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Introduction

1.1 Classification

Goal: Predict which class each new data point belongs to give a set of known classified points.
Classifiers: k-nearest-neighbor classifier, linear classifier.

Figure 1.1: Left: 1-nearest-neighbor Classifier. Right: Linear Classifier.

Figure 1.2: Left: 1-nearest-neighbor Classifier. Right: 15-nearest-neighbor Classifier.

Advantages: Left figure correctly classifies all the data points. Right figure has smoother decision
boundary, which is more likely to correspond to reality.
Disadvantages: There is an overfitting issue with the left figure. The decision boundary is too
intricate.
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1.1.1 Classifying Digits

We express images as vectors where each entry correspond to each pixel. The linear decision boundary
is a hyperplane.

1.1.2 Validation

Question. What k should we use for nearest-neighbor classifier and how do we choose between nearest-
neighbor classifier or linear classifier?

We figure these out through a process called validation. The basic steps are as follows:

• Train a classifier: it learns to distinguish 7 from not 7 for example.

• Test the classifier on new images.

There are two types of errors that could happen in these stages: training set error and test set error.

Definition 1.1.1 (Training set error). Fraction of training images not classified correctly.

Remark. For 1-nearest-neighbor classifier it would be 0 because each point is classified correctly, whereas
for linear classifier, it is always positive because we cannot classify all points correctly using a linear
decision boundary. Note that zero error in the training set is an indication of overfitting.

Definition 1.1.2 (Test set error). Fraction of misclassified new images, not seen during training.

Definition 1.1.3 (Outliers). Points whose labels are atypical.

Definition 1.1.4 (Overfitting). When the test error deteriorates because the classifier becomes too
sensitive to outliers or other spurious patterns.

Remark. In machine learning, the goal is to create a classifier that generalizes to new examples that
are unseen yet. Overfitting is counterproductive to that goal. So we’re seeking a compromise: we want
decision boundaries that make fine distinctions without being downright superstitious.

Most ML algorithms have a few hyperparameters that control over/underfitting, for example the k in
k-nearest neighbor algorithm.
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Figure 1.3: The orange curves are test and the blue are training error for k-nearest-neighbor classifica-
tion. We see that at k = 7, which is optimal, is when the test error is the lowest. Underfitting happens
when k gets too large and overfitting happens when k is too small. (k = 1 has zero training error)

Remark. A low training error does not imply a low testing error. We choose the optimal hyperparameters
based on the testing error.

We select hyperparameters by validation:

• Hold back a subset of the labeled data, called the validation set, which is chosen randomly.

• Train the classifier multiple times with different hyperparameter settings.

• Choose the setting that work best on validation set.

Now we have 3 sets:

• Training set: used to learn model weights.

• Validation set: used to tune hyperparameters, choose among different models.

• Test set: used as final evaluation of model. Run once at the very end.

6



2

Linear Classifiers and Perceptron

2.1 Classifiers

Given sample of n observations, each with d features. Some observations belong to class C; some do
not. We represent each observation as a point in d-dimensional space, called a sample point / feature
vector / independent variables.

Definition 2.1.1 (Decision boundary). The boundary chosen by our classifier to separate items in the
class from those not.

Definition 2.1.2 (Overfitting). When sinuous decision boundary fits sample points so well that it doesn’t
classify future points well.

Some classifiers work by computing a decision function:

Definition 2.1.3 (Decision function). Also called predictor function or discriminant function. It is
a function f(x) that maps a sample point x to a scalar such that

f(x) > 0 if x ∈ class C;
f(x) ≤ 0 if x 6∈ class C.

For these classifiers, the decision boundary is
{
x ∈ Rd | f(x) = 0

}
, i.e., a set of points where the de-

cision function is zero. Usually, this set is a (d− 1)-dimensional surface in Rd.

Definition 2.1.4. {x | f(x) = 0} is also called an isosurface of f for the isovalue 0. f has other
isosurfaces for other isovalues, e.g., {x | f(x) = 1}.
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Figure 2.1: 3D plot and isocontour plot of the cone f(x, y) =
√
x2 + y2 − 3

Figure 2.2: One of these spheres could be the decision boundary.

For linear classifier, the decision boundary is a line / plane. Usually a linear decision function is used.
Sometimes there is no decision function, which will be covered later.
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2.1.1 Math Review

2.1.1.1 Vectors

x =


x1

x2
...
xd

 = [ x1 x2 . . . xd ]>

2.1.1.2 Inner Product (Dot Product)

x · y = x>y =

d∑
i=1

xiyi

2.1.1.3 Euclidean Norm

‖x‖ =
√
x · x =

√√√√ d∑
i=1

x2
i

‖x‖ is the Euclidean length of a vector x. The unit vector x
‖x‖ is obtained by normalization.

Dot products can be used to compute angles:

cos θ =
x · y
‖x‖‖y‖

=
x

‖x‖
· y
‖y‖

x · y > 0 acute angle
x · y = 0 right angle
x · y < 0 obtuse angle

2.1.1.4 Hyperplane

Given a linear decision function f(x) = w · x+ α, the decision boundary is

H = {x | w · x+ α = 0},

which is a hyperplane (a line in 2D, a plane in 3D). Three most important points about hyperplane to
keep in mind:

• It has dimension d− 1.

• It cuts the d-dimensional space into two halves.

• It’s flat and infinite.

Theorem 2.1.5. Let x,y be two points that lie on H. Then w · (y − x) = 0.

Proof. Since x and y are both in H, we have

w · (y − x) = w · y −w · x = −α− (−α) = 0.
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Recall that if a dot product is equal to 0, it means that the two vectors are orthogonal to each other.
In this case, we see that w is orthogonal to each vector in H and we call it the normal vector of H.

Figure 2.3: Hyperplane

If w is a unit vector, then w · x+ α is the signed distance from x to H (the distance between x and
the closest point on H). It is positive on w’s side of H and negative otherwise.

The coefficients in w, and α are called weight (or parameters or regression coefficients).

Definition 2.1.6 (Linearly separable). The input data is linearly separable if there exists a hyperplane
that separates all the sample points in class C from all the points not in class C.

2.1.2 A Simple Classifier

2.1.2.1 Centroid method

We compute mean µC of all points in class C and mean µX of all points not in class C and use the
decision function

f(x) = (µC − µX)︸ ︷︷ ︸
normal vector

·x− (µC − µX) · (µC + µX)

2︸ ︷︷ ︸
midpoint between µC ,µX

so the decision boundary is the hyperplane that bisects line segment with endpoints µC ,µX .

Figure 2.4: Centroid method

We can sometimes improve the classifier by adjusting the scalar term to minimize the number of
misclassified points. Then the hyperplane has the same normal vector, but a different position.
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2.1.3 Perceptron Algorithm (Frank Rosenblatt, 1957)

Slow but correct for linearly separable points only. It uses a numerical optimization algorithm, namely,
gradient descent.

Consider n sample points X1, X2, . . . , Xn. For each sample point, the label

yi =

{
1 if Xi ∈ class C,

−1 otherwise.

For simplicity, we only consider decision boundaries that pass through the origin (we’ll fix this later).
Our goal is to find weight w such that

xi ·w ≥ 0 if yi = 1,
xi ·w < 0 if yi = −1.

Equivalently, we have the following constraint

yixi ·w ≥ 0.

