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Chapter 1

Metric Spaces

1.1 Fundamentals

Definition 1.1.1. Let X be a set. A metric on X is a function d : X ×X → [0,∞) that
satisfies:

(i) d(x, y) = d(y, x) ∀ x, y ∈ X

(ii) d(x, y) ≤ d(x, z) + d(z, y) ∀ x, y, z ∈ X

(iii) d(x, y) = 0 ⇐⇒ x = y

If a function d satisfies (i), (ii) above, and d(x, x) = 0 for all x ∈ X, then d is a semi-metric.

Example 1.1.2. On Cn, the following are common metrics:

• dp(x, y) =
( n∑
j=1
|xj − yj |p

)1/p
for p ≥ 1

• d∞(x, y) = sup {|xj − yj | : 1 ≤ j ≤ n}

(Verify that these are metrics.)

Fact. If S ⊆ X, and d is a metric on X, then d is a metric on S.

Definition 1.1.3. (X, d) where d is a metric of X is called a metric space.

Remark. If Y ⊆ X, restrict d to Y × Y ⊆ X ×X, denoted d |Y , then (Y, d |Y ) is a metric
space.

Definition 1.1.4. Let V be a vector space over R or C. A norm on V is a function
‖ · ‖ : V → [0,∞) such that:
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CHAPTER 1. METRIC SPACES 4

(i) ‖cv‖ = |c| · ‖v‖ for c ∈ or and v ∈ V

(ii) ‖v + w‖ ≤ ‖v‖+ ‖w‖ for v, w ∈ V

(iii) ‖v‖ = 0 implies v = 0

A function that satisfies only (i) and (ii) above is called a seminorm.

Remark. Any norm ‖ · ‖ on X induces the metric d(x, y) := ‖x− y‖.

Example 1.1.5. Let V be the space of continuous functions on [0, 1]. Then ‖f‖∞ =
sup {|f(x)| : x ∈ [0, 1]} is a norm on V.

It can also be shown that ‖f‖p :=
( ∫ 1

0 |f(x)|p dx
)1/p

is a norm on V.

Definition 1.1.6. Let (X, dx) and (Y, dy) be metric spaces. A function f : X → Y is
isometric if dy(f(x1), f(x2)) = dx(x1, x2) for all x1, x2 ∈ X.

Remark. All isometries are injective.

Example 1.1.7. If S ⊆ X, and f : S → X is defnined by f(x) = x (inclusion), then f
is an isometry. If f is also onto, then f is viewed as an isometric isomorphism between
(X, dx) and (Y, dy). f

−1 is also an isomorphism.

Definition 1.1.8. A function f : X → Y is Lipschitz if there is a constant k ≥ 0 such that
dy(f(x1), f(x2)) ≤ k ·dx(x1, x2). The smallest such constant is the Lipschitz constant for
f.

Definition 1.1.9. f : X → Y is uniformly continuous if ∀ ε > 0, ∃ δ > 0 such that
dy(f(x1), f(x2)) < ε whenever dx(x1, x2) < δ.

Remark. It is easy to see that if f is Lipschitz, then it is uniformly continuous.

Definition 1.1.10. f : X → Y is continuous at x0 if ∀ ε > 0, ∃ δ(x0) > 0 such that
dy(f(x), f(x0)) < ε whenever dx(x, x0) < δ(x0). We say f is continuous if it is continuous
at every x ∈ X.

Definition 1.1.11. A sequence {xn} in X converges to x∗ ∈ X if ∀ ε > 0, ∃ N ∈ N such
that for all n ≥ N, we have d(xn, x

∗) < ε.

Proposition 1.1.12. If a function f : X → Y is continuous and {xn} → x∗, then f(xn)→
f(x∗).
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Proof. Let ε > 0. Since f is continuous at x∗, there exists a δ > 0 such that

∀x, dX (x, x∗) < δ =⇒ dY (f(x), f (x∗)) < ε

Since {xn} → x∗, there is some N such that for all n ≥ N, dX (xn, x
∗) < δ. Then, we can

see that dY (f (xn)− f (x∗)) < ε for all n ≥ N . Thus {f (xn)} → f (x∗).

Definition 1.1.13. S ⊆ X is dense in X if ∀ x ∈ X and ε > 0, ∃ s ∈ S such that
d(x, s) < ε. That is, for any point x ∈ X, there is a point s ∈ S which is arbitrarily close to
x.

Proposition 1.1.14. Let S be dense in X, and let f : X → Y and g : X → Y be continuous
functions such that f(s) = g(s) for all s ∈ S. Then f = g on X.

Proof. Because S is dense in X, for any x ∈ X, there exists a sequence {sn} ⊆ S which con-
verges to x (choose any point sn in S such that d (sn, x) < ε). By the previous proposition,
we can conclude that {f (sn) = g (sn)} → f(x) = g(x).

Definition 1.1.15. A sequence {xn} is Cauchy if ∀ ε > 0, ∃ N ∈ N such that n,m ≥ N
implies d(xn, xm) < ε. A metric space is complete if every Cauchy sequence in it converges.

Example 1.1.16. Consider (Q, |·|).We know there exists a Cauchy sequence converging to√
2 ∈ R, but in this metric space,

√
2 is not an element, so this sequence does not converge,

hence this metric space is not complete.

1.2 Completion of a Metric Space

Proposition 1.2.1. If f : X → Y is uniformly continuous, and {xn} is Cauchy in X, then
{f(xn)} is Cauchy in Y.

Proof. Let ε > 0. By uniform continuity, there exists δ > 0 such that if x, x′ ∈ X and
dX (x, x′) < δ, then dY (f(x), f (x′)) < ε. Since {xn} is Cauchy, there is an N such that if
m,n ≥ N then d (xm, xn) < δ. Thus

d (f (xm) , f (xn)) < ε ∀m,n ≥ N.

This proves that {f (xn)} is Cauchy.

Definition 1.2.2. Let (X, d) be a metric space. A complete metric space (X̃, d̃), together
with an isometric function f : X → X̃ with dense range is a completion of (X, d).

