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1 Introduction to Inference

1.1 Parameters, populations, and estimates

Definition 1.1.1 (Population). A population is the complete set of individuals or entities that
we are interested in. We usually only have data on a subset of them.

Definition 1.1.2 (Parameter). A parameter is any quantifiable feature of a population.

1.1.1 Common parameters of interest in statistics

The most common population parameters we are interested in are:

1. Mean

2. Proportions (averages of binary data)

1.1.2 Inference

Definition 1.1.3 (Inference). Inference involves using data to compute an estimate of a popu-
lation parameter of interest.

Remark. The population should always be defined in the context of where the results will be
applied. Accurate inference is only possible when the data is representative of the population
(i.e., the data is unbiased).

1.2 Bias in data

Example 1.2.1 (Survivorship bias). In the figure below, each dot corresponds to a place that a
returning plane has been hit. Where should you reinforce the plane’s armor?

4
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Figure 1.1: If the bullets hit the top circled area, the plane goes down and does not return.
The data is a biased representation of where the planes are getting hit.

Definition 1.2.2 (Biased). Data is biased if it does not reflect the population it was designed to
represent. Biased data leads to biased results.

Example 1.2.3. If AI-driven skin cancer detection is built only using patients with light skin
tones but is used to detect skin cancer in racially diverse patients, the algorithm might be
biased.

Random Variables We use random variables to represent all possible values that an unknown
quantity could take when we observe it.

1.3 Evaluating Estimators

1.3.1 Parameter bias

Definition 1.3.1 (Bias). The bias of an estimate, θ̂, of population parameter, θ, is

Bias(θ̂) = E[θ̂] − θ.

A parameter estimate is unbiased if the bias is 0.

Example 1.3.2 (Sample mean is unbiased). The sample mean, µ̂ = 1
n

∑
i=1 Xi is an unbiased

estimate of µ.

Proof.

E[µ̂] = E
[

1
n

n∑
i=1

Xi

]

= 1
n

n∑
i=1

E[Xi]

= 1
n

nµ

= µ.

5
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Question. A parameter estimate from a sample is biased if it is not equal to the underlying
population quantity it is supposed to represent?

Answer. False. Even if the parameter estimate is unbiased, there is no guarantee that the
parameter computer from a specific sample of data points will be exactly equal to the underlying
population parameter.

Remark. Unbiasedness is referring to the expected value of the estimate, not the sample esti-
mate itself.

1.3.2 Parameter variance

Definition 1.3.3 (Variance). The variance of a parameter estimate tells us how much it generally
changes across alternative equivalent versions of the data. The variance of an estimate, θ̂, of
population parameter, θ, is

Var(θ̂) = E[θ̂2] − E[θ̂]2.

Theorem 1.3.4 (Variance of sample mean).
The variance of sample mean µ̂ = 1

n

∑n
i=1 Xi is σ2

n .

Proof.

Var(µ̂) = Var
(

1
n

n∑
i=1

Xi

)
= 1

n2

n∑
i=1

Var (Xi)

= 1
n2 nσ2

= σ2

n
.

1.3.3 Mean Square Error

Definition 1.3.5. The Mean Squared Error (MSE) is a measure of how "good" an estimate θ̂ is.
The MSE is

MSE(θ̂) = E[(θ̂ − θ)2].

Theorem 1.3.6 (Bias-Variance Decomposition of MSE).
The MSE can be decomposed into the sum of squared bias and the variance of θ̂:

MSE(θ̂) = Var(θ̂) + Bias(θ̂)2.

6
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Proof.

MSE(θ̂) = E[(θ̂ − θ)2]
= E[θ̂2] − 2θE[θ̂] + θ2

= Var(θ̂) + E[θ̂]2

= Var(θ̂) + E[θ̂]2 − 2θE[θ̂] + θ2 = Var(θ̂) + (E[θ̂] − θ)2

= Var(θ̂) + Bias(θ̂)2.

1.4 Techniques for estimating bias, variance, and MSE from a single
data sample

1.4.1 Non-parametric bootstrap

• Treat the original sample as the population.

• Treat the bootstrapped sample as the sample.

• Draw samples from our sample with replacement (to ensure same size as the original
sample).

