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1 Introduction

1.1 Asymptotic Notation

Let f, g : R→ R for the following definitions.

1.1.1 O Notation

The O notation describes upper bounds for function.

Definition 1 (O Notation). If there exists a constant c > 0 and N such that for x > N, |f(x)| ≤
c|g(x)|, we say that

f(x) = O(g(x)).

1.1.2 Ω Notation

The Ω notation describes lower bounds for functions.

Definition 2 (Ω Notation). If there exists a constant c > 0 and N such that for x > N, |f(x)| ≥
c|g(x)|. This indicates that

f(x) = Ω(g(x))

1.1.3 Θ Notation

The Θ notation describes both upper and lower bounds for functions.

Definition 3 (Θ Notation). If there exist constants c1, c2 > 0, and N such that c1g(x) ≤ f(x) ≤
c2g(x) for x > N, we have f(x) = O(g(x)) = Ω(g(x)), which implies

f(x) = Θ(g(x)).

Theorem 4 (Asymptotic Limit Rules). If f(n), g(n) ≥ 0:

• lim
n→∞

f(n)
g(n) = 0 =⇒ f(n) = O(g(n)).

• lim
n→∞

f(n)
g(n) = c for some c > 0 =⇒ f(n) = Θ(g(n)).

• lim
n→∞

f(n)
g(n) =∞ =⇒ f(n) = Ω(g(n)).
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2 Divide and Conquer

Definition 5 (Divide and Conquer). The divide-and-conquer strategy solves a problem by:

1. Breaking it into subproblems that are themselves smaller instances of the same type of
problem.

2. Recursively solving these subproblems.

3. Appropriately combining their answers.

2.1 Karatsuba’s Algorithm

Suppose we are multiplying two n-bit integers, x and y. Split up x into half, xL and xR, so
that x = 2n/2xL + xR.

xy =
(

2n/2xL + xR

)
+
(

2n/2yL + yR

)
= 2n (xLyL) + 2n/2 (xRyL + xLyR) + xRyR

• The additions take linear time, as do the multiplications by powers of 2 (left-shifts).

• It requires 4 multiplications on n/2 bit numbers, we get the recurrence relation

T (n) = 4T (n/2) +O(n).

However, this can be improved by using 3 multiplications:

• only need xLyL, xRyR, and (xL + xR) (yL + yR) because

xLyR + xRyL = (xL + xR) (yL + yR)− xLyL − xRyR.

• The improved running time would then be

T (n) = 3T (n/2) +O(n).

• The constant factor improvement occurs at every level of the recursion, which dramatically
lowers time bound of O

(
nlog2 3

)
.

Algorithm 1 Karatsuba’s Algorithm

function Mult(x, y)
P1 ← Mult(xL, yR)
P2 ← Mult(xR, yL)
P3 ← Mult(xL + xR, yL + yR)
return 2nP1 + 2n/2 (P3 − P1 − P2) + P3

4
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2.2 Master Theorem

A divide-and-conquer algorithm might be described by

T (n) = aT
(n
b

)
+O(nd)

Theorem 6 (Master Theorem). If T (n) = aT (n/b) + O
(
nd
)

for a > 0, b > 1, and d ≥ 0,
then

T (n) =


O
(
nd
)

if d > logb a
O
(
nd log n

)
if d = logb a

O
(
nlogb a

)
if d < logb a

Proof. Let T (n) = aT (n/b) + O
(
nd
)
. For simplicity, assume that T (1) = 1 and that n is a

power of b. From the definition of big-O, we know that there exists constant c > 0 such that for
sufficiently large n, T (n) ≤ aT (n/b) + cnd.

Suppose we have a recursive tree with logb n+1 level. Consider level j. At level j, there are aj

subproblems. Each of size n
bj
, and will take time at most c

(
n
bj

)d
to solve (this only considers the

work done at level j and does not include the time it takes to solve the subsubproblems). Then

the total work done at level j is at most aj · c
(
n/bj

)d
= cnd

(
a
bd

)j
, where a is the branching

factor and bd is the shrinkage in the work needed (per subproblem). Summing over all levels,

the total running time is at most cnd
∑logb n

j=0

(
a
bd

)j
. Consider each of the three cases:

1. (a < bd): a
bd
< 1, then

logb n∑
j=0

( a
bd

)j
≤
∞∑
j=0

( a
bd

)j
=

1

1− a
bd

=
bd

bd − a
.

Hence, T (n) = cnd · bd

bd−a = O
(
nd
)
. Intuitively, in this case the shrinkage in the work

needed per subproblem is more significant, so the work done in the highest level ”domi-
nates” the other factors in the running time.

2. (a = bd): The amount of work done at each level is the same: cnd. since there are logb n
levels, T (n) = (logb n+ 1) cnd = O

(
nd log n

)
.

3. (a > bd) : We have
logb n∑
j=0

( a
bd

)j
=

(
a
bd

)logb n+1 − 1
a
bd
− 1

.

Since a, b, c, d are constants,

T (n) = O

(
nd ·

( a
bd

)logb n
)

= O

(
nd · alogb n

bd logb n

)
= O

(
nd · n

logb a

nd

)
= O

(
nlogb a

)
Intuitively, here the branching factor is more significant, so the total work done at each
level increases, and the leaves of the tree ”dominate”.
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2.3 Mergesort

One great example of a divide-and-conquer problem is mergesort: splitting the list into two
halves, recursively sort each half, and then merge the two sorted sublists.

