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1 Measure Theory

1.1 Basics

1.1.1 Measures

Definition 1.1.1 (Measure). Given a set X , a measure µ maps subsets A ⊆ X to nonnegative
numbers µ(A) ∈ [0,∞].

Example 1.1.2. Let X be a countable set (X = Z for example). Then the counting measure
ia

µ(A) = #A = # of points in A.

Example 1.1.3. Consider X = Rn. The Lebesgue measure is

λ(A) =
∫
· · ·
∫
A
dx1 · · · dxn = Vol(A).

Example 1.1.4 (Standard Gaussian Distribution).

P(A) = P(Z ∈ A) =
∫
· · ·
∫
A
φ(x)dx1 · · · dxn

where Z ∼ Nn(0, In) and φ(x) = e
− 1

2
∑

x2
i√

(2π)n
.

Because of pathological sets, λ(A) is only defined for some subsets A ⊆ Rn. In other words,
it is often impossible to assign measures to all subsets A of X . This leads to the idea of a
σ-field(σ-algebra).

Definition 1.1.5 (σ-field). A σ-field is a collection of sets on which µ is defined, satisfying
certain closure properties.

In general, the domain of a measure µ is a collection of subsets F ⊆ 2X (power set), and F
must be a σ-field.

Example 1.1.6. Let X be a countable set. Then F = 2X . (Counting measure is defined for all
subsets).

Example 1.1.7. Let X = Rn, then F is the Borel σ-field B, the smallest σ-field containing all
open rectangles (a1, b1)× · · · × (an, bn) where ai < bi ∀i.

3



STAT 210A: THEORETICAL STATISTICS Kelvin Lee

Given a measurable space (X ,F), a measure is any map µ : F : [0,∞] with µ (∞i=1Ai) =∑∞
i=1 µ(Ai) if Ai ∈ F are disjoint. If µ(X ) = 1, then µ is a probability measure.

Measures let us define integrals that put weight µ(A) on A ⊆ X .

Define ∫
1{x ∈ A}dµ(x) = µ(A) (indicator)

extend to other functions by linearity and limits:∫ (∑
ci1{x ∈ Ai}

)
dµ(x) =

∑
ciµ(Ai) (simple function)

∫
f(x)dµ(x) (approx. by simple functions)

Example 1.1.8.

• Counting:
∫
fd# = ∑

x∈X f(x).

• Lebesgue:
∫
fdλ =

∫
· · ·
∫
f(x)dx1 · · · dxn.

• Gaussian:
∫
fdP =

∫
· · ·
∫
f(x)φ(x)dx1 · · · dxn = E[f(Z)].

1.1.2 Measurable Functions

Definition 1.1.9 (Measurable functions). Let (X ,A) be a measurable space and f : X → R.
Then f is measurable if ∀B ∈ B (Borel σ-algebra of R)

f−1(B) = {x ∈ X : f(x) ∈ B} ∈ A.

1.1.3 Densities

The λ and P above are closely related and we now want to make this precise.

Given (X ,F), two measures P, µ, we say that P is absolutely continuous with respect to µ if
P(A) = 0 whenever µ(A) = 0.

Notation: P � µ or we say µ dominates P.

If P� µ, then (under mild conditions) we can always define a density function p : X → [0,∞)
with

P(A) =
∫
A
p(x)dµ(x)∫

f(x)dP(x) =
∫
f(x)p(x)dµ(x).
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The density function is also defined as

p(x) = dP
dµ

(x),

known as Radon-Nikodyan derivative.

Remark. It is useful to turn
∫
fdP into

∫
fpdµ if we know how to calculate integrals dµ.

If P is a probability measure, µ is a Lebesgue measure, then p(x) is called probaility density
function (pdf). If µ is a counting measure, then p(x) is called the probability mass function
(pmf).

1.1.4 Probability Space and Random Variables

Typically, we set up a problem with multiple random variables having various relationships to
one another. It is convenient to think of them as functions of an abstract outcome ω.

Definition 1.1.10. Let (Ω,F ,P) be a probability space. ω ∈ Ω is called outcome. A ∈ F is
called event. P(A) is called probability of A.

Definition 1.1.11. A random variable is a function X : Ω → X . We say X has distribution
Q, denoted as X ∼ Q if P(X ∈ B) = P({ω : X(ω) ∈ B}) = Q(B).

More generally, we could write events involving many random variables X(ω), Y (ω), Z(ω):

P(X ≥ Y + Z) = P({ω : X(ω) ≥ Y (ω) + Z(ω)})

Definition 1.1.12. The expectation is an integral with respect to P:

E[f(X,Y )] =
∫

Ω
f(X(ω), Y (ω))dP(ω).

To do real calculations, we must eventaully boil P or E down to concrete integrals/sums/etc. If
P(A) = 1, we say that A occurs almost surely.
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2 Risk and Estimation

2.1 Estimation

Definition 2.1.1 (Statistical Model). A statistical model is a family of candidate probability
distributions

P = {Pθ : θ ∈ Θ}
for some random variable X ∼ Pθ. X ∈ X is called data (observed). θ is the parameter
(unobserved).

The goal of estimation is to observe X ∼ Pθ and guess value of some estimand g(θ).