• Use these to estimate the bias and variance

Bias(µ̂) ≈ 1
N

N∑
k=1

µ̂∗
k − µ̂,

V ar(µ̂) ≈ 1
N

N∑
k=1

(µ̂∗
k − µ̂∗)2

where N is the number of bootstrapped samples and µ̂∗
k is the mean of kth bootstrapped

sample.

1.4.2 Parametric bootstrap

• Data distribution is known.

• Approximate distribution using µ̂ and σ̂.

• Use the distribution with the estimated parameters to draw parametric bootstrap
samples.

• The formulae for bias and variance estimates for parametric bootstrap are the same as
the non-parametric version.
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1.4.3 Law of Large Numbers

Theorem 1.4.1 (Law of Large Numbers).
If X1, X2, . . . , Xn is an IID sample, then

Xn
P−→ E[X1] as n → ∞.

1
n

n∑
i=1

Xk
i

P−→ E[Xk
1 ] as n → ∞.

1.4.4 Central Limit Theorem

Theorem 1.4.2 (Central Limit Theorem).
If X1, . . . , Xn is an IID sample form a population with mean µ and standard deviation σ,
then

Xn
D−→ N

(
µ,

σ2

n

)
as n → ∞.
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2 Maximum Likelihood Estimation

2.1 Likelihood Functions

Definition 2.1.1 (Maximum Likelihood Estimation). Maximum likelihood estimation is a gener-
ating technique for identifying reasonable estimates of the parameters form any distribution.
The idea is choose the value parameter based that is most likely to have led to our observed
data.

Definition 2.1.2. The likelihood function (θ) corresponds to the probability of observing the
particular data in our sample for various values of θ.

lik(θ) = P(X1 = x1, . . . , Xn = xn)

=
n∏

i=1
fθ(Xi).

Definition 2.1.3 (Maximum Likelihood Estimate). The maximum likelihood estimate θ̂MLE of a
parameter θ is the value that maximizes the likelihood function based on the observed data.

2.2 Steps for performing MLE

1. lik(θ) = ∏
i fθ(Xi).

2. ℓ(θ) = log (∏i fθ(Xi)) = ∑
i log(fθ(Xi)).

3. Differentiate the log-likelihood function with respect to θ, set to zero, and solve for θ.

Example 2.2.1. Normal(µ) If X1, . . . , Xn ∼ N (µ, σ2), then

lik(µ) =
n∏

i=1

1√
2πσ

exp
{

−(xi − µ)2

2σ2

}

= 1
(2πσ)n/2 exp

{
− 1

2σ2

n∑
i=1

(xi − µ)2
}

.

ℓ(µ) = −n

2 log(2πσ2) − 1
2σ2

n∑
i=1

(xi − µ)2

=⇒ µ̂ = 1
n

n∑
i=1

xi = x.

9
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We see that sample mean is actually a MLE estimator.

2.3 Properties of MLE Estimators

• Consistency: as the sample size gets larger the MLE approaches the true parameter
value.

• Normality: as the sample size gets larger the distribution of the MLE (as in if you
were able to compute various versions of the MLE from many different random samples)
becomse Normal.

2.3.1 Consistency

Definition 2.3.1 (Consistent). An estimate θ̂n of θ is consistent if

θ̂n
P−→ θ as n → ∞.

where θ̂
P−→ θ means that for all ϵ > 0,

P(|θ̂n − θ| > ϵ) → 0 as n → ∞.

Theorem 2.3.2 (Consistency of the MLE).
The MLE θ̂MLE,n is a consistent estimator of the parameter, θ, that it is estimating,
which means that

θ̂MLE,n
P−→ θ as n → ∞.

Sketch.

The consistency of the MLE implies that the MLE is asymtotically unbiased:

E[θ̂MLE,n] → θ as n → ∞.

Remark. Hence, we see that consistency is a stronger statement.

Theorem 2.3.3 (Continuous mapping theorem).
For any continuous function g, if θ̂

P−→ θ as n → ∞, then

g(θ̂) P−→ g(θ) as n → ∞.