We define a risk function R that’s positive if some constraints are violated. Then we use optimization
to chosse w that minimizes R.

Definition 2.1.7 (Loss function).

L(z, yi) =

{
0 if yiz ≥ 0,

−yiz otherwise,

where z is the prediction and yi is the correct label.

The loss function is zero if z has the same sign as yi and is positive otherwise. We want to reduce the
loss function down to zero or close to zero eventually.

Definition 2.1.8 (Risk function). Also called the objective function or cost function

R(w) =
n∑
i=1

L (Xi ·w, yi)

=
∑
i∈V
−yiXi ·w (V is the set of indices i for which yiXi ·w < 0).

If w classifies all X1, . . . , Xn correctly, then R(w) = 0. Otherwise, R(w) is positive, and we want to
find a better w. Then we have an optimization problem: find w that minimizes R(w).
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Perceptron Learning; Maximum Margin
Classifiers

3.1 Perceptron Algorithm

Recall the following:

• Linear decision function f(x) = w · x (for simplicity, no α).

• Decision boundary {x | f(x) = 0}, i.e., (a hyperplane through the origin).

• Sample points X1, . . . , Xn ∈ Rd; class labels y1, . . . , yn = ±1.

• Goal: find weights w such that yiXi ·w ≥ 0.

• Revised goal: find w that minimizes the risk function

R(w) =
∑
i∈V
−yiXi ·w,

where V is the set of indicies for which yiXi ·w < 0.

Original problem: find a separating hyperplane in one space called the x-space.

Transformed problem: find an optimal point in a different space called the w-space.

Transformation from x-space to objects in w-space:

x-space w-space
hyperplane: {z | w · z = 0} point: w
point: x hyperplane: {z | x · z = 0}

Point x lies on hyperplane {z | w · z = 0} ⇐⇒ w · x = 0 ⇐⇒ point w lies on hyperplane {z |
x · z = 0}.

A hyperplane transforms to its normal vector; a sample point transforms to the hyperplane whose normal
vector is the sample point.
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Remark. This transformation happens to be symmetric: a hyperplane in x-space transforms to a point
in w-space the same way that a hyperplane in w-space transforms to a point in x-space. However, this
is not always true for the decision boundaries learned in this class.

If we want to enforce inequality x ·w ≥ 0, that means:

• In x-space, x should be on the same side of the hyperplane {z | w · z = 0} as w.

• In w-space, w should be on the same side of the hyperplane {z | x · z = 0} as x.

Figure 3.1: Left. Green arrow represents the chosen w (must be chosen within the shaded region in
the right figure). Right. Red arrows are the points that are not in class C. Since they are not in class C,
we restrict w to the opposite side of that hyperplane from that normal vector, resulting in the shaded
region.

We have switched from the problem of finding a hyperplane in x-space to the problem of finding a point
in w-space, which will be helpful for us to think about optimization algorithms.

Figure 3.2: Risk function of the three sample points from previous example. R’s creases match the
w-space above.

We have an optimization problem and now we will use an optimization algorithm: gradient descent
to solve it.

3.1.1 Gradient Descent

Given a starting point w, find gradient of R with respect to w (this is the direction of steepest ascent.
Take a step in the opposite direction.
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Recall from vector calculus that:

∇R(w) =


∂R
∂w1

...
∂R
∂wd

 =⇒ ∇(z ·w) =

z1
...
zd

 = z.

∇R(w) =
∑
i∈V
∇− yiXi ·w = −

∑
i∈V

yiXi.

At any point w, we walk downhill in direction of steepest descent: −∇R(w).

Algorithm 1 Gradient Descent

w ← arbitrary nonzero starting point (good choice is any yiXi because then we have y2
i ‖Xi‖2 ≥ 0,

which means at least one point is correctly classified in the beginning)
while R(w) > 0 do

V ← set of indices i for which yiXi ·w < 0
w ← w + ε

∑
i∈V yiXi

return w

ε > 0 is the step size (or learning rate, chosen empirically.

Cons: Slow! Each step takes O(nd) time.

3.1.2 Stochastic Gradient Descent

Idea: each step, pick one misclassified Xi and do gradient descent on loss function L(Xi ·w, yi).

The algorithm where we apply stochastic gradient descent to the loss function is called the perceptron
algorithm, in which each step takes O(d) time.

Algorithm 2 Perceptron Algorithm

while some yiXi ·w < 0 do
w ← w + εyiXi

return w

Remark. Stochastic gradient does not work for every problem that gradient descent works for.

Question. What if separating hyperplane doesn’t pass through the origin?

Answer. Add a fictitious dimension. For example, if initially d = 2, then our decision function becomes

f(x) = w · x+ α =
[
w1 w2 α

]
·

x1

x2

1


Now we have sample points in Rd+1, all lying on hyperplane xd+1 = 1, and we run the perceptron
algorithm in (d+ 1)-dimensional space.
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3.1.3 Maximum Margin Classifiers

Definition 3.1.1 (Margin). The margin of a linear classifier is the distance from the decision boundary
to the nearest sample point.

Figure 3.3: Margin is maximized.

We enforce the constraints
yi(w ·Xi + α) ≥ 1 for i ∈ [1, n],

which is a better way to formulate the problem and it is impossible for w to get set to zero.

Recall that if ‖w‖ = 1, signed distance from hyperplane to Xi isw·Xi+α. Otherwise, it is w
‖w‖ ·Xi+

α
‖w‖ .

Then the margin would be

min
i

1

‖w‖
|w ·Xi + α|︸ ︷︷ ︸

≥1

≥ 1

‖w‖
.

There is a slab of width 2
‖w‖ containing no sample points.

To maximize the margin, we minimize ‖w‖. Then we have an optimization problem:

Find w and α that minimize ‖w‖2

subject to yi(Xi · w + α) ≥ 1 ∀i ∈ [1, n].

This is called the quadratic program in d+1 dimensions and n constraints. It has one unique solution
if the points are linearly separable and no solution otherwise.

Remark. We minimize ‖w‖2 instead of ‖w‖ because ‖w‖ is not smooth at w = 0, whereas ‖w‖2 is
smooth everywhere, which makes optimization easier.

The solution gives us a maximum margin classifier, also called a hard-margin support vector ma-
chine.
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Figure 3.4: Linear constraints in the weight space (w1, w2, α). We look for the point nearest the origin
that lies above the blue plane (in-class) but below the red and pink planes (out-of-class). Here the
optimal point lies at the intersection of the three planes. At right the constraints say that the solution
must lie in the leftmost pizza slice, while being as close to the origin as possible, which is the intersection
of the three lines.
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Soft-Margin Support Vector Machines;
Features

4.1 Soft-Margin Support Vector Machines (SVMs)

Solve 2 problems:

1. Hard-margin SVMs fail if data is not linearly separable.

2. Hard-margin SVMs are sensitive to outliers.

Figure 4.1: Example where one outlier moves the hard-margin SVM decision boundary a lot.

Idea: Allow some points to violate the margin, with slack variables. The modified constraint for point
i becomes:

yi(Xi ·w + α) ≥ 1− ξi.

Remark. We also impose new constraints that the slack variables are nonnegative:

ξi ≥ 0.

This ensures that all sample points that don’t violate the margin are treated the same; they all have
ξi = 0. Point i has nonzero ξi if and only if it violates the margin.
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Figure 4.2: A margin where some points violate the margin.