Remark. Completions are unique up to isomorphism.

Proposition 1.2.3. If ((Y1, d1), f1) and ((Y2, d2), f2) are completions of (X, d), then ∃ an
onto isometry (metric space isomorphism) g : Y1 → Y2 with f2 = g ◦ f1.
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This can be visualized by the following commutative diagram:

X

Y1

Y2

f1

f2

g

Every metric space has a completion, and the proof will be constructive. The completion
will be defnined using equivalence classes of Cauchy sequences. We will need the following
lemmas to support the construction.

Lemma 1.2.4. If {sn} and {tn} are Cauchy sequences in X, then the sequence {d(sn, tn)}
in R converges.

Proof. Let ε > 0, and let N such that for every m,n > N, d (sm, sn) , d (tm, tn) < ε/2. It
follows that

|d (sm, tm)− d (sn, tn)| ≤ d (sm, sn) + d (tm, tn) < ε

and the sequence is Cauchy. Since R is complete, the sequence converges.

Lemma 1.2.5. Let CS(X) denote the set of all Cauchy sequences in X. Then the relation
{sn} ∼ {tn} ⇐⇒ d(sn, tn)→ 0 is an equivalence relation.

Proof. Reflexivity and symmetry are trivial. Suppose d(sn, rn) → 0 and d(rn, tn) → 0.
Then d(sn, tn) ≤ d(sn, rn) + d(rn, tn) for all n ∈ N. The result follows immediately.

Lemma 1.2.6. Let X be the set of all equivalence classes of CS(X) under the equivalence
relation above. Then d : X → [0,∞) defined by d({sn}, {tn}) := lim

n→∞
d(sn, tn) is a metric

on X.

Proof. First, note that by Lemma 1.2.4, d is always defined. Since we are dealing with
equivalence classes, we must show that d is also well-defnined. Let ξ, η ∈ X, and let
{xn}, {sn} ∈ ξ, and {yn}, {tn} ∈ η. We have lim d(xn, sn) = lim d(yn, tn) = 0. Thus,
d(sn, tn) ≤ d(sn, xn) + d(xn, yn) + d(yn, tn). ∀ ε > 0, we can find N ∈ N such that both
d(sn, xn) < ε/2 and d(yn, tn) < ε/2 for n ≥ N. Then |d(sn, tn) − d(xn, yn)| < ε. It follows
that d(ξ, η) = lim d(xn, yn) = lim d(sn, tn), so that d is indeed well-defnined.

Symmetry is trivial. The triangle inequality follows from the proof to Lemma 1.2.5. If
d(ξ, η) = 0, then ∀ {xn} ∈ ξ, {yn} ∈ η, we have lim d(xn, yn) = 0, so in particular, {yn} ∈ ξ,
hence ξ = η.
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Theorem 1.2.7. Let (X, dx) and (Y, dy) be metric spaces with Y complete. If S ⊆ X
is dense, and f : S → Y is uniformly continuous, then ∃ a unique continuous extension
f : X → Y of f. In fact, f is uniformly continuous.

Proof. (Existence only) For x ∈ X, choose a Cauchy sequence {sn} in S converging to
x. Then {f(sn)} is Cauchy in Y, so it converges to a point p ∈ Y. Set f(x) := p. We
show that f is well-defnined. Indeed, if {tn} ∈ CS(S) and converges to x, then we have
lim dx(sn, tn) = 0, implying that lim dy(f(sn), f(tn)) = 0. Therefore lim dy(f(tn), p) = 0, so
{f(tn)} converges to p also. It remains to show continuity, which is left as an exercise.

Theorem 1.2.8. Every metric space (X, d) has a completion.

Proof. As in Lemma 3, (X, d) is a completion of (X, d).We embedX inX by the isometry ι :
X → X defnined by ι(x) := [{x, x, x, ...}], where [·] denotes the corresponding equivalence
class. Note that d

∣∣∣
X

= d, i.e., d(ι(x), ι(y)) = d(x, y).

It remains to show that d has dense range, and that (X, d) is complete.

• Let ξ ∈ X, ε > 0, {xn} ∈ ξ. ∃ N ∈ N such that n,m ≥ N implies d(xn, xm) < ε. Then
d(ι(xN ), ξ) = lim

n→∞
d(xN , xn) < ε. Therefore d has dense range by considering ι(xN ).

• Let {ξn} be a Cauchy sequence in X. For each m ∈ N, pick xm ∈ X such that
d(ι(xm), ξm) < 1/m. Then {xm} is a Cauchy sequence, and it follows that {ξm}
converges to the equivalence class of {xm}.

Remark. Denote C([0, 1]) the space of continuous functions on [0, 1]. Consider the metric
space C([0, 1]) induced by the norms ‖ · ‖∞ or ‖ · ‖p. This space is not complete. It is easy
to come up with a sequence of continuous functions converging under these norms to a
function that is not continuous.

Remark. Let V be a vector space with norm ‖ · ‖. Consider V∞, the space of all sequences
of elements in V. This is also a vector space. It can be shown that CS(V ) is a subspace of
V∞.
Now let N (V ) denote the set of all Cauchy sequences in V converging to 0. Then N (V ) is
a subspace of CS(V ). If {vn} and {wn} are equivalent Cauchy sequences, then
‖vn−wm‖ → 0, so {vn−wn} ∈ N (V ). Thus V is in fact the quotient space CS(V )/N (V ).

Fact. Any two norms ‖ · ‖1, ‖ · ‖2 on a finite dimensional vector space are equivalent,
meaning that there are constants c, C > 0 such that c‖x‖1 ≤ ‖x‖2 ≤ C‖x‖1 for all x. If
a function is continuous with respect to a particular norm, then it is easily seen that it is
continuous with respect to any equivalent norm.
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1.3 Openness

Let (X, dX), (Y, dY ) be metric spaces and f : X → Y be a map between the two metric
spaces. Recall that f is continuous at x0 ∈ X if ∀ε > 0, ∃δ > 0 such that dX(x, x0) < δ
implies dY (f(x), f(x0)) < ε.