Example 2.3.4. X
P−→→ µ as n → ∞, implies that X

2 P−→ µ2 as n → ∞.

10
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2.3.2 Asymptotic normality of the MLE

Theorem 2.3.5 (The MLE is asymptotically Normal).
The MLE is asymptotically normal. If θ̂ML,n is the ML estimate of a parameter θ whose
true value is θ0, then as n → ∞, we have that

θ̂ML,n
D−→ N

(
θ0,

1
nI(θ0)

)
as n → ∞,

where I(θ0) is the Fisher Information.

The mean follows from the consistency of the MLE.

Definition 2.3.6 (Fisher information). The Fisher information is defined by

I(θ0) = E

( d

dθ
log(fθ(x))

∣∣∣∣
θ0

)2


or
I(θ0) = −E

[
d2

d2θ
log(fθ(x))

∣∣∣∣∣
θ0

]
.

It measures how "peaked" some function ℓ(θ) is around θ0. If I(θ0) is large, then it is easier to
detect θ0, which implies lower variance.

2.3.3 Delta Method

Theorem 2.3.7 (Delta method).
By CLT, we know that

√
n(Xn − µ) D−→ N (0, σ2) as n → ∞.

For any function g such that g′(µ) exists and is non-zero, then
√

n(g(Xn)) − g(µ)) D−→ N (0, σ2g′(µ)2)

11



3 Method of Moments

3.1 Moments

Definition 3.1.1 (Moment). The k-th moment of X is

µk = E[Xk].

Another way to formulate a parameter estimate is by relating sample moments to the theo-
retical moments. For example,

Theoretical moment: E[X] Sample moment: Xn = 1
n

n∑
i=1

Xi.

3.2 MOM vs MLE

Theorem 3.2.1 (MOM estimators are consistent).

θ̂MOM
P−→ θ0 as n → ∞.

Proof. This follows from the LLN for moments: if X1, . . . , Xn is an IID sample, then

1
n

n∑
i=1

XK
i

P−→ E[Xk
1 ] as n → ∞.

Remark. MOM estimators don’t have limiting distribution results like the MLE. That’s why
MLE are used more often.

3.3 Cramer-Rao lower bound

While the MLE and MOM often yield the same estimatros, they will sometimes differ.

Question. How should we compare two possible estimators for the same parameter?

Answer. Compare their bias/ variance.

12
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Theorem 3.3.1 (Cramer-Rao lower bound).
If Xi are IID from a distribution with density fθ, under smoothness conditions on fθ, we
have that: if θ̂ is an unbiased estimator for θ, then

Var(θ̂) ≥ 1
nI(θ)︸ ︷︷ ︸

variance of MLE

.

Interpretation: This result essentially states that the price to pay for having an unbiased
estimator is a certain amount of variance.

Remark. This means that the MLE has the lowest possible variance among unbiased estimators!

3.4 Efficiency

Definition 3.4.1 (Efficiency). Given two estimators θ̂ and θ̃ of a parameter θ, the efficiency of
θ̂ relative to θ̃ is

eff(θ̂, θ̃) = Var(θ̃)
Var(θ̂)

.

If eff(θ̂, θ̃) ≤ 1, then Var(θ̂) ≥ Var(θ̃), which implies that θ̂ is less efficient that θ̃.

3.4.1 Efficient estimators

Definition 3.4.2 (Efficient estimator). An unbiased estimator that achieves the Cramer-Rao
lower bound is called efficient. The Cramer-Rao lower bound is

Var(θ̂) = 1
nI(θ) .

Remark. Unbiased estimators cannot do better in terms of variance than the Cramer-Rao lower
bound. If an estimator actually does better than the lower bound, then it is biased.

Remark. The MLE is asymptotically efficient. (not necessarily efficient for finite samples)

3.5 Sufficiency

X1, . . . , Xn can be high-dimensional and might be expensive to store. It’d be neat if there was
a function T of the data (statistic) that contains all of the information about a parameter of
interest.

13
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Definition 3.5.1 (Sufficient). A statistic T is sufficient for θ if P((Xi)n
i=1 | T (X1, . . . , Xn) = t)

does not depend on θ for any t.

Example 3.5.2 (Examples of statistics). Xn, Var(Xn), max {X1, . . . , Xn}.

Suppose that X1, . . . , Xn ∼ F (θ). Then T (X1, . . . , Xn) is a sufficient statistic for θ if the statis-
tician who knows the value of T can do just a good job of estimating the unknown parameter
θ as the statistician who knows the entire random sample.