Remark. For soft-margin SVMs, we redefine the word margin. Instead of being the distance from the
decision boundary to the nearest sample point, it is defined to be 1/‖w‖.

To prevent abuse of slack, we add a loss term to the objective function. Then the optimization problem
we have is:

Find w, α and ξi that minimize ‖w‖2 + C
∑n

i=1 ξi

subject to yi (Xi · w + α) ≥ 1− ξi ∀i ∈ [1, n]

ξi ≥ 0 ∀i ∈ [1, n].

We have a quadratic program in d+ n+ 1 dimensions and 2n constraints.

Definition 4.1.1 (Quadratic Program). A problem of optimizing a quadratic objective function with
linear constraints.

C > 0 is a scalar regularization hyperparameter that trades off:

small C big C
desire maximize margin 1/‖w‖ keep most slack variables zero or small

danger underfitting (misclassifies much training data) overfitting (awesome training, awful test)

outliers less sensitive very sensitive

boundary more flat more sinuous

Remark. The last row only applies to nonlinear boundaries. A linear decision boundary cannot be
sinuous.
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Recall that we use validation to choose C.

Figure 4.3: Examples of how the slab varies with C.
Upper left. Smallest C; Lower right. Largest C.

The support vectors are the data points that lie closest to the decision boundary, i.e., the points that
are within the margin (including those on the margin).

Remark. Here’s a great analogy between slack and money: think about slack as the fine you have to
pay if a point violates the margin, i.e., the further a point penetrates, the more you have to pay. Our
goal is to spend least money while maintaining a widest margin. Hence, if C is small, we are willing
to spend lots of money on violations to get a wider margin. If C is big, it means we are cheap and we
won’t pay much for violations despite a narrower margin. If C is infinite, we have a hard-margin SVM.

4.2 Features

Question. How to do nonlinear decision boundaries?

Answer. Make nonlinear features that lift points into a higher-dimensional space.

High-dimensional linear classifier → low-dimensional nonlinear classifier.

19
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Example 4.2.1 (The parabolic lifting map).

Φ : Rd → Rd+1

Φ(x) =

[
x
‖x‖2

]
(lifts x onto paraboloid xd+1 = ‖x‖2)

(Note that the first entry x is a vector of dimension d, not a scalar. Hence, the whole vector has
length d+1 instead of 2) The additional feature gives our linear classifier more power. For example,
if we find a linear classifier in Φ-space, it induces sphere classifier in x-space:

Figure 4.4: The third axis is x3 = x2
1 + x2

2. The decision boundary is a circle obtained from the
intersection of the paraboloid and the hyperplane.

Theorem 4.2.1. Φ(X1), . . . ,Φ(Xn) are linearly separable if and only if X1, . . . , Xn are separable
by a hypersphere. (Possibly an ∞-radius hypersphere = hyperplane.)

Proof. Consider hypersphere in Rd with center c and radius ρ. Points inside:

‖x− c‖2 < ρ2

‖x‖2 − 2c · x+ ‖c‖2 < ρ2

[
−2c> 1

]︸ ︷︷ ︸
normal vector in Rd+1

[
x
‖x‖2

]
︸ ︷︷ ︸

Φ(x)

< ρ2 − ‖c‖2.

Hence points inside the sphere ⇐⇒ same side of hyperplane in Φ-space.
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Example 4.2.1 (Axis-aligned ellipsoid / hyperboloid decision boundaries). In 3D, these have the
formula

Ax2
1 +Bx2

2 + Cx2
3 +Dx1 + Ex2 + Fx3 + α = 0 (Capital letters are scalars, not matrices)

Φ : Rd → R2d

Φ(x) =
[
x2

1 . . . x2
d x1 . . . xd

]>
Hyperplane is [

A B C D E F
]︸ ︷︷ ︸

w

·Φ(x) + α = 0.

Here we have turned d input features into 2d features for our linear classifier. If the points are
separable by an axis-aligned ellipsoid or hyperboloid, per the formula above, then the points lifted
to Φ-space are separable by a hyperplane whose normal vector is

[
A B C D E F

]
.

Example 4.2.2 (Ellipsoid / hyperboloid). 3D formula for a general ellipsoid or hyperboloid:

Ax2
1 +Bx2

2 + Cx2
3 +Dx1x2 + Ex2x3 + Fx3x1 +Gx1 +Hx2 + Ix3 + α = 0

Φ(x) : Rd → R(d2+3d)/2

Isosurface defined by this equation is called a quadric. In two dimensions, it’s also known as a
conic section. So the decision boundary can be an arbitrary conic section.

Remark. There is a quadratic blowup in the number of features because every pair of input features
creates a new feature in Φ-space. If the dimension is large, these feature vectors will get huge,
and thus a serious computational cost is imposed. Thus, we would want to find good classifiers for
data that aren’t linearly separable.

Example 4.2.3 (Decision function is degree-p polynomial). A cubic in R2:

Φ(x) =
[
x3

1 x2
1x2 x1x

2
2 x3

2 x2
1 x1x2 x2

2 x1 x2

]>
Φ(x) : Rd → RO(dp).

Now we are really blowing up the number of features! If we have 100 features per sample point
and we decide to use degree-4 decision functions, then each lifted feature vector has a length of
roughly 4 million, and it will take forever for the algorithm to run.

There is an extremely clever trick that allows us to work with huge feature vectors very quickly without
ever computing them: kernelization.
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Figure 4.5: Hard-margin SVMs with degree 1, 2, 5 decision functions. Margin tends to get wider as
degree increases.

Increasing the degree accomplishes two things:

1. The data might become linearly separable when lifting them to a high enough degree, even if
they were not linearly separable.

2. Raising the degree can widen the margin, so we might get a more robust decision boundary that
generalizes better to test data.

Remark. If the degree is too high, we will have an overfitting problem.

Example 4.2.4 (Edge Detection). An edge detector is an algorithm for approximating g grayscale
/ color gradients in image, for example

• tap filter

• Sobel filter

• oriented Gaussian derivative filter

Remark. Images are discrete, not continuous fields, so we need to approximate the gradients.

Collect line orientations in local histograms (each having 12 orientation bins per region); use
histograms as features (instead of raw pixels).

Figure 4.6: Left. Input image. Right. Histogram of Oriented Gradients.
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Machine Learning Abstractions and
Numerical Optimization

5.1 Machine Learning Abstractions

There are four levels of abstraction that could help think about machine learning:

1. Application/Data

• Are the data labeled (classified) or not?

• Yes: classification or regression?

• No: clustering or dimensionality reduction?

2. Model

• Decision functions: linear, polynomial, logistic, neural net, etc.

• Nearest neighbors, decision trees

• Features

• Low vs. high capacity (affects overfitting, underfitting, inference)

3. Optimization Problem

• Variables, objective functions, constraints

• For example, unconstrained, convex program, least squares, PCA

4. Optimization Algorithm

• Gradient descent, simplex, SVD.

Remark. If one level is changed, then we will probably have to change all the levels underneath it. In
addition, not all machine learning methods fit this four-level decomposition.
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5.2 Optimization Problems

5.2.1 Uncontrained

Goal: Find w that minimizes (or maximizes) a continuous objective function f(w), which is smooth
if its gradient is continuous.