The merging part takes O(n) time, so the overall runtime is

T (n) = 2T (n/2) +O(n) =⇒ T (n) = O(n log n).

2.4 Inversions Counting

Now let’s consider the problem of counting the number of inversions in a list.

Definition 7 (Inversion). Two elements a[i] and a[j] form an inversion if a[i] > a[j] and i < j.

We are interested in the number of inversions for several reasons:

• it tells us how sorted the list is,

• we can measure how similar two lists are by their number of inversions.

Remark. The maximum number of inversions in a list of length n is
(
n
2

)
(why?).

6
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Now the question is how do we solve this by divide and conquer?

As usual, we first split the list into two halves. Then we perform two operations recursively
on each half: sorting and counting. Thus, each recursive call should return the sorted half and
the number of inversion in that sorted sublist. When merging the two halves, we keep track of
the number of skipped elements of the right half when inserting the elements from the left half.
We then sum them up to get the total number of inversions. Similar to mergesort, this merging
process also takes O(n) time. Hence, we still have the following runtime:

T (n) = 2T (n/2) +O(n) =⇒ T (n) = O(n log n).

Now consider another question: can we do better that O(n log n)?

• Consider the array a[1, . . . , n] as an abstraction.

• Imagine a decision-tree-like structure where we compare a[i], a[j] for each i, j ∈ 1, . . . , n
and i < j.

• In order for the algorithm to work, we need each leaf to contain exactly one permutation.
Hence, the number of leaves must be at least n!.

• The maximum number of comparisons (height of tree) we execute is log n!, which is
also equivalent to the worst-case time complexity. Thus, the worst-case runtime of the
algorithm would be Ω(log n!).

• By Stirling’s Approximation, we get

Ω(log n!) = Ω
(

log
(n
e

)n)
= Ω(n log n).

Remark. Recall that the Stirling’s formula is

n! ≈

√
π

(
2n+

1

3

)
· nn · e−n.

7
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2.5 Order Statistics (Median Finding)

Median finding is important in many situations, including database tasks. A precise statement
of the problem is as follows:

Given an array a[1, ..., n] of n numbers and an index k (1 ≤ k ≤ n), find the kth smallest
element of a.

One obvious way to do so is to sort the list using mergesort and then select the ith element.
This would take O(n log n). Here comes the question again: can we do even better?

Another approach to this problem would be using divide-and-conquer again. Here’s how:

• We randomly select an element x from between i = n
4 and i = 3n

4 .

• Then we split the list into three categories: elements smaller than x , those equal to x
(including duplicates), and those greater than x.

• The search can instantly be narrowed down to one of these sublists and we can check
quickly which of these contain the median by checking k against the sizes of these sublists.

• However, the choice of x would determine the efficiency of the algorithm.

We determine x to be good if it lies within the 25th to 75th percentile of the list because then
we ensure that the sublists have size at most 3n

4 so that the array shrinks substantially. So x
has 1/2 chance of being good, which implies after two split operations on average, the array
will shrink to at most 3/4 of its size. Let T (n) be the expected runtime. Then we have

T (n) ≤ T (3n/4) +O(n) =⇒ T (n) = O(n).

2.6 Matrix Multiplication

The product of two n × n matrices X and Y is a third n × n matrix Z = XY, with (i, j) th
entry

Zij =
n∑
k=1

XikYkj

To make it more visual, Zij is the dot product of the i th row of X with the j th column of Y :

The naive way indicates an O
(
n3
)

algorithm: there are n2 entries to be computed, and each
takes O(n) time. What if we multiply using divide and conquer?

We can split the matrix blockwise. For example we can carve X into four n/2× n/2 blocks,
and also Y :

X =

[
A B
C D

]
, Y =

[
E F
G H

]

8
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Then their product can be expressed in terms of these blocks.

XY =

[
A B
C D

] [
E F
G H

]
=

[
AE +BG AF +BH
CE +DG CF +DH

]
One divide and conquer approach is to compute the size-n product XY by recursively computing
eight size-n/22 products AE,BG,AF,BH,CE,DG,CF,DH, and then do a few O

(
n2
)

time
additions. The total runtime is given by the following:

T (n) = 8T (n/2) +O
(
n2
)

=⇒ T (n) = O(n3).

It is still O
(
n3
)
, the same as for the default algorithm. However, it turns out XY can be

computed from just seven n/2× n/2 subproblems, here’s how:

XY =

[
P5 + P4 − P2 + P6 P1 + P2

P3 + P4 P1 + P5 − P3 − P7

]
where

P1 = A(F −H) P5 = (A+D)(E +H)
P2 = (A+B)H P6 = (B −D)(G+H)
P3 = (C +D)E P7 = (A− C)(E + F )
P4 = D(G− E)

So our new runtime is now

T (n) = 7T (n/2) +O
(
n2
)

=⇒ T (n) = O
(
nlog2 7

)
≈ O

(
n2.81

)
.