Theorem 3.5.3 (The Factorization Theorem).
A necessary and sufficient condition for T to be sufficient for θ is

fθ(x1, . . . , xn) = gθ(T )h(x1, . . . , xn).

The density can be factors into a product such that one factor h, which does not depend on θ,
and another factor, g, which does depend on θ, and depends on (x1, . . . , xn) only through T .

Ways to show that a statistic T is sufficient for θ

1. Calculate P(X1 = x1, . . . , Xn = xn | T (X1, . . . , Xn)) and show it is independent of θ.

2. Use factorization theorem and show that the density can be factorized as

fθ(x1, . . . , xn) = gθ(T )h(x1, . . . , xn).

Remark. If we don’t already have a sufficient statistic in mind, the factorization approach can
be used to find sufficient statistics.

Example 3.5.4 (Finding sufficient statistic for Poisson). Consider Xi IID Poisson(λ) and that the
parameter of interest is = e−λ. The PMF is

P(X = x) = e−λλx

x! = −θ log (θ)x

x! .

fθ (x1, . . . , xn) =
∏

i

(
−θ log(θ)xi

xi!

)
= θn(− log θ)

∑
i

xi · 1∏
i xi!

=⇒ gθ(T ) = θn(− log θ)
∑

i
xi , h(x) = 1∏

i xi!
So T = ∑

i Xi is a sufficient statistic for θ.

Corollay 3.5.5. If T is sufficient for θ, then θ̂MLE is a function of T .

Proof. If fθ(x1, . . . , xn) = gθ(T )h(x1, . . . , xn), then

log (L(θ)) = log(gθ(T )) + log(h(x1, . . . , xn)).

So log(h(x1, . . . , xn)) plays no role in the maximization since it does not involve θ.

14
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3.6 Rao-Blackwell theorem and the bias-variance tradeoff

Theorem 3.6.1 (Rao-Blackwell Theorem).
Suppose that θ̂ is an estimator for θ (with E[θ̂2] < ∞) and that T is a sufficient statistic
for θ. If we define a new estimator to be

θ̃ = E[θ̂ | T ].

Then MSE(θ̃) ≤ MSE(θ̂).

Interpretation: if we know a sufficient statistic T , and we have an estimator θ̂, then we can
define an even better estimator θ̃ for θ which has smaller MSE.

15



4 Confidence Intervals

Corollay 4.0.1. If X1, . . . , Xn is an IID sample from a population with mean µ and standard
deviation σ, then

X − µ

σ/
√

n
D−→ N (0, 1) as n → ∞.

In addition,

P
(

X − µ

σ/
√

n
≤ z

)
→ Φ(z) as n → ∞.

4.1 Definition of confidence intervals

4.1.1 Quantile

Let Z ∼ N (0, 1). Define zα to be the (1 − α)-quantile of the N (0, 1) distribution, then

P(Z < zα) = 1 − α.

Definition 4.1.1. A confidence interval is an interval that is calculated in such a way that it
contains the true population value of θ with some specified probability (1 − α), where (1 − α)
is the coverage probability or confidence level.

A common choice is α = 0.05, which corresponds to a 95% confidence interval.

Definition 4.1.2. A (1−α)% confidence interval [L, U ] for a parameter θ, is an interval calculated
from a sample that contains θ with probability

P(L ≤ θ ≤ U) ≥ 1 − α.

4.2 Generating confidence intervals for general parameter
estimates

If our estimator approximately satisfies (by CLT, or MLE)

θ̂ − θ

σθ̂

∼ N (0, 1).

16
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Then we have approximately

P
(

−1.96 <
θ̂ − θ

σθ̂

< 1.96
)

= 0.95,

or more generally, that

P
(

−zα/2 <
θ̂ − θ

σθ̂

< zα/2

)
= 1 − α.

Rearranging gives
P
(
θ̂ − zα/2σθ̂ < θ < θ̂ + zα/2σθ̂

)
= 1 − α.

Thus, a (1 − α)% CI for θ (when θ̂−θ
σθ̂

is approximately N (0, 1)), can be computed as

[θ̂ − zα/2σθ̂, θ̂ + zα/2σθ̂].

This interval contains the true θ with probability 1 − α.