Definition 5.2.1 (Global Minimum). A global minimum of f is a value w such that f(w) ≤ f(v) for
every v.

Definition 5.2.2 (Local Maximum). A local minimum of f is a value w such that f(w) ≤ f(v) for
every v centered around w.

Remark. Usually, finding a local minimum is easy but finding a global minimum is hard (or impossible).

However, there’s an exception:

Definition 5.2.3 (Convex). A function is convex if for every x,y ∈ Rd, the line segment connecting
(x, f(x)) to (y, f(y)) does not go below f .

Figure 5.1: An example of a convex function.

A continuous convex function on a closed, convex domain has either

• no minimum (goes to ∞), or

• one local minimum, or

• a connected set of local minima that are all global minima with equal f . (perceptron risk function)

Algorithms for smooth f

1. Gradient descent:

• blind (repeat w ← w − ε∇f(w))

• with line search:

– secant method

– Newton–Raphson (may need Hessian matrix of f)
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• stochastic (blind) (trains on one point per iteration, or a small batch)

2. Newton’s method (needs Hessian matrix)

3. Nonlinear conjugate gradient (uses the secant or Newton–Raphson line search methods)

Algorithms for non-smooth f

1. Gradient descent:

• blind

• with direct line search (e.g., golden section search)

2. BFGS (Broyden–Fletcher–Goldfarb–Shanno)

Remark. These algorithms find a local minimum.

Definition 5.2.4 (Line Search). Line search finds a local minimum along the search direction by
solving an optimization problem in 1D, which is much easier than higher-dimensional one.

Remark. Neural nets are unconstrained optimization problems with many local minima. They some-
times benefit from line searches or second-order optimization algorithms, but when the input data set
is very large, stochastic versions of gradient descent would be an ideal choice.

5.2.2 Constrained Optimization (smooth equality constraints)

Find w that minimizes (or maximizes) f(w)

subject to g(w) = 0 (this is an isosurface and g is a smooth function)

Algorithm: Use Lagrange multipliers to transform constrained to unconstrained optimization.

5.2.3 Linear Program

A linear program consists of a linear objective function and linear inequality constraints.

Find w that maximizes (or minimizes) cẇ)

subject to Aw ≤ b where A is n× d matrix, b ∈ Rn, expressing n linear constraints:
Ai ·w ≤ bi ∀i ∈ [1, n].

Figure 5.2: The point is the optimum since it is furthest in the direction c. The two lines that are
incident to the vertex where the point lies are active constraints.
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The set of points w that satisfy all constraints is a convex polytope called the feasible region (shaded).

Definition 5.2.5 (Convex). A point set P is convex if for every p, q ∈ P, the line segment with
endpoints p, q lies entirely in P.

Definition 5.2.6 (Active Constraints). The optimum achieves equality for some constraints called the
active constraints of the optimum. In an SVM, active constraints correspond to the sample points
that touch or violate the slab, i.e. the support vectors.]

Remark. There can be more than one optimal point. For example, consider the case when the c from
above is orthogonal to one of the active constraint. The set of optimal points is always convex.

Example 5.2.1. Every feasible point (w, α) gives a linear classifier:

Find w, that maximizes 0

subject to yi(w ·Xi+) ≥ 1 ∀i ∈ [1, n].

Remark. The data are linearly separable if and only if the feasible region is not the empty set.
This is also true for maximum margin classifier (quadratic program).

Algorithms for linear programming:

• Simplex (George Dantzig, 1947)

• Interior point methods

Remark. The hard part of linear programming is figuring out which constraints should be the active
constraints because there are exponentially many possibilities. A linear program solver can find a linear
classifier, but cannot find the maximum margin classifier. We need something more powerful.

5.2.4 Quadratic Program

Recall that a quadratic program consists of a quadratic objective function and linear inequality con-
straints.

Find w, that minimizes f(w) = w>Qw + c>w

subject to Aw ≤ b where Q is a symmetric, positive definite matrix.

Definition 5.2.7 (Positive Definite). A matrix is positive definite if w>Qw > 0 fro all w 6= 0.

There is only one local minimum, which is also the global minimum.

Question. What if Q is not positive definite?

Answer. If Q is indefinite, then f is not convex, the minimum is not always unique, and quadratic
programming is NP-hard. If Q is positive semidefinite, meaning w>Qw ≥ 0 for all w, then f is convex
and quadratic programming but there may be infinitely many solutions.
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Decision Theory; Generative and
Discriminative Models

6.1 Decision Theory (Risk Minimization)

Multiple sample points with different classes could lie at same point. Thus, we need a probabilistic
classifier.

Definition 6.1.1 (Loss function). A loss function L(z, y) specifies badness if classifier predicts z, true
class is Y . One commonly used loss function is the 0 − 1 loss function, where the loss value is 1 for
incorrect predictions (symmetrical) and 0 for correct.

Remark. False negative is way worse than false positive, thus should be weighed differenly.

Definition 6.1.2 (Decision Rule). A decision rule (classifier) is a function r : Rd → ±1 that maps a
feature vector x to 1 or −1 (in class / not in class).

Definition 6.1.3 (Risk). The risk for r is the expected loss over all values of x, y:

R(r) = E[L(r(X), Y )]

=
∑
x

(L(r(x), 1)P(Y = 1 | X = x) + L(r(x),−1)P(Y = −1 | X = x))P(X = x)

= P(Y = 1)
∑
x

L(r(x), 1)P(X = x | Y = 1) + P(Y = −1)
∑
x

L(r(x),−1)P(X = x | Y = −1).

Sometimes we also write
R(r) = E(x,y)∼D[L(r(x), y)]

Definition 6.1.4 (Bayes Decision Rule). The Bayes decision rule (or Bayes classifier) is the function
r∗ that minimizes functional (function of a function) R(r). Assuming L(z, y) = 0 for z = y:

r∗(x) =

{
1 if L(−1, 1)P(Y = 1 | X = x) > L(1,−1)P(Y = −1 | X = x),

−1 otherwise.

Equivalently, we can also write

r∗(x) = arg min
j

K∑
k=1

L(j, k)P(Y = k | X = x).
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Remark. When L is symmetric, pick the class with the biggest posterior probability. If the loss
function is asymmetric then weight the posteriors with the losses.

To see this, consider the special case where we have the 0− 1 function. Then

r∗(x) = arg min
j

∑
k 6=j

P(Y = k | X = x) = arg min
j

1−P(Y = j | X = x) = arg max
j

P(Y = j | X = x),

which is equivalent to selecting the class that maximizes the posterior distribution.

Definition 6.1.5 (Bayes Risk). The Bayes risk (or optimal risk), is the risk of the Bayes classifier.

6.2 Continuous Distributions Review

Suppose we have a continuous random variable X with f as its PDF. Then∫ ∞
∞

f(x)dx = 1.

Definition 6.2.1 (Expectation). The expectation (or mean) of a continuous random variable X is
defined as:

µ = E[X] =

∫ ∞
−∞

xf(x)dx.

Similarly, the expected value of a function of X, g(X) is defined as

E[g(X)] =

∫ ∞
−∞

g(x)f(x)dx.

Definition 6.2.2 (Variance). The variance of X is defined as

σ2 = var(X) = E[(X − µ)2] = E[X2]− E[X]2.