Example 2.1.2. Suppose we flip a biased coin n times. Let θ ∈ [0, 1] be the probability of getting
a head and let X be the number of heads after n flips. Then X ∼ Binom(n, θ) with pθ(x) =(n
x

)
θx(1 − θ)n−x, which is the density with respect to counting measure on X = {0, . . . , n}. A

natural estimator would be δ0(X) = X
n .

Definition 2.1.3 (Statistical Procedure). A statistical procedure δ is a mapping from X to
the decision space D:

δ(x) ∈ D.
In estimation tasks, D = Θ, δ is called (statistical) estimator. In hypothesis testing tasks,
D = {0, 1}, δ is called (hypothesis) test.

Question. Is the natural estimator a good estimator? Is there a better one?

Definition 2.1.4 (Statistic). A statistic is any function T (x) of data X (not of both X and θ).

Definition 2.1.5 (Estimator). An estimator δ(X) of g(θ) is a statistic which is intended to
guess g(θ).

2.2 Loss and Risk

Definition 2.2.1 (Loss function). A loss function a mapping L : Θ × D → R≥0 such that
L(θ, δ) measures how bad an estimate is.

Example 2.2.2. One common loss function is the squared-error loss L(θ, δ) = (δ − θ)2.

Typical properties of loss functions:

6
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(i) L(θ, δ) ≥ 0 ∀θ, δ

(ii) L(θ, g(θ)) = 0 ∀θ.

Definition 2.2.3 (Risk function). The risk function is the expected loss (risk) as a function of
θ for an estimator δ(·).

R(θ; δ(·)) = Eθ[L(θ, δ(X))].

Remark. The subscript θ under E tells us which parameter value is in effect, NOT what ran-
domness to integrate over.

Example 2.2.4 (Coin flip cont’d). X ∼ Bin(θ). We have δ0(X) = X
n . Then Eθ

[
X
n

]
= θ

(unbiased). Then

R(θ, δ) = MSE(θ; δ0) = Varθ
(
X

n

)
= θ(1− θ)

n
.

Other choices:

δ1(X) = X + 3
n

δ2(X) = X + 3
n+ 6 .

Figure 2.1: Risks for δ0, δ1, δ2.

δ1 is bad but δ0, δ2 are ambiguous. We need some notion to determine which estimator to pick.

Definition 2.2.5 (Inadmissible). An estimator δ is inadmissible (bad) if ∃δ∗ with

(i) R(θ; δ∗) ≤ R(θ; δ) ∀θ ∈ Θ, and

(ii) R(θ; δ∗) < R(θ; δ) for some θ ∈ Θ

7
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From the previous example, we see that δ1 is inadmissible.

Back to the issue regarding the ambiguity of the comparison between two estimators. Here are
some strategies to resolve that ambiguity:

1. Summarize R(θ) by a scalar (collapse the risk function)

(i) Average-case risk: minimize the Bayes risk function

RB(Λ; δ) :=
∫

Θ
R(θ; δ)dΛ(θ)

with some measure Λ. The resulting δ is called the Bayes estimator, and Λ is the
prior.

(ii) Worst-case risk: minimize the maximum risk function

RM (Θ; δ) := sup
θ∈Θ

R(θ, δ).

over δ : X → R. This is a minimax estimator, which is closely related to Bayes.

Remark. We do not consider the best-case risk because the constant estimator would
always ignore the data, which makes it a bad estimator.

2. Constrain the choice of estimator.

(i) (Classical choice) Only consider unbiased δ. Eθ[δ(X)] = g(θ) ∀θ ∈ Θ.

2.2.1 Unbiasedness

Definition 2.2.6 (Unbiased estimator). An unbiased estimator is a δ : X → Θ such that

Eθ[δ(X)] = g(θ).

Remark. There sometimes exists an unbiased estimator that is uniformly optimal among all
unbiased estimators.
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3 Exponential Families

3.1 s-parameter Exponential Family

Definition 3.1.1 (s-parameter exponential family). An s-parameter exponential family is a
family of probability densities P = {pη : η ∈ Ξ} with respect to a common measure µ on X of
the form

pη(x) = exp
[
s∑
i=1

ηiTi(x)−A(η)
]
h(x), x ∈ X

where

• T : X → Rs is a sufficient statistic

• h : X → R is a carrier/base density

• η ∈ Ξ ⊆ Rs is a natural parameter

• A : Rs → R is a cumulant generating function (CGF)

Note that the CGF A(η) is totally determined by h, T since we must have
∫
X pηdµ = 1 ∀η.

Hence,

A(η) = log
∫
X

exp
[
s∑
i=1

ηiTi(x)
]
h(x)dµ(x).

pη is only normalizable iff A(η) <∞.

Definition 3.1.2 (Natural parameter space). The natural parameter space is the set of all
allowable (normalizable) η:

Ξ1 = {η : A(η) <∞}.

We say P is in canonical form if Ξ = Ξ1.

Remark. Note that Ξ1 is determined by T, h, η. We could take Ξ ⊂ Ξ1 if we wanted. A(η) is
convex =⇒ Ξ1 is convex (from homework).

Interpretation of Exponential Families:

• Start with a base density p0.

• Apply an exponential tilt:

1. multiply by eη>T

9
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2. renormalize (if possible)

An exponential family in canonical form is all possible tilts of h (or any pη) using any linear
combination of T .