Remark. The interval is centered at the sample estimate, θ̂.

Example 4.2.1. X1, . . . , Xn IID with mean µ and standard deviation σ. Then the (1 − α)% CI
for µ can be computed as follows:

By CLT, we have
X − µ

σ/
√

n

approx∼ N (0, 1).

Then
P
(
−zα/2 ≤ fracX − µσ/

√
n ≤ zα/2

)
≈ 1 − α.

Rearranging gives
P
(

X −
zα/2σ
√

n
≤ µ ≤ X + zα/2σ√

n

)
≈ 1 − α.

Thus, the (1 − α)% CI for µ is [
X −

zα/2σ
√

n
, X + zα/2σ√

n

]
.

4.3 Confidence intervals for the MLE

X1, . . . , Xn (where n is fairly large) are IID from any distribution with parameter θ and θ̂MLE

is the MLE estimate of θ, a (1 − α)%Cl for θ is:

By the asymptotic normality of the MLE, we know that

θ̂MLE − θ

σθ̂MLE

= θ̂MLE − θ√
1/nI(θ)

∼ N(0, 1)

17
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So a (1 − α)% confidence interval for θ̂MLE is

[
θ̂MLE − zα/2σθ̂MLE

, θ̂MLE + zα/2σθ̂MLE

]
=

θ̂MLE −
zα/2√

nI
(
θ̂MLE

) , θ̂MLE +
zα/2√

nI
(
θ̂MLE

)
 .

However, we don’t know the SD of the parameter estimate. For the mean σX = σ√
n

. But we
don’t know σ. We can estimate it from the data using

σ̂ =

√√√√ 1
n − 1

n∑
i=1

(Xi − Xn)2.

Remark. For a general estimator, θ̂, we can estimate σθ̂ using bootstrap.

4.4 Confidence intervals for the mean: unknown population
variance

If the Xi’s are IID with unknown population variance σ2, then an unbiased estimate is

σ̂2 = 1
n − 1

n∑
i=1

(Xi − Xn)2.

It turns out that
X − µ

σ̂/
√

n
∼ tn−1

where tn−1 is the t-distribution with n − 1 degrees of freedom. So the (1 − α)% CI is[
X −

tn−1,α/2√
n

σ̂, X +
tn−1,α/2√

n
σ̂

]
.

where tn−1,α is the value such that

P(T ≤ tn−1,α) = 1 − α.

4.5 Coverage

Definition 4.5.1 (Coverage). The coverage of (1 − α)% confidence interval is the (expected)
proportion of the intervals that actually cover the true parameter.

18



5 Hypothesis Testing

5.1 The null and alternative hypotheses

Definition 5.1.1 (Hypothesis testing). Hypothesis testing is a method of using inference to test
a hypothesis.

Example 5.1.2. Suppose the DMV claims that the average waiting time is 20 minutes. We
want to test whether the average waiting time at the DMV is actually more than 20 minutes.

We want to test the null hypothesis:
H0 : µ = 20

against the alternative hypothesis
H1 : µ > 20.

We will use data from a random sample of waiting times and determine whether we have enough
evidence to show that the average waiting time for the population is more than 20 minuets.

5.2 Terminology

When conducting a hypothesis test, we either

1. have enough evidence to reject the null hypothesis (H0 : µ = 20) in favor of the alternative
hypothesis.

2. Don’t have enough evidence to reject the null hypothesis.

Remark. We are never proving either hypothesis is true.

5.3 The test statistic

Suppose that our data X1, . . . , Xn are IID from any distribution with variance σ2. We want to
test the null hypothesis: H0 : µ = µ0 against the alternative hypothesis: H1 : µ > µ0. What
statistic T (X1, . . . , Xn) could give us evidence to suggest whether we have evidence in favor
of the alternative hypothesis? The sample mean Xn. But let’s scale it: we call it the Z-test
statistic:

Z = Xn − µ0
σ/

√
n

.

19
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Under H0, we have Z ∼ N (0, 1) by CLT. If our test statistic looks unlikely to have come from
a N (0, 1) distribution (e.g., because it’s magnitude is very large), then this is evidence against
H0.

5.4 The p-value

Question. How do we determine what values of the test statistic z are big enough such that we
can reasonably conclude that we have enough evidence against our null hypothesis?