2.7 Fast Fourier Transform

We see how divide-and-conquer produces fast algorithms for integers and matrices multiplica-
tion, but what about polynomials? Let’s say we have the following:

C(x) = A(x) ·B(x)

= (a0 + a1x+ . . .+ an−1x
n−1)(b0 + b1x+ . . .+ bn−1x

n−1)

=
∑
i,j

aibjx
i+j .

This multiplication process is equivalent to a convolution of two vectors and requires O(n2).
How can we do better?

2.7.1 Representation of polynomials

Let’s first recall a quite important property about polynomials.

Property 8. A degree-d polynomial is uniquely characterized by its values at any d+ 1 distinct
points.

One intuitive example of this is that any two points determine a line. Hence, any d + 1
points x0, x1, . . . , xd would determine a unique degree d polynomial. We can specify a degree-d
polynomial A(x) = a0 + a1x+ . . .+ adx

d with two representations:

1. Its coefficients a0, a1, . . . , ad.

2. The values A (x0) , A (x1) , . . . , A (xd).

The second choice would be useful for polynomial multiplication because:

9
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• the product C(x) has degree 2d, which can be determined by its value at any 2d+1 points;

• the value at any given point z can be given by C(z) = A(z) · B(z). Thus polynomial
multiplication takes linear time in the value representation.

However, we expect the input polynomials and the product to be specified by coefficients.
So we need a translation from coefficients to values. In particular, we evaluate the polynomial
at the chosen points, then multiply in the value representation, and finally translate back to
coefficients, this process is known as interpolation.

However, this approach actually takes quadratic time. In fact, we can actually do better by
cleverly choosing the n points.

2.7.2 Evaluation by divide-and-conquer

We choose them to be positive-negative pairs, that is,

±x0,±x1, . . . ,±xn/2−1

then there will be overlaps in computations required for each A (xi) and A (−xi) because of
the even powers terms. Let’s explore deeper, we split A(x) into its odd and even powers, for
instance

3 + 4x+ 6x2 + 2x3 + x4 + 10x5 =
(
3 + 6x2 + x4

)
+ x

(
4 + 2x2 + 10x4

)
which can be written as

A(x) = Ae
(
x2
)

+ xAo
(
x2
)

where Ae(·), with the even-numbered coefficients, and Ao(·), with the odd-numbered coefficients,
are polynomials of degree ≤ n/2−1 (assume for convenience that n is even). Given points ±xi,
the calculations needed for A (xi) can be recycled toward computing A (−xi) :

A (xi) = Ae
(
x2
i

)
+ xiAo

(
x2
i

)
A (−xi) = Ae

(
x2
i

)
− xiAo

(
x2
i

)
In other words, evaluating A(x) at n paired points ±x0, . . . ,±xn/2−1 boils down to evaluating
Ae(x) and Ao(x) (each have half the degree of A(x)) at just n/2 points, x2

0, . . . , x
2
n/2−1.

10
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The original problem of size n is now divided into two subproblems of size n/2, followed by
linear-time arithmetics. We get the following runtime:

T (n) = 2T (n/2) +O(n) =⇒ T (n) = O(n log n).

However, we now encounter a problem: The plus-minus trick only works at the top level of
the recursion. To recurse at the next level, we need the n/2 points x2

0, x
2
1, . . . , x

2
n/2−1 to be

plus-minus pairs. Hence, complex numbers come in handy now.

To figure out the choices of complex numbers, we can ”reverse engineer” the process. Let’s
say we have a 1 at the very bottom of the recursion. Then the level above it must consist of its
square roots, ±

√
1 = ±1, and we continue in this fashion.

We will finally reach the desired n points. It turns out that these n points are in fact the nth
roots of unity, i.e., solutions to zn = 1, which are 1, ωn, ω

2
n, . . . , ω

n−1
n where ωn = e2πi/n. If n is

even,

1. The nth roots are plus-minus paired, ωn/2+j = −ωj .

2. ω2
n = ωn/2.

Thus, if we start with these numbers for some n that is a power of 2, then at successive levels
of recursion we will have the

(
n/2k

)
th roots of unity, for k = 0, 1, 2, 3, . . . . All these sets of

11
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numbers are plus-minus paired and so the divide-and-conquer approach would work perfectly,
which results in the fast Fourier transform.

2.7.3 Interpolation

Although multiplications can be easily done in the value representation, we actually need to
convert it back to coefficient representation in order to recover the final polynomial. The process
of recovering a polynomial from value representation is called interpolation.

So far we have discovered the way converting from coefficients to values in O(n log n) steps
with the nth roots of unity

(
1, ω, ω2, . . . , ωn−1

)
.

Let’s get a clearer view on the relationship between the two representations via a matrix M
called the Vandermonde matrix. Suppose A(x) is a polynomial of degree ≤ n− 1:

A (x0)
A (x1)

...
A (xn−1)

 =


1 x0 x2

0 · · · xn−1
0

1 x1 x2
1 · · · xn−1

1
...

1 xn−1 x2
n−1 · · · xn−1

n−1




a0

a1
...

an−1

 .

Here are some few properties about the Vandermonde matrix:

Property 9. If x0, . . . , xn−1 are distinct numbers, then M is invertible.

Property 10. Evaluation is multiplication by M, while interpolation is multiplication by M−1.

Now what values are we gonna pick for x0, . . . , xn−1? As you may have guessed, the nth roots
of unity! Now we have

Mn(ω) =



1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...