Sometimes it is more convenient to use a different parameterization:

pθ(x) = exp
{
η(θ)>T (x)−B(θ)

}
h(x), where B(θ) = A(η(θ)).

Example 3.1.3 (Gaussian Family). Consider X ∼ N (µ, σ2) where µ ∈ R, σ2 > 0. θ = (µ, σ2).

pθ(x) = 1√
2πσ

exp
{
−(x− µ)2

2σ2

}

= exp


µ

σ2x−
1

2σ2x
2︸ ︷︷ ︸

η(θ)>T (x)

−
(
µ2

2σ2 + 1
2 log(2πσ2)

)
︸ ︷︷ ︸

B(θ)


· 1︸︷︷︸
h(x)

This is a two-parameter exponential family with η(θ) =
(

µ/σ2

−1/2σ2

)
and T (x) =

(
x
x2

)
, h(x) = 1,

and B(θ) = µ2

2σ2 + 1
2 log(2πσ2).

Remark. h(x) can also be 1/
√

2π if we did not include the factor 1/(
√

2πσ) into the exponen-
tiation. In that case, B(θ) = µ2/(2σ2) + log σ.

In canonical form,

pη(x) = exp
{
η>
(
x
x2

)
−A(η)

}

A(η) = − η2
1

4η2
+ 1

2 log
(
− π
η2

)

Example 3.1.4. Suppose X1, . . . , Xn
i.i.d.∼ N (µ, σ2). Then their joint density is

pθ(x1, . . . , xn) =
n∏
i=1

p
(1)
θ (xi)

=
n∏
i=1

[
1√
2πσ

exp
{
−(xi − µ)2

(2σ2)

}]

= exp
{

n∑
i=1

[
µ

σ2xi −
1

2σ2xi −
(
µ

2σ2 + 1
2 log(2πσ2)

)]}

= exp
{
µ

σ2

n∑
i=1

xi −
1

2σ2

n∑
i=1

x2
i − n

(
µ

2σ2 + 1
2 log(2πσ2)

)}
.

These densities also form a two-parameter exponential family with η(θ) =
(

µ/σ2

−1/2σ2

)
, T (x) =(∑n

i=1 xi∑n
i=1 x

2
i

)
, B(θ) = nB(1)(θ).
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Generally, suppose X1, . . . , Xn
i.i.d.∼ p

(1)
η (x) = exp{η>T (x)−A(η)}h(x). Then

X ∼
n∏
i=1

p(1)
η (xi) =

n∏
i=1

exp
{
η>T (xi)−A(η)

}
h(xi)

= exp

η
>

n∑
i=1

T (xi)︸ ︷︷ ︸
sufficient statistic

−nA(η)︸ ︷︷ ︸
cgf


n∏
i=1

h(xi)︸ ︷︷ ︸
carrier density

.

Suppose X ∈ X follows an exponential family. Then T (X) also follows a closely related ex-
ponential family. T (X) ∈ T ⊆ Rs. If X ∼ pη(x) = exp

{
η>T (x)−A(η)

}
(WLOG assume

h(x) = 1) with respect to µ.

For a set B ⊆ T , define ν(B) = µ(T−1(B)). Then T (X) ∼ qη(t) = exp
{
η>t−A(η)

}
with

respect to ν.

Discrete case:

Pη(T (X) ∈ B) =
∑

x:T (x)∈B
exp

{
η>T (x)−A(η)

}
µ({x})

=
∑
t∈B

∑
x:T (x)=t

exp{η>t}µ({x})

=
∑
t∈B

exp
{
η>t−A(η)

}
µ(T−1({t})

=
∑
t∈B

exp
{
η>t−A(η)

}
ν({t}).

Thus, T ∼ exp{η>t−A(η)} with respect to ν.

Example 3.1.5 (Binomial). Let X ∼ Binom(n, θ). n is fixed and so the parameter is θ ∈ [0, 1].
Then

pθ(x) =
(
n

x

)
θx(1− θ)n−x

=
(
n

x

)(
θ

1− θ

)x
(1− θ)n

=
(
n

x

)
exp

{
x log

(
θ

1− θ

)
+ n log(1− θ)

}

with natural parameter η(θ) = log
(

θ
1−θ

)
called the log odds ratio.

Example 3.1.6 (Poisson). Let X ∼ Poisson(λ). Then

pλ(x) = λxe−λ

x! i = 0, 1, 2, . . .

= exp {x log(λ)− λ} 1
x!

with natural parameter η(λ) = log(λ).
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Example 3.1.7 (Non-exponential families). Uniform distribution and Cauchy distribution are
non-exponential families.

3.2 Differential Identities

Write
eA(η) =

∫
exp

{
η>T (x)

}
h(x)dµ(x).

Theorem 3.2.1.
For f : X → R, let

Ξf =
{
η ∈ Rs :

∫
|f | exp{η>T}hdµ <∞

}
.

Then the function
g(η) =

∫
f exp{η>T}hdµ

has continuous partial derivatives of all orders for µ ∈ Ξ◦f (interior of Ξf ), which can be
computed by differentiating under the integral.

Differentiating eA(η) once:

∂

∂ηj
eA(η) = ∂

∂ηj

∫
eη
>T (x)h(x)dµ(x)

�
��eA(η) ∂A

∂ηj
(η) =

∫
Tj(x)eη>T (x)−A(η)h(x)dµ(x)

∂A

∂ηj
(η) = Eη[Tj(X)].

