
CS182
Deep Learning

Notes

Instructor: Marvin Zhang

Kelvin Lee

UC Berkeley

Contents

1 Machine Learning Basics 3
1.1 Machine Learning Method . 3
1.2 Empirical Risk . 4

2 Optimization 6
2.1 Stochastic Gradient Descent . 6
2.2 Learning rate adjustment . 6
2.3 Momentum . 6
2.4 Nesterov’s accelerated gradient . 7
2.5 Gradient directions vs magnitudes . 7
2.6 Adam . 7
2.7 Weight decay vs ℓ2-regularization . 8
2.8 Tuning the optimization . 8

2

1

Machine Learning Basics

1.1 Machine Learning Method

1. Define your model.

2. Define your loss function.

3. Define your optimizer.

4. Run it on a big GPU.

1.1.1 Maximum Likelihood Principle

Given data D = {(x1, y1), . . . , (xN , yN)}. Assume a set (family) of distributions on (x, y).

θMLE = argmax
θ∈Θ

p(D | θ)

= argmax
θ∈Θ

N∏
i=1

p(xi)pθ(yi | xi)

= argmax
θ∈Θ

N∑
i=1

log p(xi) + log pθ(yi | xi)

= argmax
θ∈Θ

N∑
i=1

log pθ(yi | xi)

= argmin
θ∈Θ

N∑
i=1

− log pθ(yi | xi)

= argmin
θ∈Θ

n∑
i=1

ℓ(θ;xi, yi).

1.1.2 Cross-entropy loss

Definition 1.1.1 (Cross-entropy loss).

H(p, q) = −
∑
x

p(x) log q(x) = Ep[− log q(x)].

3

CS 182: Deep Learning Kelvin Lee

Let’s plug in pdata (true data distribution) for p and pθ for q:

H(pdata, pθ) = Epdata [− log pθ(x, y)]

= Epdata [− log p(x)− log pθ(y | x)].

1.1.3 Optimization techniques

Gradient-based optimization:

θ ← θ − α∇θ
1

N

N∑
i=1

ℓ(θ;xi, yi)

Example 1.1.1 (Logistic Regression). Given x ∈ Rd, define fθ(x) = θ⊤x, where θ is a d × K
matrix. Then for class c ∈ {0, . . . ,K − 1}, we have

pθ(y = c | x) = softmax(fθ(x))c.

The loss function is
ℓ(θ;x, y) = − log pθ(y | x).

Optimization:

θ ← θ − α∇θ
1

N

N∑
i=1

ℓ(θ;xi, yi).

1.2 Empirical Risk

Question. How do we determine whether we are satisfied with the model?

Definition 1.2.1 (Risk). Risk is defined as expected loss:

R(θ) = E[ℓ(θ;x, y)].

It is sometimes called true risk to distinguish from empirical risk defined below.
Empirical risk is the average loss on the training set:

R̂(θ) =
1

N

N∑
i=1

ℓ(θ;xi, yi).

Supervised learning is oftentimes empirical risk minimization (ERM).

Question. Is this the same as true risk minimization? The empirical risk looks like a Monte Carlo
estimate of the true risk, so shouldn’t R̂(θ) ≈ R(θ) Why might this not be the case?

• The issue here is that we are already using the training dataset to learn θ. We can’t reuse the
same data to then get an estimate of the risk.

• When the empirical risk is low, but the true risk is high, we are overfitting.

• When the empirical risk is high, but the true risk is also high, we are underfitting.

• Generally, the true risk won’t be lower than the empirical risk.

4

CS 182: Deep Learning Kelvin Lee

1.2.1 Overfitting and underfitting

• Overfitting happens usually when the dataset is too small and/or the model is too ”powerful”.

• Underfitting happens usually when the model is too ”weak” and/or the optimization doesn’t work
well (i.e., the training loss does not decrease satisfactorily)

1.2.2 Model class and capacity

Definition 1.2.2 (Model class). Model class refers to the set of all possible functions that the chosen
model can represent via different parameter settings. For example, the set of all linear functions.

Definition 1.2.3 (Capacity). The capacity of a model (class) is a measure of how many different
functions it can represent.