1 ωj ω2j · · · ω(n−1)j

...

1 ω(n−1) ω2(n−1) · · · ω(n−1)(n−1)


where n is a power of 2 and the (j, k)th entry is ωjk(index starts at 0). Multiplying this matrix

12
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maps the kth coordinate axis (vector with all zeros except for a 1 at k) onto the kth column of M.
Another important fact about this matrix is that the columns are orthogonal to each other and
thus can be treated as the axes of an alternative coordinate system called the Fourier basis.

So multiplication by M represents a rotation of a vector from standard basis into the Fourier
basis, which are defined by the columns of M . In other words, FFT is simply a change of basis!

If there’s a way to rotate, there must also be a way to undo the rotation. In fact, this can be
done by multiplying M−1.

Theorem 11 (Inversion Formula).

Mn(ω)−1 =
1

n
Mn

(
ω−1

)
.

The FFT takes as input a vector a = (a0, . . . , an−1) and a complex number ω whose powers
1, ω, ω2, . . . , ωn−1 are the complex n th roots of unity. It multiplies vector a by the n×n matrix
Mn(ω). Using divide-and-conquer, M ’s columns are segregated into evens and odds:

So we actually have

In short, the product of Mn(ω) with vector (a0, . . . , an−1) , a size-n problem, can be expressed
in terms of two size-n/2 problems: the product of Mn/2

(
ω2
)

with (a0, a2, . . . , an−2) and with
(a1, a3, . . . , an−1) . The runtime for this is

T (n) = 2T (n/2) +O(n) = O(n log n).

13
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2.7.4 Summary on FFT

To sum up, our goal is to peform polynomial multiplication, which easier to deal with in the
Fourier basis than in the standard basis. To do so,

• we first rotate vectors into the Fourier basis (evaluation),

• then perform the task (multiplication),

• and finally undo the rotation (interpolation).

• The initial vectors are coefficient representations, while their rotated counterparts are
value representations.

Finally, to efficiently switch between these, back and forth, is the province of the FFT.

14
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3 Decompositions of Graphs

3.1 Graphs

Definition 12 (Graph). A graph mathematical object which consists of vertices(nodes) V and
edges E. We represent a graph G using the notation G = (V,E).

Definition 13 (Directed and Undirected Graphs). Graphs with directed edges are called directed
graphs and graphs with undirected edges are called undirected graphs. Let e = {x, y} denote
an undirected edge, and let e = (x, y) to denote a directed edge from x to y and vice versa.

3.1.1 Representation of Graphs

A graph can be represented using either an adjacency matrix or an adjacency list.

• Adjacency matrix: A |V | × |V | matrix whose (i, j)th entry is

aij =

{
1 if there is an edge from vi to vj

0 otherwise.

The matrix for an undirected graph is symmetric because an edge u, v can be taken in

either direction.

Pros: the presence of a particular edge can be checked in constant time, with just one

memory access.

Cons: takes O(|V |2) space. Not good for sparse graphs.

• Adjacency list: It consists of |V | linked lists, one per vertex. The linked list for each

vertex u contains v for which (u, v) ∈ E.

Each edge appears in exactly one of the linked lists if the graph is directed or two of the

lists if undirected.

Pros: Takes O(|V |+ |E|) space and it is easy to iterate through all neighbors of a vertex

(running down the corresponding linked list).

Cons: Checking for a particular edge (u, v) is no longer constant time, because it requires

sifting through u’s adjacency list.

3.2 Depth-first Search in Undirected Graphs

Algorithm 2 Depth-first search.

visited[u]← false ∀u ∈ V
function Explore(u ∈ V )

visited[u]← true
for u′ ∈ neighbors(u) do

if not visited[u′] then
Explore(u′)

15
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3.3 Depth-first Search in Directed Graphs

Algorithm 3 Depth-first search on a directed graph with enter and exit times.

visited[u]← false ∀u ∈ V
pre[u],post[u] maps to integer
clock← 0
function TimedExplore(u ∈ V )

visited[u]← true
for u→ u′ in E do

pre[u] = clock++
if not visited[u′] then

Explore(u′)

post[u] = clock++

3.3.1 Types of Edges

Tree Edge: part of the DFS forest.

Forward Edge: leads to a non-child descendent in the tree.

Back Edge: leads to an ancestor in the tree.

Cross Edge: leads to a node that’s neither descendant nor ancestor in the tree.

Theorem 14 (Parenthesis Theorem). An edge (u, v) ∈ E is a:

• Tree/Forward Edge if

pre(u) < pre(v) < post(v) < post(u) [ [ ] ]
u v v u

.

• Back Edge if

pre(v) < pre(u) < post(u) < post(v) [ [ ] ]
v u u v

.

• Cross Edge if

pre(v) < post(v) < pre(u) < post(u) [ [ ] ]
v v u u

.

3.4 Strongly Connected Components

Definition 15 (Strongly Connected). A graph is said to be strongly connected if every vertex
is reachable from every other vertex.

• To find an SCC, run DFS on GR, a graph copy of G with reverse edges, to get the
post-order of the graph.

• Run DFS on G starting at the max post-order of GR (sink of G).

• No more vertices to explore implies one SCC.

• Runtime: O(|V |+ |E|).

16
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4 Paths in Graphs

Definition 16 (Distance). The distance between two nodes is the length of the shortest path
between them.