Definition 1.3.1 (Open ball). Let (X, dX) be a metric space. The open ball around
x0 ∈ X with radius r > 0 is defined as

Br(x0) = {x ∈ X | dX(x, x0) < r}.

Remark. For any open ball U in Y , there exists an open ball O in X such that if x ∈ O,
then f(x) ∈ U .

Now we can rephrase continuity using the notion of open balls:

Definition 1.3.2 (Continuity). f : X → Y is continuous at x0 if ∀ε > 0, ∃δ > 0 such
that f(Bδ(x0)) ⊆ Bε(f(x0)).

If y ∈ Bε (f (x0)) and y = f(x) for some x ∈ X, let ε′ = ε−d (y, f (x0)) > 0. Then Bε′(y) ⊆
Bε (f (x0)), so there exists δ′ > 0 such that f (Bδ′(x)) ⊆ Bε (f (x0)) If x1 ∈ f−1 (Bε(f(x))),
there is an open ball Bδ′(x) such that Bδ′ (x1) ⊆ f−1 (Bε(f(x))) Thus f−1 (Bε(f(x))) is a
union of open balls in X. Similarly, f−1 (Bε(y)) is a union of open balls in X. This leads
to the definition of open sets.

1.3.1 Open Sets

Definition 1.3.3 (Open set). A subset A of X is open if A is a union of open balls it
contains, i.e. ∀x ∈ A,∃r > 0 such that Br(x) ⊂ A.

Theorem 1.3.4. Let (X, d) be a metric space, and T be the collection of all open sets.
Then

(i) If {Oα} is an arbitrary collection of subsets in T , then
⋃
αOα is open.

(ii) If O1, . . . ,On is a finite collection of subsets in T , then
⋂n
i=1Oi is open.

(iii) X ∈ T (X is open).

Proof of (iii). If O1,O2, . . . ,On are open, and x ∈ O1 ∩ O2, then there exist open balls
Br1(x) ⊆ O1, Br2(x) ⊆ O2, . . . ,Brn(x) ⊆ On. Let r = min 1≤i≤n{ri}. Then Br(x) ⊆⋂n
i=1Oi.



Chapter 2

Topology

2.1 Topological Spaces

Definition 2.1.1 (Topology). Let X be a set. The topology on X is a collection T ⊆
P(X) satisfying:

(i) X, ∅ ∈ T .

(ii) If any arbitrary family {Oα} ⊆ T , then
⋃
αOα ∈ T .

(iii) If O1, . . . ,On ∈ T , then
⋂n
i=1Oi ∈ T .

Definition 2.1.2 (Topological space). Let T be a topology on X. Then (X, T ) is a
topological space. The sets in T are called open sets and the complements of the sets
in T are closed sets.

Example 2.1.3. Let X be any nonempty set. Then P(X) and {∅, X} are topologies on
X. They are called the discrete topology and indiscrete topology respectively.

Example 2.1.4. Let X be a metric space. The collection of all open sets with respect to
the metric is a topology on X.

Definition 2.1.5 (Interior). If A ⊆ X, the union of all open sets contained in A is called
the interior of A, denoted by A◦. This is the biggest open set contained in A.

Definition 2.1.6 (Closure). If A ⊆ X, the intersection of all closed sets containing A is
called a closure of A, denoted by A. This is the smallest closed set containing A.

Definition 2.1.7 (Dense). If A = X, A is called dense in X.

Definition 2.1.8 (Strong/Weak topology). Let T1, T2 be topologies on a set X such that
T1 ⊂ T2. We say that T1 is weaker than T2, or equivalently T2 is stronger than T1.

9
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2.2 Continuous Maps

Definition 2.2.1 (Continuity). Let (X, TX), (Y, TY ) be topological spaces. A function
f : X → Y is continuous if ∀U ∈ TY , we have f−1(U) ∈ TX .

2.2.1 Bases and Sub-bases

Proposition 2.2.2. Let X be a set and let C be a collection of topologies on X. Then⋂
T ∈C T is a topology on X.

Then it follows that for any collection S of subsets of X, there is a unique weakest/smallest
topology T on X containing S described as follows.

Definition 2.2.3 (Sub-base). Let T (S) =
⋂
S⊆T T , the intersection of all topologies on X

containing S. It is called the topology generated by S and S is the sub-base for T (S).

Definition 2.2.4 (Base). A collection B ⊆ T of subsets of a set X is called a base for T
if every element of T is a union of elements of B.

Example 2.2.5. Let (X, d) be a metric space. The open balls form a base for the metric
topology.

Remark. The intersections of two balls is usually not a ball. If B is a base, then the
intersection of any two elements of B must be a union of elements of B.

Proposition 2.2.6. If S ⊆ P(X), the topology T (S) generated by S consists of ∅, X, and
all unions of finite intersections of members of S.

Proposition 2.2.7. Let (X, TX), (Y, TY ) be topological spaces. If TY is generated by B (i.e.
B is a sub-base for TY ), then f : X → Y is continuous ⇐⇒ f−1(U) ∈ TX for every U ∈ B.

Proof. Note that f−1 preserves the Boolean operations for any collection of subsets of Y :

• f−1
⋂
αAα =

⋂
α f
−1(Aα)

• f−1
⋃
αAα =

⋃
α f
−1(Aα)

• If A,B ⊆ Y , then f−1(A\B) = f−1(A)\f−1(B)

Then suppose {Un} ⊆ B is some finite collection of open sets in B, then

f−1

(
n⋂
i=1

Ui

)
=

n⋂
i=1

f−1 (Ui) ∈ TX .
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Then any finite intersection of elements of B satisfies the condition as well, i.e. is a base.
If {Uα} ⊆ B is a collection (possibly infinite) of open sets in B, then

f−1

(⋃
α

Uα

)
=
⋃
α

f−1 (Uα) ∈ TX ,

so
⋃
α Uα also satisfies the condition. Therefore, all open set U in TY satisfies f−1(U) ∈ TX

so f is continuous.