Definition 6.2.3 (Risk). In the continuous case, the risk is simply just

R(r) = E[L(r(X), Y )]

= P(Y = 1)

∫
L(r(x), 1)f(x | Y = 1)dx+ P(Y = −1)

∫
L(r(x),−1)f(x | Y = −1)dx.

Equivalently, we can write

R(r) =

∫
L(r(x), y)dP(x, y).

For Bayes decision rule, Bayes risk is the area under minimum of functions above. Assuming L(z, y) = 0
for z = y:

R(r∗) =

∫
min
y=±1

L(−y, y)f(x | Y = y)P (Y = y)dx.

If L is 0 − 1 loss, then R(r) = P(r(x) is wrong) and the Bayes optimal decision boundary is
{x | P(Y = 1 | x)︸ ︷︷ ︸

decision function

= 0.5︸︷︷︸
isovalue

}.
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6.2.1 3 Ways To Build Classifiers

1. Generative models (e.g., LDA)

• Assume sample points come from probability distributions, different for each class.

• Guess form of distributions.

• For each class C, fit distribution parameters to class C points, giving P(X | Y = C).

• Bayes’ Theorem gives P(Y | X).

• If 0-1 loss, pick class C that maximizes posterior probability P(Y = C | x), which also
equivalently maximizes P(x | Y = C)P(Y = C).

2. Discriminative models (e.g., logistic regression)

• Model P(Y | X) directly

3. Find decision boundary (e.g., SVM)

• Model r(x) directly (no posterior)

Advantage of 1 and 2: P(Y | X) tells us probability our guess is wrong, which is something SVMs
don’t do.

Advantage of 1: we can diagnose outliers: P(X) is very small.

Disadvantages of 1: often hard to estimate distributions accurately.
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Gaussian Discriminant Analysis (QDA
and LDA)

7.1 Gaussian Discriminant Analysis (GDA)

Fundamental assumption: each class comes from normal distribution (Gaussian). X ∼ N (µ, σ2):

f(x) =
1

(
√

2πσ)d
exp

(
−‖x− µ‖

2

2σ2

)
.

For each class C, suppose we estimate mean µC , variance σ2
C , and prior πC = P(Y = C).

Given x, Bayes decision rule r∗(x) returns class C that maximizes f(x | Y = C)πC .

lnω is monotonically increasing for ω > 0, so it is equivalent to maximize

QC(x) = ln
(

(
√

2π)dfC(x)πC

)
= −‖x− µC‖

2

2σ2
C

− d lnσC + lnπC .

7.1.1 Quadratic Discriminant Analysis (QDA)

Suppose there are 2 classes C,D. Then

r∗(x) =

{
C if QC(x) > QD(x),

D otherwise.

Basically we pick the class with the biggest posterior probability.

Decision function is quadratic in x. Bayes decision boundary is QC(x)−QD(x) = 0.

• In 1D, Bayes decision boundary may have 1 or 2 points (roots of a quadratic equation).

• In d-D, it is quadric (conic section for 2D case).
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Figure 7.1: Product of gaussian distributions and prior distributions corresponding to two classes. We
pick whichever gives the higher probability of a data point. Note: isotropic Gaussians has same variance
along different directions and thus the isocontors are spheres.

Now we consider the case when there are multiple classes. The following is a picture of the isocontor
of multiple classes.

Figure 7.2: Centers of each bell curves represent the means of each Gaussian distribution and the gap
between the circles represent the variance (larger gap implies higher variance). The black line represents
the decision boundary.

QDA is great because it not only classifies data points for us, but also helps us determine the prob-
ability that our classification is correct.

Let’s recover the posterior probabilities in the 2-class case using Bayes’ rule:

P(Y = C | X) =
f(X | Y = C)πC

f(X | Y = C)πC + f(X | Y = D)πD
.

Recall that eQC(x) = (
√

2π
d
fC(x)πC by definition, then we have

P(Y = C | X = x) =
eQC(x)

eQC(x) + eQD(x)

=
1

1 + eQD(x)−QC(x)

= s(QC(x)−QD(x)),
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where s(γ) = 1
1+e−γ is called the logistic function, or sigmoid function and QC(x) −QD(x) is the

decision function.

Figure 7.3: Logistic function. We interpret s(0) = 1
2 as saying that on the decision boundary, there’s

a 50% chance that the data point belongs to either class.

7.1.2 Linear Discriminant Analysis (LDA)

LDA is a variant of QDA with linear decision boundaries. It is less likely to overfit than QDA.
Fundamental assumption: all the Gaussians have same variance σ.

QC(x)−QD(x) =
(µC − µD) · x

σ2︸ ︷︷ ︸
w·x

− ‖µC‖
2 − ‖µD‖2

2σ2
+ lnπC − lnπD︸ ︷︷ ︸

+α

.

Now it’s a linear classifier because the quadratic terms cancelled out each other. Choose C that
maximizes linear discriminant function

µC · x
σ2

− ‖µC‖
2

2σ2
+ lnπC (works for any number of classes)

In 2-class case: decision boundary is w · x+ α = 0 and the posterior is P(Y = C | x) = s(w · x+ α).
(The effect of w ·x+α is to scale and translate the logistic fn in x -space. It’s a linear transformation.)

Figure 7.4: Two Gaussians and the logistic function. The logistic function is the right Gaussian divided
by the sum of the Gaussians.
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Figure 7.5: Multi-class case decision boundaries for LDA.

7.2 Maximum Likelihood Estimation Of Parameters

To use Gaussian discriminant analysis, we must first fit Gaussians to the sample points and estimate
the class prior probabilities. The way we do this is through Maximum Likelihood Estimation (MLE),
which is a method of estimating the parameters of a statistical model by picking the parameters that
maximize the likelihood function L.

7.2.1 Likelihood of a Gaussian

Given sample points X1, X2, . . . , Xn, our goal is to find best-fit Gaussian. The likelihood of generating
these points is

L(µ, σ; {Xi}ni=1) =
n∏
i=1

f(Xi).

Despite the fact that the probability of a point is zero in continuous case, we still define this as the
likelihood. Since we will be dealing with products of exponentials, we can simplify a bit by just considering
the log likelihood `(·), which is just equivalent to lnL(·) (ln is monotonic). Thus, we have

`(µ, σ; {Xi}ni=1) =
n∑
i=1

ln f(Xi)

=
n∑
i=1

(
−‖Xi − µ‖2

2σ2
− d ln

√
2π − d lnσ

)
.

Then to find the optimal parameters, we set ∇µ` = 0 and ∂`
∂σ = 0:

∇µ` =

n∑
i=1

Xi − µ
σ2

= 0 =⇒ µ̂ =
1

n

n∑
i=1

Xi

∂`

∂σ
=

n∑
i=1

‖Xi − µ‖2 − dσ2

σ3
= 0 =⇒ σ̂2 =

1

dn

n∑
i=1

‖Xi − µ‖2

We substitute µ̂ for µ to compute σ̂2 since we don’t know µ exactly.
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For QDA, we estimate conditional mean µ̂ and conditional variance σ̂2 of each class C separately and
estimate the priors:

π̂C =
nC∑
n
.

For LDA, we compute means and priors the same way but we have same variance for all classes:

σ̂2 =
1

dn

∑
C

∑
{i:yi=C}

‖Xi − µ̂C‖2 (pooled within-class variance).