Thus, we have
∇A(η) = Eη[T (X)] .

Differentiating it again:

∂2

∂ηj∂ηk
eA(η) =

∫
∂2

∂ηj∂ηk
eη
>T (x)h(x)dµ(x)

���eA(η)

 ∂2A

∂i∂ηk
+ ∂A

∂ηj︸︷︷︸
Eη [Tj ]

· ∂A
∂ηk︸︷︷︸
Eη [Tk]

 =
∫
TjTke

η>T−A(η)hdµ︸ ︷︷ ︸
Eη [TjTk]

∂2A

∂ηj∂ηk
(η) = Eη[TjTk]− Eη[Tj ]Eη[Tk]

= Covη(Tj , Tk).

Thus, we have
∇2A(η) = Varη(T (X)) .

Remark.

12



STAT 210A: THEORETICAL STATISTICS Kelvin Lee

• Log-likelihood function of observing {xi}i∈[n] ∼ Pη gives

log
n∏
i=1

Pη(xi) =
n∑
i=1

logPη(xi)

=
n∑
i=1

(
η′T (xi)−A(η) + log h(xi)

)
.

MLE satisfies gradient of log-likelihood being equal to zero:

1
n
∇η

(
log

n∏
i=1

Pη(xi)
)

= 1
n

n∑
i=1

T (xi)− Eη[T (X)] = 0.

MLE η̂ML satisfies expectation matching equation:

Eη̂ML [T (X)],

i.e. the expectation of T over Pη̂ML is equal to the expectation of T over samples.

• The Hessian of log-likelihood gives

∇2
η log

n∏
i=1

Pη(xi) = −n∇2
ηA(η)

= −nVarη(T (X))
4 0,

which implies that the log-likelihood function is concave. Hence, gradient ascent converges
to MLE η̂ML.

3.2.1 Moment Generating Functions

Differentiating eA(η) repeatedly, we get

e−A(η)
(

∂k1+···+ks

∂ηk1
1 · · · ∂η

ks
s

eA(η)
)

= Eη[T k1
1 · · ·T

ks
s ]

since MT (X)
η (u) = eA(η+u)−A(η) is the moment generating function (MGF) of T (X) when

X ∼ pη.
MT (X)
η (u) = Eη[eu

>T (X)]

=
∫

eu>T eη>T−A(η)hdµ

= e−A(η)eA(u+η)

= eA(η+u)−A(η).

13



4 Sufficiency

4.1 Sufficient Statistics

Motivation: Not all data is useful for a decision problem. Sometimes there is redundancy in
data and we want to remove the redundancy.

Example 4.1.1. Coin flipping. Suppose X1, . . . , Xn
i.i.d.∼ Bernoulli(θ). Then the vector

X ∼
∏
i

θxi(1− θ)1−xi on {0, 1}n,

and

T (X) =
∑
i

Xi ∼ Binom(n, θ)

with density (
n

t

)
θt(1− θ)n−t on {0, 1, . . . , n}.

The map (X1, . . . , Xn) 7→ T (X) is throwing away data because we do not know if heads come
first or tails come first. How do we justify this? Why does it not matter?

Definition 4.1.2 (Sufficient Statistics). Let P = {Pθ : θ ∈ Θ} be a statistical model for data X.
Then T (X) is sufficient for P if Pθ(X | T ) does not depend on θ, i.e. ∀θ, θ′ ∈ Θ,

Pθ(X | T ) = Pθ′(X | T ).

Example 4.1.3 (Cont’d).

Pθ(X = x | T = t) = Pθ(X = x, T = t)
P(T = t)

= θ
∑

i
xi(1− θ)n−

∑
i
xi1{

∑
i xi = t}(n

t

)
θt(1− θ)n−t

= 1{
∑
i xi = t}(n
t

) .

So given T (x) = t, X is uniform on all sequences with ∑i xi = t.

14
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4.1.1 Interpretations of Sufficiency

Recall we only care about X in the first place because it is (indirectly) informative about θ.
Sufficiency means only T (X) is informative We can think of the data as being generated in two
stages:

1. Generate T (X) ∼ Pθ(T (X)) (Pick a slice of X, depends on θ)

2. Generate X ∼ P (X | T ) (Generate within the slice, does not depend on θ)

So we only care about the first step if T (X) is sufficient.

Theorem 4.1.4.
Suppose X ∼ Pθ and T is sufficient. Let L(θ, δ) be an arbitrary loss function. Then for
any estimator δ, there is a (possibly randomized) estimator δ̃ that only depends on T (X)
such that

R(θ; δ) = R(θ; δ̃), ∀θ ∈ Θ.

Remark. δ̃(T (x)) is defined as follows:

• Sample x̃ | T (x) ∼ P(x | T (x))

• Let δ̃(T (x)) = δ(x̃).

Claim. Under x ∼ Pθ(x) and x̃ | T (x) ∼ P (x | T (x)), we have

δ̃(T (x)) D= δ(x).

Proof. x | T (x) D= x̃ | T (x) =⇒ x
D= x̃ =⇒ δ(x) D= δ(x̃) = δ̃(T (x)).