Definition 5.4.1 (p-value). The p-value is the probability of observing a test statistic that is
“as or more extreme” than z, assuming the null hypothesis is true. (the definition of extreme
is based on the alternative hypothesis).

p-value = P(Z ≥ z | H0) = P
(

Z ≥ xn − µ0
σ/

√
n

| H0

)
.

Remark. The p-value is NOT the probability that the null is false nor is it the probability that
the alternative is true.

5.5 Critical value and statistical significance

Definition 5.5.1 (Critical value). The critical value or significance level α, is the value beyond
which we reject the null hypothesis, i.e. we reject the null hypothesis when the p-value is less
than α.

Remark. Convention says to reject the null hypothesis when the p-value is less than 0.05. We
choose the significance level ourselves! In other words, the conventional significance level is
α = 0.05.

Definition 5.5.2 (Statistical significance). When the p-value is less than the significance level,
(e.g., p-value < 0.05), the result is said to be statistically significant.

5.6 Rejection and acceptance regions

Definition 5.6.1 (Rejection/acceptance region). The set of values of for which H0 is rejected/not
rejected is called the rejection/acceptance region.

Remark. Recall that we do not technically “accept” the null. We just gather evidence against
it, and see if we have enough evidence to reject it.
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5.7 Alternative hypothesis formats

There are several common forms of alternative hypotheses:

1. Composite hypotheses:

a) One-sided tests: H1 : µ > µ0 or H1 : µ < µ0

b) Two-sided tests: H1 : µ ̸= µ0.

2. Simple hypothesis

a) H1 : µ = µ1.

If the observed test statistic is z = xn−µ0
σ/

√
n

. Then

Null Alternative p-value
H0 : µ = µ0 H1 : µ > µ0 P(Z ≥ z | H0) = 1 − Φ(z)

H1 : µ < µ0 P(Z ≤ z | H0) = Φ(z)

H1 : µ ̸= µ0 P(|z| ≥ |z| | H0) = 2(1 − Φ(|z|))

Theorem 5.7.1.
If X1, . . . , Xn is an IID sample from a population with mean µ and standard deviation σ,
then

P(|X − µ| ≤ δ) ≈ 2Φ
(√

nδ

σ

)
− 1

regardless of the original distribution of the Xi.

Proof.

P(|X − µ| ≤ δ) = P
(∣∣∣∣∣X − µ

σ/
√

n

∣∣∣∣∣ ≤ δ
√

n

σ

)
≈ P

(
|Z| ≤ δ

√
n

σ

)
= 2Φ

(√
nδ

σ

)
− 1.

5.8 Duality of hypothesis testing and confidence intervals

The 95% confidence interval for µ is[
X − 1.96 σ√

n
, X + 1.96 σ√

n

]
.

If we have H0 : µ = µ0 against H1 : µ ̸= µ0, then the acceptance region is

−1.96 ≤ X − µ0
σ/

√
n

≤ 1.96.
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Rearranging gives
X − 1.96 σ√

n
≤ µ0 ≤ X + 1.96 σ√

n
.

If a 95% confidence interval for µ contains µ0, then we would not reject H0 at the α = 0.05
level.

5.9 Type I and Type II errors

Definition 5.9.1 (Type I error). Rejecting the null hypothesis H0 when it is actually true. The
significance level/critical value α is the probability of type I error.

Definition 5.9.2 (Type II error). Failing to reject the null hypothesis, H0, when it is actually
false. If β is the probability of a type II error, then 1 − β, called the power, is the probability
of detecting an effect if the effect exists.

5.9.1 Power

P(Type II error) = β = P(do not reject H0 | H0 false).

Power = 1 − β = P(reject H0 | H0)
= P(reject H0 | H1 true).

5.10 T-test: Variance unknown, data normal

Our original test statistic was

Z = Xn − µ0
σ/

√
n

but we don’t know σ. We can use the sample standard deviation σ̂. If the Xi’s are IID N (µ0, σ2),
then

T = Xn − µ0
σ̂/

√
n

∼ tn−1.
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6 Likelihood Ratio Test

6.1 Likelihood ratio

Assume IID data X1, . . . , Xn from a distribution with density function fθ(x). The likelihood
function for X1, . . . , Xn is fθ(x1, . . . , xn). We want to test

H0 : θ = θ0

H1 : θ = θ1.