2.2.2 Homeomorphism

Definition 2.2.8 (Homeomorphism). If f : X → Y is bijective and f and f−1 are both
continuous, f is called a homeomorphism, and X and Y are said to be homeomorphic.

2.3 Quotient Topologies

Let X be a set and let (Yα, Tα) be a collection of topological spaces. Let fα : X → Yα
be any function. Then there is a smallest topology on X for which each fα is continuous,
namely, the smallest topology having as sub-base all sets f−1

α (U), where U ∈ Tα for each
α.

Definition 2.3.1. Let (X, TX) be a topological space. Let Y be a set and f : X → Y be
any function. Then there is a strongest topology on Y for which f is continuous. Namely,

TY := {A ⊆ Y : f−1(A) ∈ TX},

which is called the quotient topology on Y for f .

Remark. Note that if y /∈ f(X), then f−1({y}) = ∅, so {y} is open. Also, f−1 ({y}c) = X,
so {y} is also closed. Therefore, on f(X)c, the quotient topology is the discrete topology.
Thus, we usually require f : X → Y to be onto.

Let f : X → Y be onto, and define the equivalence relation on X by x1 ∼ x2 ⇐⇒ f(x1) =
f(x2). f defines a partition, a collection of equivalence classes. Conversely, let ∼ be an
equivalence relation on X. Let Y = X/ ∼ be the set of equivalence classes, x → [x], call
it f . Given a topology on X, we call X/ ∼ with the quotient topology on the projection
X → X/ ∼ a quotient space.
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Definition 2.3.2. Let Y be a set, and (Xα, Tα) be a collection of topological spaces and
function fα : Xα → Y be any function, then there is a strongest topology on Y where all
fα is continuous. Namely⋂

α

TYα , where TYα := {Aα ⊆ Yα : f−1(Aα) ∈ Tα}

which is the intersection of all quotient topologies for each fα. This is called a final topol-
ogy.

Definition 2.3.3. Let G be a group. By an action of G on (X, T ), we mean a group
homomorphism α : G→ Homeo(X, T ). For any x ∈ X, its G-orbit is

{αr(x) : r ∈ G}.

The orbits form a partition of X. Let Yα be the set of orbits, we can put on the quotient
topology.

Example 2.3.4. Let X = [0, 1]. Define the equivalence relation s ∼ t ⇐⇒ s = t, and
have 0 ∼ 1. That is, {0, 1} is an equivalence class.

Define f : X → {z ∈ C : |z| = 1} by t(t) = e2πit for t ∈ [0, 1]. Note that f is continuous
but f−1 is not: there is a discontinuity at 1 ∈ C. However, the corresponding function
f : X/α→ {z ∈ C : |z| = 1} is a homeomorphism with the usual topology from C.

Example 2.3.5. Let X = S2 be a sphere on R3 = V , v ∈ S2. Let G = Z2 , αc(v) = −v.
Sn ⊆ Rn+1.

Definition 2.3.6. Let Y be a set and {Xα, Tα}α∈A be a collection of topological spaces
and fα : Y → Xα. We want the weakest topology that make all fα continuous, namely the
initial topology. This topology must contain f−1

α (U) for U ∈ Tα.

Remark. These form a sub-base for the initial topology, whereas the finite intersections
of these form a base.
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Definition 2.3.7. Let (X, T ) be a topological space and let Y ⊆ X with f : Y → X
defined by f(y) = y ∈ X. The sub-base is {f−1(U), U ∈ TX} and so f−1(U) = U ∩Y . The
initial topology is {U ∩ Y : U ∈ TX}, which is called the relative topology.

Definition 2.3.8. Let (Xα, Tα) be a collection of topological spaces. Let Y =
∏
αXα be

the product set. Have πα : Y → Xα, πα({xβ}β∈A) = xα. The product topology is the
initial topology for the πα. The sub-base is the π−1

α (U), U ∈ Tα, for all α,U .

Example 2.3.9. If A = N, (Xn, Tn), {xn} ∈
∏
Xn. If U ∈ T3,

π−1
3 (U) = X1 ×X2 × U ×X4 ×X5 × · · · .

The base is the finite intersection of these.

Example 2.3.10. Let Y = V be a vector space over R. Let L be a collection of linear
functionals, ϕλ, λ ∈ L and ϕλ : V → R. We can ask for the weakest topology on V making
all ϕλ continuous.

Example 2.3.11. V = C([0, 1]) be the continuous function on [0, 1] and L = C([0, 1]). For
g ∈ L, ϕg(f) =

∫ 1
0 f(t)g(t)dt.

Proposition 2.3.12. Consider fα : X → Yα for α ∈ A. Let Tx be the corresponding weak
topology on X. Let (Z, Tz) be a topological space, and let g : Z → X. Then g is continuous
iff fα ◦ g is continuous for all α.

Proof. Suppose fα ◦ g is continuous for all α. It suffices to check on the sub-base. Let
O ∈ Tα. Then g−1

(
f−1
α (O)

)
= (fα ◦ g)−1 (O) is open, hence g is continuous. Conversely,

if g is continuous, then (fα ◦ g)−1 (O) = g−1
(
f−1
α (O)

)
is open since f−1

α (O) is open in Tx,
thus (fα ◦ g) is continuous.

Question. What topologies play nicely with R?

Let (X, d) be a metric space. Let x1, x2 ∈ X,x1 6= x2. Let r = d(x1, x2). Consider the two
disjoint balls Br/3(x1),Br/3(x2).

2.4 Special Topological Spaces

2.4.1 Hausdorff topological space

Definition 2.4.1. A topological space is said to be Hausdorff if for any x1, x2 ∈ X,x1 6=
x2, there exist disjoint open sets O1,O2 ∈ T , with x1 ∈ O1, x2 ∈ O2.
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2.4.2 Normal topological space

Definition 2.4.2. (X, T ) is normal if for disjoint closed sets C1, C2, there exist disjoint
open sets O1,O2 ∈ T , such that C1 ⊆ O1, C2 ⊆ O2.

Proposition 2.4.3. If (X, d) is a metric space, then its topology is normal.