4.2 Sufficiency Principle

Theorem 4.2.1 (Sufficiency Principle).
If T (X) is sufficient for P, then any statistical procedure should depend on X only through
T (X).

In fact, we could throw away X and generate a new X̃ ∼ P (X | T ) and it would be just as
good as X, i.e. X̃ D= X implies δ(X̃) D= δ(X).

4.3 Factorization Theorem

There is a very convenient way to verify sufficiency of a statistic based only on the density:

15
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Theorem 4.3.1 (Factorization Theorem).
Let P = {Pθ : θ ∈ Θ} be a family of distributions dominated by µ. T is sufficient for P iff
there exist functions gθ, h ≥ 0 such that the densities pθ for the family satisfy

pθ(x) = gθ(T (x))h(x),

for almost every x under µ.

"Proof". (⇐=) :

pθ(X = x | T = t) = 1{T (x) = t}gθ(t)h(x)∫
T (z)=t gθ(t)h(z)dµ(z)

= 1{T (x) = t}h(x)∫
T (z)=t h(z)dµ(z) ,

which does not depend on θ and so T is sufficient.

(=⇒) : Take

gθ(t) = Pθ(T (x) = t) =
∫
T (x)=t

pθ(x)dµ(x)

h(x) = Pθ0(X = x | T (X) = t) = pθ0(x)∫
T (z)=t pθ0(z)dµ(z) .

Then

gθ(T (x))h(x) = Pθ(T = T (x))P(X = x | T = T (x))
= pθ(x).

Example 4.3.2 (Exponential Families).

pθ(x) = exp
{
η(θ)>T (x)−B(θ)

}
︸ ︷︷ ︸

gθ(T (x))

h(x)

Example 4.3.3. X1, . . . , Xn
i.i.d.∼ P

(1)
θ for any model P(1) = {P (1)

θ : θ ∈ Θ} on X ⊆ R. Pθ is
invariant to permuting X = (X1, . . . , Xn). Thus, the order statistics (X(1), X(2), . . . , X(n))
(where X(1) ≤ X(2) ≤ · · · ≤ X(n)) with X(k) being the kth smallest value (counting repeats) are
sufficient.

Remark. (X1, . . . , Xn) 7→ (X(1), X(2), . . . , X(n)) loses information about the original ordering.

For more general X , we say the empirical distribution P̂n(·) = 1
n

∑n
i=1 δxi(·) is sufficient

where δxi(A) = 1{xi ∈ A}.

16
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4.4 Minimal Sufficiency

Consider i.i.d.∼ N (θ, 1). Then

T (X) =
n∑
i=1

Xi

X = 1
n

n∑
i=1

Xi

S(X) = (X(1), . . . , X(n))
X = (X1, . . . , Xn)

are all sufficient statistics.

Proposition 4.4.1. If T (X) is sufficient and T (X) = f(S(X)), then S(X) is sufficient.

Proof. By Factorization Theorem,

pθ(x) = gθ(T (x))h(x)
= (gθ ◦ f)(S(x))h(x).

Our new g′θ = (gθ ◦ f) and T ′(x) = S(x). Thus, S(x) is sufficient.

Definition 4.4.2 (Minimal Sufficient). T (X) is minimal sufficient if T (X) is sufficient and for
any other sufficient statistic S(X), T (X) = f(S(X)) for some f (a.s. in P).

If P has densities pθ(x) with respect to µ, then the log-likelihood function (denoted by `(θ;X))
is the log-density function reframed as a random function of θ.

If T (X) is sufficient, then

L(θ;X) = gθ(T (X))︸ ︷︷ ︸
determines shape

· h(X)︸ ︷︷ ︸
scalar multiple

.

Theorem 4.4.3.
Assume P has densities pθ and T (X) is sufficient for P. If

Pθ(x)
Pθ′(x) = Pθ(y)

Pθ′(y) , ∀θ, θ′ ∈ Θ =⇒ T (x) = T (y),

i.e. {
(x, y) : Pθ(x)

Pθ′(x) = Pθ(y)
Pθ′(y) , ∀θ, θ′ ∈ Θ

}
⊆ {(x, y) : T (x) = T (y)},

then T (X) is minimal sufficient.

Proof. For the sake of contradiction, suppose S is sufficient and there is no f such that
f(S(X)) = T (X). Then there exist x, y with S(x) = S(y), T (x) 6= T (y). L(θ;x) = gθ(S(x))h(x) ∝θ
gθ(S(y))h(y) = L(θ; y), a contradiction since we must have T (x) = T (y) but we don’t.

17
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Remark. The key takeaway is that if a sufficient statistic determine the likelihood shape in a
one-to-one way, then we can recover it from the likelihood shape and so it’s minimal sufficient.

Example 4.4.4. pθ(x) = eη(θ)>T (x)−B(θ)h(x). Is T (x) minimal?

Answer. Assume L(θ;x) ∝θ L(θ; y). We want to show that T (x) = T (y). For any θ, we have

L(θ;x) ∝ L(θ; y) ⇐⇒ eη(θ)>T (x)−B(θ)h(x) ∝θ eη(θ)>T (y)−B(θ)h(y)

⇐⇒ eη(θ)>T (x) = eη(θ)>T (x)c(x, y)
⇐⇒ η(θ)>T (x) = η(θ)>T (y) + a(x, y)
⇐⇒ η(θ)>(T (x)− T (y)) = a(x, y).