4.1 Breadth-first Search

Although Depth-first search is able to identify all reachable vertices from a selected starting
vertex s, the paths it finds may not be the most economical ones possible. Hence, we introduce
Breadth-frst Search(BFS), an algorithm commonly used in finding shortest paths. Unlike
DFS tree, BFS tree has the property that all its paths from s are the shortest possible. Therefore,
it is a shortest-path tree.

Given G = (V,E) and source node s, compute shortest paths from s to every node in G.

4.2 Dijkstra’s Algorithm

• Runtime: O ((|V |+ |E|) log |V |).

• Calculates shortest path from s to every other vertex

• Assumes non-negative edges.

4.3 Bellman-Ford’s Algorithm

• Runtime: O(|V | · |E|).

• Procedure updates all edges |V | − 1 times.

• Detect negative cycles with one extra round of Bellman-Ford, if distance value changes.

4.4 DAG Shortest Path

• Runtime: O(|V |+ |E|).

• Works for negative edges.

• Visits vertices in topological order.

17
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5 Greedy Algorithms

Definition 17 (Greedy Algorithm). A greedy algorithm is an algorithm which attempts to
build up a solution for an optimization problem piece by piece by always choosing the next
“locally optimal” piece.

Remark. Greedy algorithms can be disastrous for some computational tasks. It works for
problems where making locally optimal choices yields a global optimum.

5.1 Minimum Spanning Trees

Definition 18 (Minimum Spanning Tree). Let G = (V,E,w) be a weighted undirected graph. A
minimum spanning tree (MST) of G is a subset T ⊆ E such that w(T ) =

∑
(u,v)∈T w(u, v)

is minimal.

There are many problems that can be translated into a MST problem. For example, suppose
V is the set of buildings in a city and E is the complete graph on V , and if w(u, v) is the dis-
tance between u and v, then finding a MST would be very useful for building minimum-length
infrastructure for the city. We can formulate a MST problem as follows:

Input: A connected, undirected weighted graph G = (V,E,w).

Output: A spanning tree T such that the total weight

w(T ) =
∑

(u,v)∈T

w(u, v)

is minimal. Recall the definition and properties of a tree.

Definition 19 (Tree). A tree is an undirected graph that is connected and acyclic.

Property 20. Removing a cycle edge cannot disconnect a graph.

Property 21. A tree on n nodes has n− 1 edges.

Property 22. Any connected, undirected graph G = (V,E) with |E| = |V | − 1 is a tree.

Property 23. An undirected graph is a tree if and only if there is a unique path between any
pair of nodes.

5.1.1 The Cut Property

Theorem 24 (Cut Property). Suppose edges X are part of a minimum spanning tree of
G = (V,E,w). Pick any subset of nodes S for which X does not cross between S and V \S,
and let e be the lightest edge across this partition. Then X ∪ {e} is part of some MST.

Proof. A cut is any partition of the vertices into two groups, S and V \S.
Suppose edges X are part of some MST T of G and e = (u, v) /∈ T (otherwise there’s nothing to
prove). We construct a different MST T ′ that contains X ∪{e} by changing one edge. If we add
the edge e to T, the resulting graph has a cycle. This cycle must cross the cut (S, V \S) in some
other edge, so in addition to e, there must be some other edge e′ = (u′, v′) in the cycle, such
that e′ crosses the cut. If we remove e′, then we have T ′ = T ∪ {e}− {e′}. Using the properties
above, we can show that T ′ is a tree. Also, since e is a light edge, we have w(e) ≤ w (e′) . Thus

w
(
T ′
)

= w(T ) + w(e)− w
(
e′
)
≤ w(T )

18
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since T is a minimum spanning tree and T ′ is a spanning tree, we also have w(T ) ≤ w (T ′),
which implies that w(T ) = w (T ′) and so T ′ is a minimum spanning tree containing e.

Remark. This property implies that it is always safe to add the lightest edge across any cut
(that is, between a vertex in S and one in V S), provided X has no edges across the cut.

5.1.2 Kruskal’s Algorithm

The famous Kruskal’s algorithm, which finds the MST of a given graph G, can be justified
with the cut property.

• Main Idea: Repeatedly add the next lightest edge that doesn’t produce a cycle.

• Runtime: O(|E| log |V |).

Below is the algorithm:

The proof of correctness is left as an exercise.

Let’s think about the data structures involved for this algorithm. When building up the
subgraph X, we need to somehow keep track of the connected components of X. It suffices to
know which vertices are in each connected component, so the relevant information is a partition
of V . Each time a new edge is added to X, two of the connected components merge. Hence, a
disjoint-set data structure is what we need. The following are the supported operations:

• makeset(x) : creates a singleton set containing just x.

• find(x) :to which set does x belong?

• union(x, y) : merge the sets containing x and y.

The algorithm uses |V | makeset, 2|E| find, and |V | − 1 union operations. The total running
time is O(|E| log |E|).
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5.1.3 Prim’s Algorithm

We now study a second MST algorithm: Prim’s algorithm, which works similarly to the
Dijkstra’s algorithm.

• Main Idea: On each iteration, pick the lightest edge between a vertex in the current
subtree S and a vertex outside S.

• Runtime: O(|E| log |V |).