Proof. Let C1, C2 be disjoint closed sets. For each x ∈ C1, we can choose rx such that
Brx(x) ∩ C2 = ∅. For each y ∈ C2, we choose ry such that Bry(y) ∩ C1 = ∅. Let

O1 =
⋃
x∈C1

Brx/3(x)

O2 =
⋃
y∈C2

Bry/3(y).

Then C1 ⊆ O1, C2 ⊆ O2. Now let z ∈ O1 ∩ O2. Then there exists x ∈ C1 with z ∈ Brx/3(x).
Then

d(x, y) ≤ d(x, z) + d(z, y) <
rx
3

+
ry
3
.

Suppose rx ≥ ry, then d(x, y) ≤ 2
3rx. So y ∈ C2 and y ∈ Brx(x) but C2 and Brx(x) are

disjoint. Hence, a contradiction. Therefore, O1 ∩ O2 = ∅.

2.4.3 Urysohn’s Lemma

Lemma 2.4.4. Let (X, T ) be a normal space, and let C ⊆ X be a closed subset. Let
O ⊆ X be an open subset such that C ⊆ O. Then there exists an open set U such that
C ⊆ U ⊆ U ⊆ O.

Proof. C and Oc are disjoint closed sets, so there are disjoint open sets U, V such that
C ⊆ U and Oc ⊆ V . Then C ⊆ U ⊆ V c ⊆ O. V c is a closed set containing U ; it therefore
contains the closure U , so that C ⊆ U ⊆ U ⊆ O.

Lemma 2.4.5 (Urysohn’s Lemma). Let (X, T ) be normal, and let C0, C1 be disjoint closed
subsets. Then there exists a continuous function f : X → [0, 1] such that f(C0) = {0}, f(C1) =
{1}.

Proof. Set O1 = Cc1 and C0 ⊆ O1. Then by the lemma there exists an open O1/2 with
C0 ⊆ O1/2 ⊆ O1/2 ⊆ O1. Applying the lemma again, there exist open sets O1/4,O3/4.
Hence,

C0 ⊆ O1/4 ⊆ O1/4 ⊆ O1/2 ⊆ O1/2 ⊆ O3/4 ⊆ O3/4 ⊆ O1.

Then there exist O1/8,O3/8,O5/8,O7/8 such that

C0 ⊆ O1/8 ⊆ O1/8 ⊆ O1/4 ⊆ O1/4 ⊆ O3/8 ⊆ O3/8 ⊆ · · · ⊆ O7/8 ⊆ Cc.
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Then by induction, for each dyadic rational numbers

∆ = {r = m2−n : 1 ≤ m ≤ 2n,m, n ∈ N}.

we get an open set Or such that if r, s ∈ ∆, r < s, then Or ⊆ Os, Cs ⊆ Ocr.

Define f : X → [0, 1] by
f(x) = inf {r ∈ ∆ : x ∈ Or}.

Clearly, if x ∈ C0, then x ∈ O2−n for any n ∈ N, so it follows that f(x) = 0. On the other
hand, if x ∈ C1, then x /∈ Or for any r ∈ ∆, hence f(x) = 1 on C1. Thus, it remains to show
that f is continuous. Recall that it suffices to consider the sub-base of open rays. Use as
sub-base {(−∞, a) : a ∈ R} ∪ {(b,+∞) : b ∈ R}.

Since f : X → [0, 1], then for a ≤ 0, b ≥ 1, f−1((−∞, a)) = f−1((b,+∞)) = ∅. Suppose
0 < a ≤ 1. If x ∈ X, and f(x) < a, then there is a dyadic rational number r ∈ ∆ such that
f(x) < r < a, so x ∈ Or. Then we have

f−1((−∞, a)) =
⋃
r<a

Or,

which is open. Similarly, suppose 0 ≤ b < 1. If x ∈ f−1((b,+∞)), i.e. f(x) > b, then there
exists a dyadic rational s ∈ ∆ such that f(x) > s > b, so x 6∈ Os, and there exists a dyadic
rational r ∈ ∆ such that s > r > b, so Or ⊆ Os, and so x 6∈ Or, so x ∈ O

c
r, which is open.

Then
f−1((b,∞)) =

⋃
r>b

Ocr

is open.

2.5 Banach Spaces

Definition 2.5.1. A Banach space is a complete, normed vector space.

Let X be a set, and let V be a normed vector space. Let B(X,V ) denote the set of all
bounded functions from X to V , that is, functions whose range is contained in an open
ball. Then it can easily be checked that B(X,V ) is a vector space for pointwise operations,
and that ‖f‖∞ := sup {|f(x)| : x ∈ X} is a norm on B(X,V ).

Proposition 2.5.2. If V is a Banach space, then B(X,V ) with ‖ · ‖∞ is a Banach space.
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Proof. First, we show that B(X,V ) is a normed vector space. If f, g ∈ B(X,V ), there
exists some M,N such that |f(x)| < M, |g(x)| < N for each x ∈ X by boundedness. Then
|(f + g)(x)| ≤ |f(x)| + |g(x)| < M + N , so f + g is also a bounded function. If c ∈ R,
then |cf(x)| < |c|M , so cf is also bounded. This shows that the space of bounded func-
tions is a vector space. Furthermore, the norm is indeed a norm because ‖(f + g)(x)‖∞ ≤
‖f‖∞ + ‖g‖∞ =⇒ ‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞, and all the other norm properties hold.

Now, we must show that B(X,V ) is complete. Take some Cauchy sequence {fn} in
B(X,V ). For each x ∈ X, {fn(x)} is Cauchy in V , so by the completeness of V , such
sequence converges to some limit f(x) = limn→∞ fn(x). Since all fn’s are bounded, the
limit f is bounded as well. We need to show that fn → f in norm:
Let ε > 0. There exists N1 ∈ N such that for n,m ≥ N1, we have

‖fn − fm‖∞ <
ε

2
.

For a fixed x ∈ X, there exists N2 ∈ N such that for n ≥ N2, we have

‖fn(x)− f(x)‖ < ε

2
.