To get rid of a(x, y), we can use arbitrary θ1, θ2 to get

(η(θ1)− η(θ2))>(T (x)− T (y)) = 0.

This implies that η(θ1)−η(θ2) and T (x)−T (y) are orthogonal to each other, which is equivalent
to saying that

T (x)− T (y) ⊥ span {η(θ1)− η(θ2) : θ1, θ2 ∈ Θ} .

Unfortunately, we are not able to conclude that T (x) is minimal. However, if

span{η(θ1)− η(θ2) : θ1, θ2 ∈ Θ} = Rs,

then T (x)− T (y) = 0 as desired.

4.5 Completeness

Definition 4.5.1 (Complete). T (X) is complete for P = {Pθ : θ ∈ Θ} if Eθ[f(T (X))] = 0 ∀θ
implies

f(T (X)) a.s.= 0.

Remark. There is no non-trivial unbiased estimator of 0 based on T (X).

Suppose there are two unbiased estimator of θ, δ(T (X)), δ̃(T (X)) where T (X) is complete.
Since

Eθ[δ(T (X))] = θ = Eθ[δ̃(T (X))] ∀θ ∈ Θ,

we have

Eθ[δ(T (X))− δ̃(T (X))] = 0,

and so we must have
δ(T (X)) = δ̃(T (X)) ∀T.

Example 4.5.2. Consider {xi}i∈[n]
i.i.d.∼ pθ(x) = 1

2 exp{−|x− θ|} and S(x) = (x(1), x(2), . . . , x(3))
is minimal sufficient. Let’s check if S is complete. Let

f(S(x)) = x−median(x).

18
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Then
Eθ[f(S(X))] = θ − θ = 0 ∀θ ∈ Θ,

which implies S is not complete.

Remark. Thus, a minimal sufficient statistic may not necessarily be complete.

Example 4.5.3. Consider {xi}i∈[n]
i.i.d.∼ U [0, θ] where θ ∈ (0,∞) and T (x) = max ixi is minimal

sufficient. Then for t ∈ (0, θ)

Pθ(T (x) ≤ t) =
(
t

θ

)n
.

Then for t ∈ (0, θ),

Pθ(t) = n
tn−1

θn
.

Suppose Eθ[f(T )] = 0 for any θ > 0. Then we have

n

θn

∫ θ

0
f(t)tn−1dt = 0∫ θ

0
f(t)tn−1dt = 0

f(t)tn−1 = 0
f(t) = 0.

Thus, T (X) is complete.

Definition 4.5.4 (Full-rank). Let P = {pθ : θ ∈ Θ} be an exponential family of densities (with
respect to µ),

pθ(x) = eη(θ)>T (x)−B(θ)h(x)

Assume WLOG that there does not exist α ∈ R, β ∈ Rs with β>T (X) a.s.= α. If

Ξ = η(Θ) = {η(θ) : θ ∈ Θ}

contains an open set, we say that P is full-rank. Otherwise, P is curved.

Theorem 4.5.5.
If P is full rank, then T (X) is complete sufficient.

Proof. Proof in Lehmann & Romano, Theorem 4.3.1.

Theorem 4.5.6.
If T (X) is complete and sufficient for P, then T (X) is minimal sufficient.
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Proof. Assume S(X) is minimal sufficient. Then S(X) a.s.= f(T (X)) since T (X) is sufficient.
Note that

µ(S(X)) = Eθ[T (X) | S(X)]

does not depend on θ by sufficiency of S. Define g(t) = t− µ(f(t)). Then

Eθ[g(T (X))] = Eθ[T (X)]− Eθ[µ(S(X))]
= Eθ[T (X)]− Eθ[E[T | S]]
= 0.

Thus, g(T (X)) a.s.= 0 by completeness of T . Hence,

T (X) a.s.= µ(S(X)).

Therefore, T is minimal sufficient.

4.6 Ancillarity

Definition 4.6.1 (Ancillary). A statistic V (X) is ancillary for P = {pθ : θ ∈ Θ} if its distribu-
tion does not depend on θ (in other words, V (X) carries no information about θ):

Pθ(V (x) = v) = Pθ′(V (x) = v) ∀θ, θ′ ∈ Θ.

Remark. For sufficient statistic, X | T (X) carries no information about θ.

Theorem 4.6.2 (Basu’s Theorem).
If T (x) is complete sufficient and V (x) is ancillary for P, then

V (X) ⊥⊥ T (X)

under Pθ for all θ ∈ Θ.

Proof. We want to show that for any θ ∈ Θ, and any set A and B,

Pθ(V (x) ∈ A | T (x) = t) = Pθ(V (x) ∈ A).
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4.7 Convex Loss and the Rao-Blackwell Theorem

Recall the following property of sufficient statistics:

Suppose T is sufficient for P. For any estimator δ(x) and any loss function L(θ, δ), there exists
a possibly random estimator δ̃(T (x)) such that ∀θ ∈ Θ, then

R(θ, δ̃) = Eθ,δ̃[L(θ, δ̃(T (x))]
≤ Eθ[L(θ, δ(x))]
= R(θ, δ).