Definition 6.1.1 (Likelihood ratio). The likelihood ratio is the ratio of the likelihoods under each
hypothesis:

Λ = lik(θ0)
lik(θ1) = fθ0(x1, . . . , xn)

fθ1(x1, . . . , xn)
The LR is an intuitive measure of how plausible H0 is vs H1. A smaller LR would imply that
H1 is more likely than H0.

6.2 Likelihood ratio test

The likelihood ratio test rejects H0 when

fθ0(x1, . . . , xn)
fθ1(x1, . . . , xn) < cα,

where cα is some number that depends on the significance level α.

6.3 Neyman-Pearson Lemma

Theorem 6.3.1 (Neyman-Pearson Lemma).
Suppose we have H0 : θ = θ0 and H1 : θ = θ1 and that the likelihood ratio test that rejects
H0 when

fθ0(X1, . . . , Xn)
fθ1(X1, . . . , Xn) < c(α)

has significance level α. Then other simple test with significance level α′ ≤ α has power
less than or equal to that of the LRT.

Conclusion: if we can design a likelihood ratio test with significance level , then it is the most
powerful (i.e., best) test at this significance level (among tests with simple hypotheses)!
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6.4 Two-sample z-tests: variance known

So far we have only asked questions about whether a population parameter (e.g., the mean or
a proportion) is equal to a particular value.
In practice, it is more common to ask whether the mean/proportion for two different popula-
tions are equal to each other.

Suppose we have X1, . . . , Xn IID from a population with unknown mean µ1 and Y1, . . . , Ym IID
from a population with unknown mean µ2. Then

H0 : µ1 = µ2 H1 : µ1 > µ2

H1 : µ1 < µ2

H1 : µ1 ̸= µ2.

Under H0, µ1 − µ2 = 0. Let’s use this to formulate a test statistic.

Z = (xn − ym) − 0
SD(Xn − Y m)

= xn − yn√
σ2

1
n + σ2

2
m

H0∼ N (0, 1).

Then under H1 : µ1 < µ0:

p-value = Φ

 xn − ym√
σ2

1
n + σ2

2
m

 .

When under H1 : µ1 > µ0:

p-value = 1 − Φ

 xn − ym√
σ2

1
n + σ2

2
m

 .

When under H1 : µ1 ̸= µ0:

p-value = 2

1 − Φ

 xn − ym√
σ2

1
n + σ2

2
m

 .

6.5 Two-sample t-tests: variance unknown

Now suppose Xi’s and Yi’s have unknown variance. Then

T = xn − ym√
σ2

1
n + σ2

2
m

∼ tdf ,

where

df =

(
s2

1
n + s2

2
m

)2

s4
1

n2(n−1) + s4
2

m2(m−1)

.

This is often called Welch’s t-test.
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6.5.1 Two-sample t-tests: variance unknown but equal

T = xn − ym

sp

√
1
n + 1

m

∼ tn+m−2,

where
s2

p =
∑n

i=1(xi − x)2 +∑m
i=1(yi − y)2

n + m − 2 .

When n = m,

s2
p = (s2

1 + s2
2)

s
.

6.6 Non-parametric two-sample test

6.6.1 Mann-Whitney test

What if we don’t want to assume our data is normal? Suppose X1, . . . , Xn are IID with un-
known distribution F and Y1, . . . , Ym are IID with unknown distribution G.

The Mann-Whitney test checks if there is a difference in the ranks of the two samples.

6.6.2 Mann-Whitney U-statistic

The U test statistic computes the amount of overlap in the ranks in each sample. Consider U as
the intersection of the ranks of two sets X and Y . Then the smaller U is, the bigger difference
between groups and similarly the bigger U is, the smaller difference between groups.

Remark. A smaller U test statistic is more significant.

6.6.3 Steps to calculate U-statistic

1. Compute the rank sum of each group.

2. Identify which group has the smaller rank sum.

3. For each data point in this group, add up how many data points in the other group are
smaller in rank (ties get 0.5).

4. Compare with the critical value.
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Let n be the number of data from group 1 and m be the number of data from group 2. Let
R1, R2 be the sum of ranks for each group respectively. Then we have

U1 = mn + n(n + 1)
2 − R1

U2 = mn + m(m + 1)
2 − R2

U = min (U1, U2).