In Prim’s algorithm, The intermediate set of edges X always forms a subtree, and S is chosen
to be the set of this tree’s vertices. On each iteration X grows by one edge, namely, the lightest
edge between a vertex in S and a vertex outside S. Equivalently, S is also growing to include
the smallest cost vertex v /∈ S:

cost(v) = min
u∈S

w(u, v).

In Prim’s algorithm, the value of a node is the weight of the lightest incoming edge from set S,
whereas in Dijkstra’s it is the length of an entire path to that node from the starting point.
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5.2 Huffman Encoding

• Goal: Given characters/frequencies {(i, fi)}, encode each character in binary so the final
encoding is maximally efficient.

• Main Idea: Find the two symbols with the smallest frequencies, say i and j, and make
them children of a new node (meta-node), which then has frequency fi + fj , and repeat
until one node remaining.

• The naive way of encoding is called fixed-length code, where each codeword has the same
length. There is also a variable-length code where each codeword can have different
lengths.

• Cost(average bits/character):
∑n

i=1 fi`i where `i is the number of bits to encode the ith
character.

Remark. One issue with the variable-length code is that the resulting encoding may not be
uniquely decipherable. For instance, if the codewords are 0, 01, 11, 001, the decoding of strings
like 001 is ambiguous. To avoid this problem, we have the codewords to be prefix-free: no
codeword can be a prefix of another codeword.

To find the optimal coding tree, we want a tree whose leaves each correspond to a symbol and
which minimizes the overall length of the encoding,

cost of tree =

n∑
i=1

fi · (depth of i th symbol in tree).

Remark. Number of bits required for a symbol is its depth in the tree.
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5.3 Set Cover

• Given a set U and subsets S1, . . . , Sm ⊆ U such that
⋃m
i=1 Si = U, find indices I ⊆

{1, . . . ,m}, with |I| minimal, such that⋃
i∈I

Si = U.

• Goal: Find the minimum number of subsets that cover a set U = {1, 2, . . . , n}.

• Main Idea: Pick the set Si with the largest number of uncovered elements. Repeat until
all vertices are covered.

The runtime for a good implementation of this algorithm is

O

(
m∑
i=1

|Si|

)

Claim 1. The algorithm gives a (ln |U |+ 1)-approximation.

Proof. Assume the optimal cover has size k. Let Ui denote the value of U (our universe set)
after i iterations of the loop. Clearly, for all i, the set Ui can be covered by k sets. So one of
these k sets must contain at least |Ui|

k elements, and therefore the set chosen on line 2 has size

at least |Ui|
k . Thus, we have

|Ui+1| ≤
(

1− 1

k

)
|Ui|

for all i. This implies that

|Ui| ≤
(

1− 1

k

)i
|U0|

for all i. since 1− 1
k ≤ e

−1/k, it follows that

|Ui| ≤ e−i/k |U0|

In particular, letting n = |U0|, we have∣∣Uk(lnn+1)

∣∣ < 1⇒
∣∣Uk(lnn+1)

∣∣ = 0

Thus, the loop exits after at most k(lnn+ 1) iterations.
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6 Dynamic Programming

Like the greedy and divide-and-conquer paradigms, dynamic programming is an algorith-
mic paradigm in which one solves a problem by combining the computed solutions to smaller
subproblems.

High Level Approach:

• Define subproblems such that the solution to a big problem can be easily derived from
the solutions to its subproblems.

• Solve all subproblems from small to large, using results from previous subproblems to
solve the current subproblem.

• Both recursion with memoization (top-down) and iteration (bottom-up) approaches exist.

6.1 Shortest Path in DAGs, revisited

• Goal: Given a DAG, find the length of the shortest path from s to t.

• Main Idea: For every v ∈ V, we define dist(v) as the length of the shortest path from s
to v. Order of subproblems: topological order.

• Base cases: dist(s) = 0, and dist(v) =∞ if v 6= s is a source.

• To calculate the shortest path to v, we look at edges (u, v) going into v, we use all the
pre-computed dist(u) + `(u, v) and find the minimum:

dist(v) = min
(u,v)∈E

{dist(u) + `(u, v)}.

• There are |V | subproblems. Each subproblems takes O(in deg(v)). Overall:∑
v∈V

c(1 + in deg(v)) = c(|V |+ |E|) = O(|V |+ |E|).

Remark. We can tweak this algorithm to find the longest path by changing the min to max.

6.2 Longest Increasing Subsequences

• Goal: Given an array of n numbers, find the longest subsequence (non-consecutrive) that
is strictly increasing.

• Main Idea: Try i = 1, 2, . . . , n and define f(i) as the longest increasing subsequence that
contains xi.

f(i) = max

{
1, max
j<i;xj<xi

(1 + f(j))

}
• Return max(f(1), f(2), . . . , f(n))

• We have n subproblems where each can be solved from previous ones with additional time
O(n).

• Runtime: O(n2).

• Memory: O(n).

Remark. Greedy is not optimal because we might end up with a shorter subsequence.
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6.3 Edit Distance

• Goal: Given two strings x[1, . . . , n] and y[1, . . . ,m], find the fewest number of edits to
turn x into y. Edits includes:

1. Insert character to x.

2. Delete character from x

3. Substitute a character for another.

• Main Idea: For 0 ≤ i ≤ n and 0 ≤ j ≤ m and define f(i, j) = EditDistance(x[1, . . . , i], y[1, . . . , j]).
Let’s look at the last character in the optimal alignment. There are three cases:

1. x[i] is aligned to . Return 1 + f(i− 1, j).