Remark. Although LDA is computing one covariance for all the data, each sample point contributes
with respect to its own class’s mean.
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Eigenvectors and Anisotropic
Multivariate Normal Distribution

8.1 Eigenvectors

Definition 8.1.1 (Eigenvectors). Given square matrix A, if Av = λv for some vector v 6= 0, scalar λ,
then v is an eigenvector of A and λ is the eigenvalue of A associated with v.

Theorem 8.1.2. If v is eigenvector of A with eigenvalue λ, then v is eigenvector of Ak with
eigenvalue λk.

Proof. Using induction, we can show that A2v = A(λv) = λ2v, etc..

Theorem 8.1.3. If A is invertible, then v is eigenvector of A−1 with 1
λ .

Proof.

A−1v = A−1

(
1

λ
Av

)
=

1

λ
v.

Theorem 8.1.4 (Spectral Theorem). Every real, symmetric n× n matrix has real eigenvalues and
n eigenvectors that are mutually orthogonal, i.e.,

v>i vj = 0 ∀i 6= j.

Remark. A matrix can have more than n eigenvector directions. If two eigenvectors share the same
eigenvalue, then every linear combination of them is also an eigenvector, hence there are infinitely many
eigenvector directions, but they all span the same plane, so we just pick two that are orthogonal to each
other as our basis.
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8.1.1 Quadratic Forms

Consider the following examples:

‖z‖2 = z>z

‖A−1x‖2 = x>A−2x

Figure 8.1: Left. ‖z‖2. Xight. ‖A−1x‖2. Axes of the ellipsoid are the eigenvectors. The matrix A
maps the circles to the ellipses. There’re stretching along the direction with eigenvalue 2, and shrinking
along the direction with eigenvalue −1

2 .

‖A−1x‖2 = 1 is an ellipsoid with axes v1,v2, . . . ,vn and radii λ1, λ2, . . . , λn because if A−1x = vi is
unit length (vi lies on circle), x = Avi has length λi (x lies on the ellipsoid).

Remark. Special case: if A is diagonal, then the eigenvectors are coordinate axes, and the ellipsoids
are axis-aligned.

Definition 8.1.5. A symmetric matrix M is


positive definite if w>Mw > 0, ∀w 6= 0;

positive semi-definite if w>Mw ≥ 0, ∀w;

indefinite if M has both positive and negative eigenvalues;

invertible if no zero eigenvalue.

Figure 8.2: Positive/negative eigenvalues correspond to axes where the curvature goes up/down. Zero
eigenvalues correspond to axes where the curvature is flat.
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Question. What does this tell us about x>A−2x?

Answer. The eigenvalues of A−2 are the inverse squares of the eigenvalues of A, so it cannot have a
negative eigenvalue. It also cannot have a zero eigenvalue because then A−2 would not exist. Thus,
A−2 must be positive definite if it exists.

Question. What does this tell us about the isosurfaces of x>Mx where M is PD?

Answer. The contour plot of M ’s quadratic form has ellipsoidal isosurfaces whose radii determined by
the eigenvalues of M−1/2, which are inverse square roots of the eigenvalues of M .

Remark. If M is PSD, then the isosurfaces are cylinders instead of ellipsoids. These cylinders have
ellipsoidal cross sections spanning the directions with nonzero eigenvalues, but run in straight lines along
the directions with zero eigenvalues.

8.1.2 Building a Quadratic

Let’s suppose that we are given some eigenvalues and eigenvectors, we want to construct a matrix that
has them as its eigenvalues and eigenvectors.

1. Choose n mutually orthogonal unit vectors from n: v1, . . . ,vn.

2. Let V =
[
v1 v2 · · · vn

]
.

3. Then V is an orthogonal matrix, i.e. V −1 = V >.

4. Choose some radii λi and have

Λ =


λ1 0 · · · 0
0 λ2 0
...

. . .
...

0 0 · · · λn

 .

Theorem 8.1.6 (Spectral Eigendecomposition).

A = V ΛV > =

n∑
i=1

λiviv
>
i .

Remark. V > rotates the ellipsoid to be axis-aligned and Λ stretches the ellipsoid, V reverse the
rotation done by V >.

5. A is the desired matrix.
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8.2 Anisotropic Gaussians

Now we revisit the multivariate Gaussian distribution, with different variances along different directions.

X ∼ N (µ,Σ) (Σ is the covariance matrix.)

The PDF is given by

f(x) =
1√

(2π)d|Σ|
exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
.

Definition 8.2.1 (Covariance). Let X,Y be two random variables. Then the covariance is defined as

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])>] = E[XY ] = E[X]E[Y ]>.

If X is a vector, then the covariance matrix is

Var(X) =


Var (X1) Cov (X1, X2) . . . Cov (X1, Xd)

Cov (X2, X1) Var (X2) Cov (X2, Xd)
...

. . .
...

Cov (Xd, X1) Cov (Xd, X2) . . . Var (Xd)

 .
For a Gaussian X ∼ N (µ,Σ), we can show that Var(X) = Σ.

Property 8.2.2.

Xi, Xj independent =⇒ Cov(Xi, Xj) = 0. (reverse is not true).

Property 8.2.3.

Cov(Xi, Xj) = 0 AND multivariate normal distribution =⇒ Xi, Xj independent

Property 8.2.4.
All features pairwise independent =⇒ Var(X) is diagonal.

Property 8.2.5.

Var(X) is diagonal AND joint normal ⇐⇒ axis-aligned Gaussian; squared radii on diagon of Σ = Var(X)

⇐⇒ f(x) =
d∏
i=1

f(xi).

When the features are independent, we can write the multivariate Gaussian PDF as a product of uni-
variate Gaussian PDFs. When they aren’t, we do a change of coordinates to the eigenvector coordinate
system, and write it as a product of univariate Gaussian PDFs in eigenvector coordinates.

Consider the eigendecomposition of the covariance matrix Σ = V ΛV >. The eigenvalues of Σ
are variances along the eigenvectors. Then this implies that the eigenvalues of Σ1/2 are the standard
deviations,

√
Σii = σi.
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8.2.1 Maximum Likelihood Estimation for Anisotropic Gaussians

Given sample points X1, . . . , Xn and classes y1, . . . , yn, we want to find the best-fit Gaussians.

For QDA:

Σ̂C =
1

nC

∑
{i:yi=C}

(Xi − µ̂C)(Xi − µ̂C)>.

Choosing C that maximizes f(X = x | Y = C)πC is equivalent to maximizing the quadratic discriminant
function

QC(x) = ln
(

(
√

2π)dfC(x)πC

)
= −1

2
(x− µC)>Σ−1

C (x− µC)− 1

2
ln |ΣC|+ lnπC.

For LDA:

Σ̂ =
1

n

∑
C

∑
{i:yi=C}

(Xi − µ̂C)(Xi − µ̂C)>.

QC(x)−QD(x) = (µC − µD)>Σ−1x︸ ︷︷ ︸
w>x

−
µ>CΣ−1µC − µ>DΣ−1µD

2
+ lnπC − lnπD︸ ︷︷ ︸

+α

Choose class C that maximizes the linear discriminant function

µ>CΣ−1x− 1

2
µ>CΣ−1µC + lnπC.

8.2.2 Some Terms

Let X be a n× d design matrix of sample points. Each row is a sample point.