6.7 Two-sample test for proportions

Suppose X1, . . . , Xn ∼ Bernoulli(p1), Y1, . . . , Ym ∼ Bernoulli(p2) and H0 : p1 = p2, H1 : p1 ̸= p2.
Then

z = p̂1 − p̂2 − 0√
p̂(1 − p̂)

(
1
n + 1

m

) Under H0∼ N (0, 1),

where
p̂ =

∑
i Xi +∑

i Yi

n + m
.

6.8 Paired two-sample tests

Compare paired observations from two groups. For example, salary of twins, weight before and
after an intervention, midterm and final exam for the same set of students.

6.8.1 Paired two-sample Z-test

X1, . . . , Xn IID and Y1, . . . , Yn IID. The classic two-sample Z-test would test:

H0 : µX = µY

H1 : µX ̸= µY .

But if the data are paired, this can be reduced to a single-sample test that the mean difference
equals 0. Define Di = Xi − Yi. Then

H0 : µD = 0
H1 : µD ̸= 0.

Z = D − 0
σD/

√
n

Under H0∼ N (0, 1).

p-value = P
(

|Z| ≥
∣∣∣∣∣ d

σd/
√

n

∣∣∣∣∣
)

= 2
(

1 − Φ
(∣∣∣∣∣ d

σd/
√

n

∣∣∣∣∣
))

.
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6.8.2 Unpaired vs paired two-sample test

Unpaired two-sample test:

Xi, Yi independent and

T = X − Y√
Var(X − Y )

where
Var(X − Y ) = 1

n
(σ2

X + σ2
Y ).

If σX = σY ,

Var(X − Y ) = 2σ2

n
.

Paired two-sample test:

Xi, Yi dependent and let Di = Xi − Yi.

T = D√
Var(D)

= X − Y√
Var(D)

where
Var(D) = 1

n
(σ2

X + σ2
Y − 2ρσXσY ).

If σX = σY ,

Var(D) = 2σ2(1 − ρ)
n

.

6.9 Non-parametric paired two-sample test

6.9.1 Sign test

X IID from distribution F and Y IID from distribution G.

H0 : F = G

H1 : F > G.

27


	Introduction to Inference
	Parameters, populations, and estimates
	Common parameters of interest in statistics
	Inference

	Bias in data
	Evaluating Estimators
	Parameter bias
	Parameter variance
	Mean Square Error

	Techniques for estimating bias, variance, and MSE from a single data sample
	Non-parametric bootstrap
	Parametric bootstrap
	Law of Large Numbers
	Central Limit Theorem


	Maximum Likelihood Estimation
	Likelihood Functions
	Steps for performing MLE
	Properties of MLE Estimators
	Consistency
	Asymptotic normality of the MLE
	Delta Method


	Method of Moments
	Moments
	MOM vs MLE
	Cramer-Rao lower bound
	Efficiency
	Efficient estimators

	Sufficiency
	Rao-Blackwell theorem and the bias-variance tradeoff

	Confidence Intervals
	Definition of confidence intervals
	Quantile

	Generating confidence intervals for general parameter estimates
	Confidence intervals for the MLE
	Confidence intervals for the mean: unknown population variance
	Coverage

	Hypothesis Testing
	The null and alternative hypotheses
	Terminology
	The test statistic
	The p-value
	Critical value and statistical significance
	Rejection and acceptance regions
	Alternative hypothesis formats
	Duality of hypothesis testing and confidence intervals
	Type I and Type II errors
	Power

	T-test: Variance unknown, data normal

	Likelihood Ratio Test
	Likelihood ratio
	Likelihood ratio test
	Neyman-Pearson Lemma
	Two-sample z-tests: variance known
	Two-sample t-tests: variance unknown
	Two-sample t-tests: variance unknown but equal

	Non-parametric two-sample test
	Mann-Whitney test
	Mann-Whitney U-statistic
	Steps to calculate U-statistic

	Two-sample test for proportions
	Paired two-sample tests
	Paired two-sample Z-test
	Unpaired vs paired two-sample test

	Non-parametric paired two-sample test
	Sign test