2. is aligned to y[j]. Return 1 + f(i, j − 1).

3. x[i] is aligned to y[j]. Return f(i− 1, j − 1) + δi,j .

• Finally, we return

f(i, j) = min {1 + f(i− 1, j), 1 + f(i, j − 1), f(i− 1, j − 1) + δi,j} .

• Base cases: f(i, 0) = i and f(0, j) = j.

• Runtime: (n+ 1)(m+ 1) subproblems, thus takes O(nm) time.

6.4 Knapsack

• Goal: Given knapsack with max capacity W and n items of weight w1, . . . , wn and dollar
value v1, . . . , vn, find the most valuable combination of unique items to fit in this knapsack.

• Main Idea: Define f(i, u) as the max value achievable with a knapsack of a capacity u
and items 1, . . . , i. The optimal solution to f(i, u) has two cases: to include item i, or to
not include it in the knapsack. If we include it, we need to subtract its capacity. Thus,
the recurrence is:

f(i, u) = max {f(i− 1, u), f (i− 1, u− wi) + vi} .

• Runtime: Storing our f(i, u) values in a 2D array of n + 1 rows and W + 1 columns,
the algorithm fills this array from left to right, with each entry taking O(1) steps, giving
total runtime of O(nW ).

Remark. Greedy would also not work for this problem because we soon exceeds the weight limit
after picking the items with the greatest value with potentially greatest weight.
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7 Linear Programming

Linear Programming is used to solve optimization problems where all the constraints, as
well as the objective function, are linear equalities or inequalities.

• In general, the standard form of LP consists of

1. variables: x = (x1, x2, . . . , xn)>

2. objective function: cTx.

3. constraints: Ax ≤ b

• The goal of LP is to maximize/minimize the objective function.

• A linear constraint designates a half-space, the region on one side of the line.

• The set of all valid solutions of a linear program is called the feasible region, which is
convex.

• We want to find the point in this region where the objective function is maximized/minimized,
which is achieved at a vertex of the region. However, there are cases where we may not
find a solution:

– infeasible: it is impossible to satisfy all constraints. For instance, x ≤ 1, x ≥ 2.

– unbounded: constraints are too lose. For example, maxx0 + x1 subject to x0, x1 ≥
0.

7.1 Simplex Method

• Main Idea: The optimal point is at an intersection of the geometrical representation of
the constraints. If the chosen vertex is not optimal, then the objective function can be
improved by following an outgoing edge from this vertex.

7.2 Variants of Linear Programming

• LP can be a maximization or minimization problem.

7.3 Network Flow

One important application of linear programming is to solve the maximum flow problem:
given a graph with each edge e being assigned some capacity ce, what is the maximum flow
possible to be sent from the source vertex s to t?

Definition 25 (Flow Network). A flow network is a directed graph G = (V,E) with distin-
guished vertices s (source) and t (sink), in which each edge e = (u, v) ∈ E has a nonnegative
capacity ce. There are no loops in such network. If u, v ∈ V with (u, v) /∈ E, then ce = 0.

Definition 26 (Flow). Given a flow network G = (V,E), a flow in G is a function f : V ×V → R
satisfying

1. Capacity constraint: 0 ≤ fe ≤ ce for all e ∈ E.

2. Flow conservation: for each u ∈ V \{s, t},∑
v∈V

f(v,u)︸ ︷︷ ︸
flow into u

=
∑
v∈V

f(u,v)︸ ︷︷ ︸
flow out of u

.
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The size of a flow (flow value) is the total quantity sent from s to t and, by the conservation
principle, is equal to the quantity leaving s :

|f | =
∑

(s,u)∈E

f(s,u).

In general, the maximum-flow problem can be viewed as the following LP:

objective function: max
∑

e∈(s,·)fe
subject to fe ≤ ce ∀e

fe ≥ 0∑
e=(·,v) fe −

∑
e=(v,·)fe ≥ 0 ∀v ∈ V \{s, t}

−
(∑

e=(·,v) fe −
∑

e=(v,·)fe

)
≥ 0.

Proposition 27. If the capacities are integers or rational numbers, then Ford-Fulkerson even-
tually terminates.

7.3.1 The Ford-Fulkerson Algorithm

The Ford–Fulkerson algorithm is an elegant solution to the maximum-flow problem. Funda-
mentally, it works as follows:

• Initialize flow f = 0 for each edge e ∈ E.

• At each iteration, increase the flow value in G by finding an augmenting path in the
residual network Gf .

• Repeatedly augment the flow until the residual network has no more augmenting paths
(no path from s to t is found).

More formally, suppose that we have a flow network G = (V,E) with source s and sink t. Let f

be a flow in G, and consider a pair of vertices u, v ∈ V. We define the residual capacity cf(u,v)
by

cf(u,v) =


c(u,v) − f(u,v) if (u, v) ∈ E
f(v,u) if (v, u) ∈ E
0 otherwise.