Then for n ≥ max (N1, N2), we have

‖fn(x)− f(x)‖∞ ≤ ‖fn − fn+1‖∞ + ‖fn+1(x)− f(x)‖ < ε.

Thus, ‖fn − f‖ < ε.

Proposition 2.5.3. Let (X, T ) be a topological space, and let Cb(X,V ) be a set of bounded
continuous functions from X to V . Then Cb(X,V ) is a closed subspace.

Proof. Exercise.

2.5.1 Tietze Extension Theorem

Theorem 2.5.4. Let (X, T ) be a normal topological space, and let A ⊆ X be closed. Let
f : A→ R be continuous. Then f has a continuous extension f̃ : X → R, i.e. f̃ |A = f . If
f : A→ [a, b], then we can arrange the extension f̃ : X → [a, b].

Proof. First, we prove the case f : A → [0, 1]. For E0, F0 disjoint closed sets in X, by
Urysohn’s lemma, let hE0,F0 : X → [0, 1] be a continuous function such that hE0,F0 |E0 = 0
and hE0,F0 |F0 = 1.

Let f0 = f , and let A0 = {x ∈ A : f0(x) ≤ 1
3}, B0 = {x ∈ A : f0(x) ≥ 2

3}. Clearly A0 and
B0 are disjoint. Let

g1 =
1

3
hA0,B0 .
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Now let f1 = f0 − g1|A. That is, f1 : A → [0, 2/3] and g1 : X → [0, 1/3]. Inductively, let
fn : A → [0, (2/3)n]. Let An = {x ∈ A : f(x) ≤ 1

3

(
2
3

)n}, Bn = {x ∈ A : f(x) ≥ 2
3

(
2
3

)n}
with

gn+1 =
1

3

(
2

3

)n
hAn,Bn ,

so gn+1 : X → [0, 1
3

(
2
3

)n
]. Let fn+1 = fn − gn+1|A, so fn+1 : A→ [0, 1

3

(
2
3

)n+1
].

Note that ‖gn‖∞ = 1
3

(
2
3

)n−1. Let f̃ =
∑∞

n=1 gn. We will show that the sequence of partial
sums is Cauchy in Cb(X,R), thus

∑∞
n=1 gn converges.

Let kn =
∑n

j=1 gj . For m < n, consider kn − km =
∑n

j=m+1 gj . Then

‖kn − km‖∞ ≤
n∑

j=m+1

‖gj‖∞ =

n∑
j=m+1

1

3

(
2

3

)j−1

.

Clearly, for large enough n,m, we can make this arbitrarily small. Thus f̃ is well-defined
and continuous, by the previous proposition. Then

fn = fn−1 − gn = fn−2 − gn−1 − gn = · · · = f0 −
n∑
j=1

gj ,

so ‖fn‖∞ =
(

2
3

)n, so ‖fn‖∞ → 0, thus f − f̃ |A = 0, i.e. f̃ |A = f .
Finally, we want to check that the range of f̃ is contained in [0, 1]. Note that

f̃(x) =
∞∑
n=1

gn(x) ≤ 1

3

∞∑
n=1

(
2

3

)n−1

=
1

3

∞∑
n=0

(
2

3

)n
=

1

3
· 1

1− 2
3

= 1.

Therefore 0 ≤ f̃(x) ≤ 1 for all x ∈ X.

Now suppose that f : A → R is unbounded. Let h be a homeomorphism of R with (0, 1).
Let g = h ◦ f , so g : A→ (0, 1) ⊂ [0, 1]. By the arguments above, we can find an extension
g̃ : X → [0, 1] such that g̃|A = g. Let B = g̃−1({0, 1}). Since g̃ is continuous, B is closed
in X and is disjoint from A. By Urysohn’s Lemma, there exists a continuous function
k : X → [0, 1] such that k|B = 0 and k|A = 1. Define ĝ = g̃k (pointwise product). Then
the function f̃ = h−1 ◦ ĝ is a continuous extension of f to X.
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Compactness

3.1 Fundamentals

Definition 3.1.1 (Cover/Subcover). Let X be a set. Let C ⊆ P(X) be a collection of
subsets of X. We say that C is a cover for X if⋃

A∈C
A = X.

If D ⊆ C and D is also a cover for X, then D is a subcover of X.

Definition 3.1.2 (Open cover). For a topological space (X, T ), an open cover is a cover
of X that is contained in T .

Definition 3.1.3 (Compact). (X, T ) is compact if every open cover has a finite subcover.

Proposition 3.1.4. Let (X, T ) be a topological space and let A ⊆ X. Then the following
are equivalent:

(i) A is compact in the relative topology.

(ii) Given any C ⊆ T such that A ⊆
⋃
O∈C O, there exist {Oi}ni=1 ∈ C with A ⊆

⋃n
i=1Oi.

Proposition 3.1.5. If (X, T ) is compact and A ⊆ X is closed, then A is compact (in the
relative topology).

Proof. Let C ⊆ T be an open cover of A. Since A is closed, Ac is open. Then C ∪ {Ac}
is an open cover of X. Since (X, T ) is compact, there is a finite subcover of X, so clearly
there is a finite subcover for A. Hence, A is compact.

Remark. A being compact does not imply A closed. For example consider sets with the
indiscrete topology.

18
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Proposition 3.1.6. Let (X, T ) be Hausdorff. Suppose A ⊆ X is compact. Then for any
y 6∈ A, there are disjoint open sets U,O ∈ T with y ∈ U , A ⊆ O.

Proof. By definition of Hausdorff, for each x ∈ A, there exists disjoint open sets Ux,Ox ∈ T
with y ∈ Ux, x ∈ Ox. The set {Ox : x ∈ A} is a cover of A. Since A is compact, then there
exists {Oxi}ni=1 that covers A. Let O =

⋃n
i=1Oxi ⊇ A be open. Let U =

⋃n
i=1 Uxi be open

and y ∈ U . Then we have U ∩ O = ∅.

Corollary 3.1.7. If (X, T ) is Hausdorff, then any compact subset A ⊆ X is closed.