4.7.1 Two steps construction of a random δ̃(t)

1. Sample x̃sP(x | T (x) = t) (This step is random).

2. Define (̃t) = δ(x).

Remark. SO we only need to consider estimators that are based on sufficient statistics T (x).
But we may possibly need to consider random estimators based on T (x).

Definition 4.7.1 (Convex). A function f : X → R is convex if ∀x, y ∈ X, c ∈ (0, 1)

f(cx+ (1− c)y) ≤ cf(x) + (1− c)f(y).

Theorem 4.7.2 (Jensen’s Inequality).
If f is convex, then f(E[X]) ≤ E[f(X)]. If f is strictly convex, then the inequality is strict
unless X is almost surely constant.

If L(θ, δ) is convex in δ (e.g. L(θ, δ) = (θ − δ)2), then we would want to add extra noise to δ.
Let δ̃(x) = δ(x) + ε where E[ε | X] = 0. Then

Eθ[L(θ, δ(X)] = Eθ[L(θ,E[δ̃(X)])]
≤ Eθ,δ̃[L(θ, δ̃(X)].

Theorem 4.7.3 (Rao-Blackwell Theorem).
Assume T (X) is sufficient for P and δ(X) is an estimator. Let

δ(t) = E[δ(X) | T (X) = t].

If L(θ, δ) is convex in δ, then
R(θ, δ(T (·)) ≤ R(θ, δ).

If L is strictly convex, then the inequality is strict unless δ(T (X)) = δ(X) almost surely.
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Proof. Recall δ̃(t) = δ(x′) with x′ ∼ P (x | T (x) = t) then δ(t) = E[δ̃(t)].
By Jensen’s inequality, we have

R(θ, δ(T (·)) = Eθ[L(θ,E[δ(X) | T (X)]]
≤ Eθ[E[L(θ, δ(X)) | T (X)]]
= Eθ[L(θ, δ(X)]
= R(θ, δ).

Remark. When the loss function is convex, it is sufficient to consider deterministic estimators
of sufficient statistics.
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5 Unbiased Estimation

5.1 Uniform minimum risk unbiased estimator

Recall that the problem of using R(θ, δ) for comparing estimators is that they are not always
comparable.

Definition 5.1.1 (U-estimable). g(θ) is U-estimable if there exists an unbiased estimator.

Example 5.1.2. Consider X ∼ Ber(θ). Then Eθ[δ(X)] = θδ(1) + (1 − θ)δ(0). So θ2 is not
U-estimable. Any function of which is U-estimable must be of form aθ + b.

Definition 5.1.3 (UMRUE). We say that δ(X) is uniformly minimum risk unbiased esti-
mator if δ(X) is unbiased, and for any other unbiased δ̃(X), we have

R(θ, δ) ≤ R(θ, δ̃, ∀θ ∈ Θ.

Definition 5.1.4 (UMVUE). Take R(θ, δ) = Eθ[(θ − δ(X))2] = Varθ[δ(X)].

Theorem 5.1.5 (Lehmann-Scheffe Theorem).
Suppose T (X) is complete sufficient and g(θ) is U-estimable with an unbiased estimator
δ0(X). Define

δ(t) = E[δ0(X) | T (X) = t].

Then

1. δ is the only function of T that is unbiased for g(θ).

2. δ(T (X)) is an UMRUE under any convex L.

3. δ(T (X)) is the unique UMRUE under any strict convex L.

4. δ(T (X)) is the unique UMVUE.

Proof.

1.

Eθ[δ(T (X))] = E[E[δ0(X) | T (X)]]
= Eθ[δ0(X)]
= g(θ).
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By completeness, δ is the only function of T that is unbiased of g(θ).

2. Consider δ̃(X) unbaised for g(θ). Define

δ(t) = E[δ̃(X) | T (X) = t].

Then E[δ(T (X))] = g(θ) = E[δ(T (X))]. By completeness of T , δ(T ) = δ(t) almost every-
where. Thus, by Rao-Blackwell/Jensen’s

R(θ, δ) = R(θ, δ) ≤ R(θ, δ̃),

so δ is UMRUE.

3. If L(θ, δ) is strictly convex in δ, then R(θ, δ) < R(θ, δ̃) unless δ̃(X) = δ(T (X)) = δ(T (X)).
Thus, δ(T (X)) is the unique UMRUE.

Remark. Lehmann-Scheffe gives us a way to find UMRUE:

1. Find an unbiased estimator δ0 for g(θ).

2. Find the complete sufficient statistics T (X).

3. Rao-Blackwellize it,
δ(X) = E[δ(X) | T (X)].

Remark. UMRUE could be inadmissible.
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6 Equivariant Estimation

6.1 Location Invariance

Definition 6.1.1 (Location invariant model). A family of densities P = {f
⊗

n

θ : θ ∈ Θ} is
location invariant if

fθ(x) = fθ+c(x+ c) ∀θ, x, c.

Example 6.1.2. Gaussian, exponential, Laplace, Cauchy are some common location invariant
models.

Definition 6.1.3 (G-invariant model). G group acts on a set Θ if g ∈ G, θ ∈ Θ, g ? θ ∈ Θ. P is
G-invariant if

fθ(x) = fg?θ(g ? x).

Definition 6.1.4 (Invariant loss function). A loss function L for location θ is called invariant if

L(θ, d) = L(θ − c, d− c), ∀θ, c, d.