Definition 8.2.6 (Sample Covariance Matrix). Let X be uniform distribution on sample points. The
sample covariance matrix is

Var(X) =
1

n
(X − X̂)>(X − X̂),

where X̂ is obtained by subtracting µ> from each row of X.

Definition 8.2.7 (Decorrelation). Decorrelating X̂ means applying rotation Z = X̂V , where Var(X) =
V ΛV >.
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Regression

Two main types of machine learning problems:

1. Classification: given point x, predict class.

2. Regression: given poing x, predict a numerical value.

In regression, we choose form of regression function h(x; p) with parameters p, where h is the
hypothesis, and choose a cost function to optimize.

9.1 Least-Squares Linear Regression

Problem:

w∗, α∗ = arg min
w,α

n∑
i=1

(Xi ·w + α− yi)2,

which is equivalent to the following optimization problem

w∗ = arg min
w
‖Xw − y‖2.

We optimize by calculus:

∇w‖Xw − y‖2 = ∇ww>X>Xw − 2y>Xw + y>y

= 2X>Xw − 2X>y = 0

=⇒ X>Xw = X>y.

Here X>X is always PSD. We use a linear solver to find

w∗ = (X>X)−1X>︸ ︷︷ ︸
pseudoinverse X†

y,

so we never actually invert the matrix nor do we compute the pseudoinverse directly.
Advantages: Easy to compute; Unique and stable solution.
Disadvantages: Very sensitive to outliers because errors are squared; fails if X>X is singular (multiple
solutions).
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9.2 Logistic Regression

Problem:

w∗ = arg min
w

n∑
i=1

L(Xi ·w, yi) = −
n∑
i=1

(
yi ln s(Xi ·w) + (1− yi) ln (1− s(Xi ·w))

)
.

Since the loss function is convex, we can solve by gradient descent. Note that

s′(γ) =
∂

∂γ

1

e−γ
= s(γ)(1− s(γ)).

Let si = s(Xi ·w). Then we have

∇wJ = −
∑(

yi
si
∇si −

1− yi
1− si

∇si
)

= −
∑(

yi
si
− 1− yi

1− si

)
si (1− si)Xi

= −
∑

(yi − si)Xi

= −X>(y − s(Xw)).

where s(Xw) =


s1

s2
...
sn

. Gradient Descent Rule: w ←− w + εX>(y − s(Xw)).

Stochastic Gradient Descent: w ←− w + ε(yi − s(Xi ·w))Xi.

Remark. Logistic regression always separates linearly separable points.

9.3 Least-Squares Polynomial Regression

Replace each Xi with feature vector Φ(Xi) with all terms of degree 0, . . . , o. For example,

Φ(Xi) =
[
X2
i1 Xi1Xi2 X2

i2 Xi1 Xi2 1
]>
,

where the 1 is the fictitious dimension.

9.4 Weighted Least-Squares Regression

Assign each sample point a weight ωi and collect ωi’s in n × n diagonal matrix Ω. Greater ωi implies
that we need to work harder to minimize |ŷi − yi|2, where ŷ = Xw.

Goal: find w that minimizes

(Xw − y)>Ω(Xw − y) =

n∑
i=1

ωi(Xi ·w − yi)2.

We can solve this by setting the gradient to zero and reduce to the following normal equations:

X>ΩXw = X>Ωy.
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9.5 Newton’s Method

Newton’s method is an iterative optimization method for smooth function J (w). It is often much faster
than gradient descent.

Idea: we are at some point v. We approximate J (w) near v by quadratic function. Jump to its
unique critical point and repeat until close to true solution.

Consider the Taylor series about v:

∇J (w) = ∇J (v) + (∇2J (v))(w − v) +O(‖w − v‖2),

where ∇2J (v) is the Hessian matrix of J of v. We then find the critical point w by setting ∇J (w) =
0:

w = v − (∇2J (v))−1∇J (v).

Remark. We would not want to compute the inverse of a matrix directly and instead we solve a linear
system of equations for efficiency.

The Newton’s method is as follows:

1. Pick starting point w (usually 0 works well).

2. Repeat until convergence:

e←− (∇2J (w))e = −∇J (w)

w ←− w + e.

Remark. Newton’s method doesn’t know the difference between minima, maxima, saddle points. Start-
ing point must be close enough to desired critical point. The closer J is to quadratic, the faster Newton’s
method tends to converge.

Disadvantages: computing the Hessian is expensive when we have high-dimensional weight spaces (not
good for neural network). Doesn’t work for most nonsmooth functions as well.

9.5.1 Logistic Regression (continued)

Recall that we have

∇wJ = −
n∑
i=1

(yi − si)Xi = −X>(y − s).

Then using this result, we have

∇2
wJ (w) =

n∑
i=1

si(1−si)XiX
>
i = X>ΩX, where Ω =


s1 (1− s1) 0 . . . 0

0 s2 (1− s2) 0
...

. . .
...

0 0 . . . sn (1− sn)

 .
Then the Newton’s method for logistic regression is as follows:
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1. w ←− 0

2. Repeat until convergence:

e←− (X>ΩX)e = X>(y − s)w ←− w + e.

This is an example of iteratively reweighted least squares.

9.6 LDA vs. Logistic Regression

Advantages of LDA:

• Stable for well-separated classes. Logistic regression is unstable.

• Works well for multiclass problems. Logistic regression needs modification (softmax regression).

• More accurate when classes are nearly normal, especially if n is small.

Advantages of Logistic Regression:

• More emphasis on decision boundary, always separates linearly separable points.

• More robust on some non-Gaussian distributions.

• Naturally fits labels between 0 and 1.

9.7 Receiver Operating Characteristics (ROC) Curves (test sets)

• A ROC curve is a way to evaluate our classifier after it is trained.

• Shows the rate of false positives vs. true positives for a range of settings.

• Use posterior probability threshold for GDA or logistic regression as a knob.

9.8 Statistical Justifications For Regression

Recall the four levels of machine learning: the application, the model, the optimization problem,
and the optimization algorithm. Now take a step up to the second level, the model and see how some
models lead to the optimization problems we’ve seen so far.

Typical model of reality:

• Sample points come from unknown probability distribution: Xi ∼ D.

• y-values are sum of unknown, non-random function plus random noise:

∀Xi, yi = g(Xi) + εi, where εi ∼ D′, and E[D′] = 0.

Here the function g is unknown, but it is not random. It represents a consistent relationship between
X and y that we can estimate. The term ε represents measurement errors and other statistical error
that could occur in measurement and it is independent of X.

Goal of regression: find h that estimates g.
Ideal approach: choose h(x) = EY [Y | X = x] = g(x) + E[ε] = g(x).
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9.8.1 Least-Squares Regression from Maximum Likelihood

Suppose εi ∼ N (0, σ2), then yi ∼ N (g(Xi), σ
2). Recall that the log of normal PDF and log likelihood

is:

ln f(yi) = −(yi − µ)2

2σ2
− C (µ = g(Xi))

`(g;X,y) = ln

(
n∏
i=1

f(yi)

)
= ln

(
n∑
i=1

f(yi)

)
= − 1

2σ2

n∑
i=1

(yi − g(Xi))
2 − C.

Here we see that the maximum likelihood on parameter g is equivalent to estimating g by least-squares
regression.