Definition 3.1.8. (X, T ) is regular if for any closed set A ⊆ X and any x /∈ A, there are
disjoint open sets O, U such that A ⊆ O and x ∈ U

Proposition 3.1.9. If (X, T ) is compact Hausdorff, then it is regular.

Proposition 3.1.10. If (X, T ) is compact Hausdorff, then it is normal.

Proof. Let A,B be disjoint closed subsets of X. For each y ∈ B, by regularity, there exists
disjoint open sets Oy, Uy with A ⊆ Oy, y ∈ Uy, The Uy’s form an open cover of B, so
{Uyi}ni=1 cover B, Set

U =
n⋃
i=1

Uyi ⊇ B

O =
n⋂
i=1

Oyi .

Proposition 3.1.11. If (X, TX) is compact and (Y, TY ) is a topological space, and f : X →
Y be continuous, then f(X) is compact in Y .

Proof. Let C be an open cover of f(X), C ⊆ TY . Then {f−1(U) : U ∈ C} is an open cover
for X. Since (X, T ) is compact, there exists {Ui}ni=1 ∈ C with

n⋃
i=1

f−1(Ui) = X.

Then {Ui}ni=1 cover f(X).

Proposition 3.1.12. If (X, TX) is compact and (Y, TY ) is Hausdorff, and f : X → Y is
continuous and bijective, then f−1 is continuous, so f is a homeomorphism.

Proof. Note that f−1(A) = f(A). To show that f−1 is continuous, we need that for any
O ∈ TX , f(O) ∈ TY , i.e. f is an open function.

Given O ∈ TX , Oc is closed, so Oc is compact. Hence f(Oc) is compact. Since TY is
Hausdorff, f(Oc) is closed, which implies (f−1(Oc))c = f(O) is open.
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3.1.1 Compactness in terms of Closed Sets

If X is a set, C is a collection of subsets. Then C is a cover of X⋃
A∈C

A = X.

Then ⋂
{Ac:A∈C}

= ∅.

So if (X, T ) is compact, C is an open cover, then there exists a finite subcover, i.e. if⋂
{Oc:O∈C}

= ∅,

then there exists a finite closed sets Oc1, . . . ,Ocn with

n⋂
i=1

Oci = ∅,

where O1, . . . ,On ∈ C.

Definition 3.1.13. If X is a set and C is a collection of subsets. We say C has the finite
intersection property (FIP) if for any A1, . . . , An ∈ C,

n⋂
i=1

Ai 6= ∅.

Proposition 3.1.14. (X, T ) is compact if for any collection C of closed subsets if C has
the FIP, then

⋂
C∈C C 6= ∅. (Used for existence proofs)

3.2 Tychonoff’s Theorem

Theorem 3.2.1 (Axiom of Choice). Given any family of non-empty sets, there is a set
containing an element from each of these sets.

Theorem 3.2.2 (Tychonoff’s Theorem). Let {(Xα, Tα)} be a family of compact spaces
indexed by A. Then ∏

α

Xα

with the product topology is compact.
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Proof. Let C be a collection of closed subsets that has the FIP. We must show that⋂
C∈C C 6= ∅.

Let Θ be a collection of of all collections D of subsets of
∏
αXα such that C ⊆ D and D

has FIP. Then Θ is inductively ordered by inclusion. Then by Zorn’s lemma, there is a
maximal element D∗.

Example 3.2.3. Let A = C([0, 1]). Let ‖·‖2, 〈, 〉. Let B be an unit ball for ‖.‖2 in C([0, 1]),
then

B = {f ∈ C([0, 1]) :

∫ 1

0
f(t)2dt ≤ 1}.

For each α ∈ A define ϕα : B → R by ϕα(f) = 〈f, α〉. By Cauchy-Schwartz, we have

|ϕα(f)| ≤ ‖f‖2‖α‖2 = ‖α‖2.

Consider
∏
α[−‖α‖2, ‖α‖2].

3.2.1 Zorn’s Lemma

Definition 3.2.4. A chain C in P is a totally ordered subset of P.

Definition 3.2.5. P is inductively ordered if for any chain C in P, there is a ∈ P
(maybe in C) such that c ≤ a for all c ∈ C, i.e. every chain in P has an upper bound.

Definition 3.2.6. m ∈ P is a maximal element if a ≥ m =⇒ a = m.

Lemma 3.2.7 (Zorn’s Lemma). If P is inductively ordered, then every chain C has a
maximal element m for C with a ≤ m for any a ∈ C.

Proposition 3.2.8. Let R be a ring. Every two-sided ideal is contained in a maximal
two-sided ideal.

Example 3.2.9. Consider Z5. Let R be the sequences of elements of Z5,
∏∞
n=1 Z5. Let I

be sequences in R that eventually take value 0 for all entries.

Theorem 3.2.10. Tychonoff’s Theorem =⇒ Axiom of Choice.

Proof. Let {Xα}α∈A be a family of non-empty sets. Let ω be some point that is not
in
⋃
α∈AXα (for example = {

⋃
Xα}). For each α, let Yα = Xα ∪ {ω}. Let TYα =

{∅, XY α, {ω}}. Then {Yα, TYα} is compact. Let Y =
∏
Yα. Then Y is compact by Ty-

chonoff. πα : Y → Yα. Note that Xα is closed since {ω} is open. Let

Fα = π−1
α (Xα).
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Then Fα is closed in Y . Now we claim that {Fα}α∈A has FIP.
Given Fα1 , Fα2 , . . . , Fαn , choose yαj ∈ Fαj , j = 1, . . . , n. Define y ∈ Y by

yα =

{
yαj if α = αj

ω if α 6= αj , j = 1, . . . , n
.

Then yα ∈
⋂n
i=1 Fαi . Since Y is compact, there exists y ∈

⋂
α∈A Fα. Thus yα ∈ Fα. Let

xα = πα(yα).

3.3 Metric Spaces and Compactness

Let (X, d) be a metric space. Let A ⊆ X and suppose that A is compact. Let ε > 0 be
given. The collection Bε(a) for all a ∈ A covers A, and so there is a finite subcover.