Defining ρ(x) = L(0, x), L is invariant if

L(θ, d) = ρ(d− θ), ∀θ, d.

6.2 Location Equivariance

Definition 6.2.1 (Location equivariant estimator). An estimator δ is location equivariant if

δ(x1, . . . , xn) + c = δ(x1 + c, . . . , xn + c).

Example 6.2.2. δ(x) = x is location equivariant.

The following theorem simplifies the search of optimal location equivariant estimator.

Theorem 6.2.3.
If δ is location equivariant, and P and L are location invariant, then the bias, risk, variance
of δ has no θ dependence.
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Proof. Proof for risk:

R(θ, δ) = Eθ[L(θ, δ(X))]
= Eθ[L(θ, δ(X − θ) + θ)] (equivariance of δ)
= Eθ[L(0, δ(X − θ))] (invariance of L)
= E0[L(0, δ(x))] (invariance of P: X ∼ Pθ =⇒ X − θ ∼ P0).

We have thus eliminated the θ dependence.

Remark. With location equivariance structure, we are able to compare any two equivariant risk
functions R(θ, δ) since R(θ, δ) doesn’t depend on θ anymore.

6.3 Minimum Risk Equivariant Estimator

Definition 6.3.1 (MRE). δ is a minimum risk equivariant estimator (MREE) if it is
location equivariant and ∀δ̃ location equivariant,

R(θ, δ) ≤ R(θ, δ̃), ∀θ ∈ Θ.

Lemma 6.3.2. Let δ0 be location equivariant. Then δ is location equivariant if and only if
there exists v such that

δ(x1, . . . , xn) = δ0(x1, . . . , xn) + v(y1, . . . , yn−1),

where yi = xi − xn.

Proof. We want to show that

δ(x1 + c, . . . , xn + c) = δ(x1, . . . , xn) + c.

δ(x1 + c, . . . , xn + c) = δ0(x1 + c, . . . , xn + c) + v(x1 + c− (xn + c), . . . , xn−1 + c− (xn + c))
= δ0(x1 + c, . . . , xn + c) + v(y1, . . . , yn−1)
= δ0(x1, . . . , xn) + c+ v(y1, . . . , yn−1)
= δ(x1, . . . , xn) + c.

For the other direction, define

v(y1, . . . , yn−1) = δ(y1, . . . , yn−1, 0)− δ0(y1, . . . , yn−1, 0).

Theorem 6.3.3.
If (P, L) is location invariant and δ0 is location equivariant with finite risk. If

v∗(y) = argmin
v

E0[ρ(δ(X)− v(y)) | Y = y], ∀y.

Then the MREE is δ(X) = δ0(X)−v∗(Y ), where Y = (X1−Xn, X2−Xn, · · · , Xn−1−Xn).
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Corollay 6.3.4. If ρ is convex and non-monotone. Then an MREE exists. If ρ is strictly
convex, then MREE is unique.

Example 6.3.5. Consider (Xi)i∈[n]
i.i.d.∼ Exp(θ, b) with θ unknown, b known. Then

p(xi; θ) = 1
b

exp
{
−(xi − θ

b

}
1{xi > θ}.

Let δ0(X1, . . . , Xn) = min
i∈[n]
{Xi} (complete sufficient) . Then δ0 is location equivariant. Note that

Y = (X1 −Xn, . . . , Xn−1 −Xn is ancillary. Then by Basu’s theorem δ0 and Y are independent
and so

min
v

E0[ρ(δ(X)− v) | Y = y] = min
v

E0[ρ(δ(X)− v)].

So
v∗(y) = argmin

v
E0[ρ(δ(X)− v) | Y = y] = argmin

v
E0[ρ(δ(X)− v)] = v∗.

Case 1: ρ(t) = t2. Then

v∗ = argmin
v

E0

[
(min
i∈[n]

(Xi)− v)2
]

= E0

[
min
i∈[n]

(Xi)
]

= b

n
.

Then the MREE is

δ(X) = δ0(X)− v∗ = min
i∈[n]

Xi −
b

n
.

Case 2: ρ(t) = |t|. MREE is
δ(X) = min

i∈[n]
Xi −

b

n
log 2.

6.4 The Pitman estimator of location

Take ρ(t) = t2, there is an explicit form of MREE. Recall that if δ0 is location equivariant,
then

v∗(y) = argmin
v

E0[(δ0(X)− v)2 | Y = y] = E0[δ0(X) | Y = y].

Then the MREE is
δ∗(X) = δ0(X)− E0[δ0(X) | Y = y].

Theorem 6.4.1.
Consider P invariant, ρ(t) = t2, then MREE δ∗ gives

δ∗(X1, . . . , Xn) =
∫∞
−∞ u

∏n
i=1 f(Xi − u)du∫∞

−∞
∏n
i=1 f(Xi − u)du

where f(X) = P0(X) is the density of X when θ = 0.
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Theorem 6.4.2.
Under square loss,

(i) If δ(X) is location equivariant with bias b, then δ(X) − b is unbiased and location
equivariant with smaller risk than δ(X).

(ii) The unique MREE is unbiased.

(iii) If UMVUE exists and is location equivariant, then it is also MREE.

Remark. MREE can be inadmissible.
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