Remark. Recall from previous lecture that least-squares is very sensitive to outliers. It would not be
a big deal if the error is truly normal. However, in real world, the distribution for outliers is often not
normal. Hence, least-squares isn’t a good choice sometimes.

9.8.2 Empirical Risk

Definition 9.8.1 (Risk). The risk for hypothesis h is

R(h) = E[L].

Discriminative model: X’s distribution is unknown. How do we minimize risk?

We approximate the distribution by pretending that the sample points are the distribution. This is
known as empirical distribution, which is the discrete uniform distribution over the sample points.

Definition 9.8.2 (Empirical Risk). The empirical risk is the expected loss under such empirical distri-
bution:

R̂(h) =
1

n

n∑
i=1

L(h(Xi), yi).

9.8.3 Logistic Loss from Maximum Likelihood

Assume the actual probability for point Xi in the class is yi; predicted probability is h(Xi). Suppose we
have β duplicate copies of Xi: yiβ are in the class, (1− yi)β are not. The likelihood is

L(h;X, y) =
n∏
i=1

h(Xi)
yiβ(1− h(Xi))

(1−yi)β.

The log likelihood is

`(h) = lnL(h)

= β
∑
i

(yi lnh(Xi) + (1− yi) ln (1− h(Xi)))

= −β
∑
i

L(h(Xi), yi).

Hence, the logistic loss functions follows from the principle of maximum likelihood.
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9.8.4 The Bias-Variance Decomposition

There are two sources of error in a hypothesis h:

1. bias: error due to inability of hypothesis h to fit g perfectly, e.g., fitting quadratic g with a linear
h.

2. variance: error due to fitting random noise in data, e.g., fit linear g with a linear h, yet h 6= g.

Model: Xi ∼ D, εi ∼ D′, yi = g(Xi) + εi. Fit hypothesis h to X,y. h is a random variable since its
weights are random.

Consider arbitrary point z ∈ Rd (not necessarily a sample point) and γ = g(z) + ε, where ε ∼ D′. z is
arbitrary, whereas γ is random E[γ] = g(z) and Var(γ) = Var(ε).

When the loss is equal to squared error, the risk function is

R(h) = E[L(h(z), γ)]

= E[(h(z)− γ)2]

= E[h(z)2] + E[γ2]− 2E[γh(z)]

= Var(h(z)) + E[h(z)]2 + Var(γ) + E[γ]2 − 2E[γ]E[h(z)]

= (E[h(z)]− E[γ])2 + Var(h(z)) + Var(γ)

= (E[h(z)]− g(z))2︸ ︷︷ ︸
bias2 of method

+ Var(h(z))︸ ︷︷ ︸
variance of method

+ Var(ε)︸ ︷︷ ︸
irreducible error

.

This is called the bias-variance decomposition of the risk function.
Consequences:

• Underfitting means too much bias.

• Most overfitting are caused by too much variance.

• Training error reflects the bias but not variance; test error reflects both.

• For many distributions, variance → 0 as n→∞.

• If h can fit g exactly, for many distributions bias → 0 as n→∞.

• If h cannot fit g well, bias is large at most points.

• Adding a good feature reduces bias; adding a bad feature rarely increases it.

• Adding a feature usually increases variance.

• Irreducible error cannot be reduced.

• Noise in test set affects only Var(ε); noise in training set affects only bias and Var(h).

• We cannot precisely measure bias and variance of real-world data, but we can test learning algo-
rithms by choosing g and making synthetic data.
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9.9 Ridge Regression

The problem is formulated as

w∗ = arg min
w
J (w) = arg min

w
‖Xw − y‖2 + λ‖w′‖2,

where w′ is w with bias component α replaced by zero and X has fictitious dimensions but we don’t
penalize α.

We add a regularization term, or a penalty term for shrinkage, to encourage small ‖w′‖ for the
following reasons:

1. Guarantees positive definite normal equations and thus there always exists unique solution.

Figure 9.1: Cost function J with and without regularization. Left. Positive semidefinite quadratic
form with infinite minima (ill-posed). Right. Positive definite quadratic form with one unique minimum
(well-posed).

2. Reduces overfitting by reducing variance. (Why?)

Ridge regression works similarly to the regression problems we have done so far. We setting ∇J = 0
gives normal equations

(X>X + λI ′)w = X>y,

where I ′ is I with bottom right entry set to 0.

Algorithm: Solve for w and return h(z) = w>z. Increasing λ would give smaller ‖w′‖.

Assuming data model y = Xv + e where v is the relationship we are looking for and e is the noise.
Then the variance for ridge regression is

Var(z>(X>X + λI ′)−1X>).

Remark. Note that as λ→∞, variance → 0, but bias increases.
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9.9.1 Bayesian Justification for Ridge Regression

Assign a prior probability on w′: w′ ∼ N (0, σ2). Apply MLE to the posterior probability. Using Bayes’
Theorem, we have

f(w | X,y) =
f(y | X,w)× prior f(w′)

f(y | X)

=
L(w)f(w′)

f(y | X)
.

Then applying logarithm gives

lnL(w) + ln f(w′)− C = −C1‖Xw − y‖2 − C2‖w′‖2 − C3

=⇒ min
w
‖Xw − y‖2 + λ‖w′‖2.

9.10 Feature Subset Selection

All features increase variance, but not all features reduce bias.

Idea:

• Identify poorly predictive features, ignore them (set weight to zero).

• Less overfitting, smaller test errors.

• The second motivation is inference. Simpler the models convey interpretable wisdom.

This is useful in all classification and regression methods. However, sometimes it’s hard because different
features can partly encode same information and it is combinatorially hard to choose best feature subset.

Algorithm: Best subset selection. Try all 2d − 1 nonempty subset of features (train one classifier per
subset). Choose the best classifier by (cross-)validation. This is slow in general.

Heuristic 1: Forward stepwise selection. Start with null model (0 features); repeatedly add best
feature until validation errors start increasing (due to overfitting) instead of decreasing. At each outer
iteration, inner loop tries every feature and chooses the best by validation. Requires training O(d2)
models instead of O(2d).

Disadvantages: Won’t find the best 2-feature model if neither of those features yields the best 1-
feature model (that’s why it’s a heuristic).

Heuristic 2: Backward stepwise selection. Start with all d features; repeatedly remove features whose
removal gives best reduction in validation error. Also trains O(d2) models.
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9.11 LASSO

Least Absolute Shrinkage and Selection Operator, or LASSO is a regularized regression method
similar to ridge regression, but has the advantage that if often naturally sets some of the weights to
zero. The problem is formulated as below:

w∗ = arg min ‖Xw − y‖2 + λ‖w′‖1, where ‖w′‖1 =
d∑
i=1

|wi|.

Figure 9.2: Left. Isocontours for Lasso (cross-polytopes). Right. Isocontours for ridge regression.

From the above graph, the solution lies at the intersection of the red isocontour and the blue region.
For the Lasso example, weight w1 gets set to zero because only the tip of the diamond is touched.
However, it is also possible that a side of the diamond is touched by the red isosurface.

Remark. In higher dimensions, we could have several weights set to zero. For example, in 3D, if the
red isosurface touches a sharp vertex of the cross-polytope, two of the three weights get set to zero. If
it touches a sharp edge of the cross-polytope, one weight gets set to zero. If it touches a flat side of
the cross-polytope, no weight is zero.
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