Definition 3.3.1. Let (X, d) be a metric space. A subset A ⊆ X is totally bounded if
for any ε > 0, A can be covered by a finite collection of ε-balls.

Remark. Any subset of a totally bounded set is totally bounded.

Remark. If we can cover with balls with center at X, then we can cover with balls with
center at A.

Proposition 3.3.2. If A ⊆ X is totally bounded, so is A.

Proof. Given ε > 0, find Bε/2(aj) that cover A. If b ∈ A, then Bε/2(b) ∩A 6= ∅. Let a be in
that intersection. Then for some j, a ∈ Bε/2(aj), so b ∈ Bε/2(aj).

Definition 3.3.3. Let {xn} be a sequence in X, T . A cluster point of {xn} is a point x∗

such that for any open set O with x∗ ∈ O, the sequence {xn} is frequently in O, i.e., given
an m, there is n > m with xn ∈ O.

Proposition 3.3.4. If (X, T ) is compact, then every sequence {xn} has at least one cluster
point.

Proof. Let An = {xn, xn+1, . . .}. The An’s have FIP. So An’s have FIP. Since X is compact,⋂
An 6= ∅. We claim that any x∗ ∈

⋂
An is a cluster point. Given O, x∗ ∈ O, O ∩ An 6= ∅

for all n. Let A ⊆ X be compact and (X, d) be a metric space. Let {xn} be a Cauchy
Sequence in A. By previous proposition, it has a cluster point x∗For x∗ ∈ Bε/2(x∗), find N
such that for m,n ≥ N , d(xm, xn) < ε

2 and xN ∈ Bε/2(x∗). Thus for n ≥ N , xn ∈ Bε(x∗),
so {xn} converges to x∗.

Theorem 3.3.5. If (X, d) is a complete metric space and totally bounded, then it is com-
pact.
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Proof. Let C be an open cover of X. To show that it has a finite subcover, we prove by
contradiction. Assume that it does not have a finite subcover. Cover X by a finite number
of closed balls of radius 1, call them B1

n, . . . , B
1
n1
. Take the closure of the balls. There must

be at least one of these that cannot be finitely covered, call it A1. Cover A1 with a finite
number of closed balls of radius 1

2 , call them B2
1 , . . . , B

2
n2
, take closure. Then at least one

of these cannot be finitely covered, call it A2. Cover A2 by a finite number of closed balls
of radius 1

4 , take closure. Then at least one of these cannot be finitely covered, call it A3,
and so on. Then we get a sequence {An} of closed sets where An+1 ⊆ An, and each An is
not finitely covered, and diameter(An)→ 0 as n → ∞. The for each n, choose a Cauchy
sequence {xn} ∈ An. Since X is complete, {xn} converges to x∗. Since C is a cover, there
is O ∈ C with x∗ ∈ O. Hence. there is an ε > 0 such that Bε(x∗) ⊆ O. Choose n so that
diameter(An)< ε. Then An ⊆ Bε(x∗) ⊆ O. Hence, a contradiction.

Corollary 3.3.6. If (X, d) is a complete metric space and A ⊆ X, to show that A is
compact, it suffices to show A is totally bounded and A is closed in X.

Remark. If A is bounded, then A is totally bounded. If A is also closed, then A is compact.

If (X, TX) is a topological space and (Y, d) a metric space, consider the set of bounded
continuous functions Cb(X,Y ) with d∞ defined by

d∞(f, g) := sup {d(f(x), g(x)) | x ∈ X}.

What are the compact subsets of Cb(X,Y ) and what are the totally bounded subsets of
Cb(X,Y )?

Let F be a totally bounded subset of Cb(X,Y ). Then given ε > 0, there are f1, . . . , fn
such that Bε(fj) cover F . Then if g ∈ F , there is some j such that g ∈ Bε(fj). Then for
x∗, x ∈ X, we have

d(g(x), g(x∗)) ≤ d(g(x), fj(x)) + d(fj(x), fj(x
∗)) + d(fj(x

∗), g(x∗))

≤ ε+ ” + ε

Since fj is continuous, there existsOj ∈ T , x∗ ∈ Oj such that if x ∈ Oj , d(fj(x), fj(x
∗)) < ε.

Thus if x ∈ Oj , d(g(x), g(x∗)) < 3ε. For each j, let O =
⋂n
j=1Oj , x∗ ∈ O. We find that

for any g ∈ F and any x ∈ O, d(g(x), g(x∗)) < 3ε.

Definition 3.3.7. A family F of continuous functions is equicontinuous at x∗ if for any
ε > 0, there exists O such that x∗ ∈ O and if x ∈ O, then d(f(x), f(x∗)) < ε for any f ∈ F .
F is equicontinuous if it is equicontinuous at each x ∈ X.

Continuing from previous discussion, given x∗, ε > 0 for any g ∈ F , d(g(x∗), fj(x
∗)) < ε

for some j. Thus

{g(x∗) : g ∈ F}︸ ︷︷ ︸
totally bounded

⊆
n⋃
j=1

Bε(fj(x∗)}



CHAPTER 3. COMPACTNESS 24

so F is pointwise totally bounded..

Theorem 3.3.8 (Arzela-Ascoli Theorem). If (X, T ) is compact, and if F ⊆ Cb(X,Y ) such
that F is equicontinuous and pointwise totally bounded. Then F is totally bounded.

Proof. Let ε > 0 be given. By equicontinuity for each x ∈ X, there is Ox ∈ T such that
if x′ ∈ O, then d(f(x′), f(x)) < ε

4 for any f ∈ F . Since X is compact, there is a finite
subcover Ox1 , . . . ,Oxn . For each j, {f(xj) : f ∈ F} is totally bounded. Hence, choose a
finite subset Sj of that set that is ε/4 dense in that set. Let S =

⋃
Sj , a finite set. Let

Φ = {ψ : {1, . . . , n} → S} and Φ is finite. For ψ ∈ Φ, let

Fψ = {f ∈ F | f(xj) ∈ Bε/4(ψ(j)}.

Thus,
F =

⋃
ψ∈Φ

Fψ.
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