∈ Rn, b ∈ R are parameters, and x ∈ Rn contains explanatory variables (features). The
estimation problem is to estimate w, b from given observations (xi, yi), i = 1, . . . ,m.
In the maximum likelihood approach, we maximize the likelihood function

L(w, b)
.
=

m∏
i=1

(
1

1 + exp (−yi(w>x+ b))

)
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L is not concave in (w, b), but logL is, since the log-sum-exp function is convex:

logL(w, b) = −
m∑
i=1

log
(

1 + exp
(
−yi

(
w>xi + b

)))
.

9.3.2 Addition of Slack Variables

Equivalent problem formulations are also obtained by introducing new slack variables into the problem.
Here is a typical case that arises when a constraint or the objective involves the sum of terms, as in the
following problem

p∗ = min
x

f0(x) +

r∑
i=1

ϕi(x)

s.t.: x ∈ X .

Introducing slack variables ti, i = 1, . . . , p, we reformulate this problem as

g∗ = min
x,t

f0(x) +
r∑
i=1

ti

s.t.: x ∈ X
ϕi(x) ≤ ti i = 1, . . . , r,

where this new problem has the original variable x, plus the vector of slack variables æ= (t1, . . . , tr).

Example 9.3.4 (LASSO). The LASSO problem

p∗ = min
x
‖Ax− y‖22 + ‖x‖1

is equivalent to the QP

p∗ = min
x,t
‖Ax− y‖22 +

n∑
i=1

ti

s.t.: − ti ≤ xi ≤ ti, i = 1, . . . , n.

At optimum, we have t∗i = |x∗i |, i = 1, . . . , n.

9.3.3 Epigraphic Reformulation

A common use of the slack variable trick described above consists in transforming a convex optimization
problem with generic convex objective f0, into an equivalent convex problem having linear objective.
Introducing a new slack variable t ∈ R, we can reformulate the problem as

t∗ = min
x∈Rn,t∈R

t

s.t.: fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , q

f0(x) ≤ t.
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This is referred to as the epigraphic reformulation of the original problem.

Remark. Any convex optimization problem can thus be reformulated in the form of an equivalent
convex problem with linear objective.

9.3.4 Replacement of Equality Constraints with Inequality Ones

Consider a (not necessarily convex) problem of the form

p∗ = min
x∈X

f0(x)

s.t.: b(x) = u,

where u is a given scalar, together with the related problem in which the equality constraint is substituted
by an inequality one:

g∗ = min
x∈X

f0(x)

s.t.: b(x) ≤ u,

• Clearly, since the feasible set of the first problem is included in the feasible set of the second
problem, it always holds that g∗ ≤ p∗.

• It actually holds that g∗ = p∗, under the following conditions:

1. f0 is nonincreasing over X ( i.e., f0(x) ≤ f0(y) ⇐⇒ x ≥ y elementwise)

2. b is nondecreasing over X , and

3. the optimal value p∗ is attained at some optimal point x∗, and the optimal value g∗ is
attained at some optimal point x̃∗.

• In certain cases, we can substitute an equality constraint of the form b(x) = u with an inequality
constraint b(x) ≤ u.

• This can be useful, in some cases, for gaining convexity. Indeed, if b(x) is a convex function, then
the set described by the equality constraint {x : b(x) = u} is non-convex in general (unless b is
affine); contrary, the set described by the inequality constraint {x : b(x) ≤ u} is the sublevel set
of a convex function, which is convex.

9.3.5 Hidden Convexity

• Sometimes a problem as given is not convex, but we can transform it into an equivalent problem
that is.

• An approach is to relax the problem into a convex one, and then prove that the relaxation is
exact.

Remark. None of these approaches is full-proof and a guaranteed path to finding a convex expression
of a given problem.
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Weak Duality

10.1 Lagrangian

Definition 10.1.1 (Lagrangian). The Lagrangian is a function with values for x ∈ Rn, λ ∈ Rm
and ν ∈ Rq:

L(x, λ, ν) = f0(x) +
m∑
i=1

λifi(x) +

q∑
i=1

νihi(x)

Vectors λ and ν are referred to as Lagrange multipliers, or dual variables.

Consider an optimization problem in standard form:

p∗ = min
x∈Rn

f0(x)

s.t.: fi(x) ≤ 0, i = 1, . . . ,m,

hi(x) = 0, i = 1, . . . , q,

where fi, hi are not convex or concave.
With Lagrangian, we can express a problem in min-max form:

p∗ = min
x

max
λ≥0,ν

L(x, λ, ν).

This follows from the fact that for any x:

max
λ≥0,ν

L(x, λ, ν) =

{
f0(x) if x is feasible,

+∞ otherwise.

Remark. When x is feasible, we have fi(x) ≤ 0, and thus we set λi = 0 to maximize. Similarly, we
also have hi(x) = 0, which means that the last term of the Lagrangian disappears. If x is not feasible,
it means that we either have fi(x) > 0 for some fi or hi(x) 6= 0 for some hi. In the first case, λ will
be set to +∞ to maximize the value. Likewise, νi will be set to ±∞ depending on the sign of hi(x).
Hence, we have +∞ when x is infeasible.
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10.2 Minimax Inequality

Theorem 10.2.1 (Minimax Inequality). For any sets X,Y and any function F : X × Y → R:

min
x∈X

max
y∈Y

F (x, y) ≥ max
y∈Y

min
x∈X

F (x, y).

Proof. For any (x0, y0) ∈ X × Y :

h(y0)
.
= min

x∈X
F (x, y0) ≤ F (x0, y0) ≤ max

y∈Y
F (x0, y)

.
= g(x0).

Hence, h(y0) ≤ g(x0) for any (x0, y0), which implies that

max
y∈Y

min
x∈X

F (x, y) = max
y0∈Y

h(y0) ≤ min
x0∈X

g(x0) = min
x∈X

max
y∈Y

F (x, y).

10.3 Weak Duality

Applying the minimax inequality to the Lagrangian, we have the weak duality.

Theorem 10.3.1 (Weak Duality).

min
x

max
λ≥0,ν

L(x, λ, ν) ≥ max
λ≥0,ν

min
x
L(x, λ, ν).

The problem on the right is called the dual problem; it involves maximizing over λ ≥ 0, ν the dual
function:

g(λ, ν)
.
= min

x
L(x, λ, ν).

Remark. Since g is the pointwise minimum of affine (hence, concave) functions, g is concave. Hence,
the dual problem, a concave maximization problem over a convex set is convex.

10.4
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11

Strong Duality

11.1 Strong Duality for Convex Problems

11.1.1 Slater’s Condition for Strong Duality

Definition 11.1.1 (Strictly feasible). A problem is strictly feasible if

Theorem 11.1.2 (Slater’s Conditions for Convex Programs). If the convex problem is strictly
feasible, then strong duality holds: p∗ = d∗.

11.1.2 Geometry

11.1.3 Recovering a Primal Solution from the Dual

11.1.4 Duality in Unconstrained Problems

11.1.5 Sion’s Minimax Theorem

Theorem 11.1.3 (Minimax Theorem). Let X ⊆ Rn be convex and let Y ⊆ Rm be a compact set.
Let F : X × Y → R be a function such that for every y ∈ Y , F (·, y) is convex and continuous
over X, and for every x ∈ X, F (x, ·) is concave and continuous over Y . Then

max
y∈Y

min
x∈X

F (x, y) = min
x∈X

max
y∈Y

F (x, y).
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