5

2

Optimization

2.1 Stochastic Gradient Descent

Computing ∇θ
1
N

∑N
i=1 ℓ(θ;xi, yi) every iteration for large N is a bad idea. Thus, we use SGD:

• Pick a batch size (mini batch size) B << N , randomly sample {(x1, y1), . . . , (xB, yB} from
the training data and compute

∇θ
1

B

B∑
i=1

ℓ(θ;xi, yi).

• Sampling the mini batch i.i.d. is rather slow due to random memory accesses.

• Instead, we shuffle the dataset and construct mini batches from consecutive data points.

• After each pass on the training data (epoch), we reshuffle.

2.2 Learning rate adjustment

• Commonly, a learning rate schedule will be used rather than a constant.

• Linear decay decreases the learning rate a constatn amount each iteration:

αi = α0

(
1− i

max steps

)
• Cosine annealing decays the learning rate according to :

αi = α0 · 0.5
[
1 + cos

(
π · i

max steps

)]
.

2.3 Momentum

Intuitively, we want the optimization to remember the gradient steps it has taken.

• We do so by modifying the update rule:

θ ← θ − αg

6

CS 182: Deep Learning Kelvin Lee

• Before g = ∇θ
1
N

∑
i ℓ(θ;xi, yi). Now,

g ← ∇θ
1

N

N∑
i=1

ℓ(θ;xi, yi) + µg

• This is an example of an exponential moving average: gradients further in the past have expo-
nentially less weight.

2.4 Nesterov’s accelerated gradient

• Nesterov’s accelerated gradient is another optimization approach which enjoys interesting the-
oretical guarantees on some problems

• It can be interpreted as a variant on the momentum approach we described.

• The difference is

g ← ∇θ
1

N

N∑
i=1

ℓ(θ + µg;xi, yi) + µg.

• It looks ahead to see if the choice of direction is a good idea.

2.5 Gradient directions vs magnitudes

• The sign of the gradient is useful for telling us which direction to move in.

• However, the magnitude of the gradient is not as useful/trustworthy.

– We may have loss landscapes that are not sufficiently smooth.

– Gradient magnitudes also tend to start out large and end up very small.

• Normalizing the gradient magnitudes along each dimension can lead to an effective optimization
strategy.

2.6 Adam

Basic idea: combine momentum with a second moment adjustment.

θ ← θ − αg.

Define momentum m such that

m← (1− β1)∇θℓ+ β1m.

Second moment estimate:

v ← (1− β2)(∇θℓ)
2 + β2v.

7

CS 182: Deep Learning Kelvin Lee

Bias correction:

m̂ =
m

1− βt
1

v̂ =
v

1− βt
2

.

Then

g =
m̂√
v̂ + ϵ

Question. What’s so great about Adam?

• Empirically, Adam seems to work well out of the box for many neural networks.

• It combines momentum with a cheap approximation of second order information —actual second
order methods like Newton’s method are far too expensive.

• There’s also some relationship to methods which adapt the learning rate separately for each
parameter.

2.7 Weight decay vs ℓ2-regularization

• Remember that adding λ∥θ∥22 to the loss function is ℓ2-regularization.

• Weight decay is an extra step in the optimization: after taking a gradient step, we do θ ← (1−λ)θ
(shrinking the parameters toward zero).

• For stochastic gradients, ℓ2-regularization and weight decay are the same.

2.8 Tuning the optimization

• α0 = 0.001 is a good number to start from but this usually requires tuning.

• A useful rule-of-thumb: if some α0 is good for some B, then kα0 is often a good value for kB.

• µ = 0.9 is a good default value for momentum.

• β1 = 0.9, β2 = 0.999, e = 10−8 for Adam usually don’t require tuning.

8

	Machine Learning Basics
	Machine Learning Method
	Empirical Risk

	Optimization
	Stochastic Gradient Descent
	Learning rate adjustment
	Momentum
	Nesterov's accelerated gradient
	Gradient directions vs magnitudes
	Adam
	Weight decay vs 2-regularization
	Tuning the optimization