In general, given a flow network G = (V,E) and a flow f, the residual network of G induced
by f is Gf =

(
V,Ef

)
, where Ef is the set of residual edges defined as

Ef =
{

(u, v) ∈ V × V : cf(u,v) > 0
}
.

Remark. The back edges in residual graph can undo suboptimal flows in some edges for future
iterations.

Runtime:

• Let f∗ denote the maximum flow. We execute the while loop at most |f∗| times since the
flow value increases by at least one unit in each iteration.

• Each iteration of searching a path p takes O(E) time using DFS or BFS.

• Thus, the algorithm takes O(E · |f∗|) time.

• BFS implementation is the Edmonds-Karp Algorithm.
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7.3.2 The Edmonds-Karp Algorithm

The Edmonds–Karp algorithm is a BFS implementation of the Ford–Fulkerson algorithm in
which the the augmenting path p is chosen to have minimal length among all possible augmenting
paths (each edge is assigned length 1, regardless of capacity).
Runtime:

• The total number of augmentations is O(|V | · |E|). Thus it takes O(|V | · |E|2).

• To be added.

7.3.3 Max-Flow Min-Cut Theorem

• An (s, t)-cut partitions V into two subsets S, T, where s ∈ S, t ∈ T .

• Capacity of the cut C:

val(C) =
∑

e∈{(u,v)|u∈S,v∈T}

ce

.

Theorem 28 (Max-Flow Min-Cut Theorem). Maximum flow is equal to minimum cut.

val (f∗) = val (C∗) .

In the residual graph, the set of vertices, X, reachable from s, yields the cut (X,V \X)
whose capacity equals the max flow.

7.3.4 Bipartite matching

We have a bipartite graph of boys and girls, where there is an edge between bi and gi if boy bi
likes girl gi. Is such a pairing possible?

Connect a source to all the boys and a sink to all the girls. Point all edges towards the sink.
Set each edge’s capacity to 1. The maximum flow of this graph is how many source-boy edges
and girl-sink edges are saturated, which is the number of feasible couples. This is true because
the max flow algorithm chooses integral flows on all edges.

Theorem 5. If all the edges have integral capacities, then the flow on each edge is integral.
For LP, instead of maximizing with xi, solve for a least upper bound by multipliers on the
constraints. ( duality)

7.4 Duality

• Formulation of dual:

1. multiply by non-negative numbers.

2. sum up inequalities.

• Primal LP:
max cTx
Ax ≤ b
x ≥ 0.

• Dual LP:
minyTb
yTA ≥ cT

y ≥ 0.
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Theorem 29 (Weak Duality Theorem). Let x1, x2, . . . xn be primal feasible and let y1, y2, . . . yn
be dual feasible then

n∑
j=1

cjxj ≤
m∑
i=1

biyi.

Theorem 30 (Strong Duality Theorem). If either primal or dual has a finite optimal value,
then so does the other, the optimal values coincide, and optimal solutions to both exist.

7.5 Zero-sum games and Multiplicative weight update Algorithm

7.5.1 Zero-Sum games

• Setup:

– Given a 2D matrix where the rows are player A’s moves, the columns are player B’s
moves, and the values are A’s reward for each move.

– Whichever player goes first has to announce their strategy first.

– Strategy is the vector probabilities of playing specific moves.

• Main Idea: If player A goes first, player B will pick the move that minimizes A’s reward.
So A’s best strategy will be the maximum of the minimum of B’s moves. If player B goes
first, player A will pick the move that maximizes A’s reward. So B’s best move will be
the minimum of A’s moves. These two equations come out to be the dual of each other.

B1 B2

A1 a c
A2 b d

• A’s strategy is [x1, x2] and B’s strategy is [y1, y2].

• A picks [x1, x2] to maximize the value min{ax1 + bx2, cx1 + dx2}, whereas B picks [y1, y2]
to minimize the value max {ay1 + cy2, by1 + dy2}.

Theorem 31 (Min-Max Theorem).

max
x

min
y

∑
i,j

Gijxiyj = min
y

max
x

∑
i,j

Gijxiyj .
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Example 7.1 (Even-odd game). Given values {0, 1}, Alice and Bob are choosing one number
and they both don’t know what number the other person chooses. The game goes as follows:
if their sum is even then Alice’s payoff is the sum, otherwise the payoff will be the negative
sum. Let x0, x1 be the probability of Alice choosing 0 and 1 respectively. Then our task is
to pick x0, x1 to maximize z = min{−x1,−x0 + 2x1}.
The LP is as follows:

max z

subject to z ≤ −x1

z ≤ −x0 + 2x1

x0 + x1 = 1
x0, x1 ≥ 0.

On the other hand, if Bob anounces his strategy y0, y1. Then Alice’s payoff would be
max{−y1,−y0 + 2y1}. Then Bob has to pick y0, y1 such that max{−y1,−y0 + 2y1} is
minimized. The LP is as follows:

min z

subject to z ≥ −y1

z ≥ −y0 + 2y1

y0 + y1 = 1
y0, y1 ≥ 0.

It turns out that they are duals of each other, which implies that max z = min z. This
duality only holds when the two players are playing optimally.

7.6 Multiplicative Weights

• Main Idea: Create algorithm performing approximately as well as following best of n
experts that we know beforehand.

• Setup: At each time step t = 1, . . . , n we choose n possible strategies, producing array

x(t) =
(
x

(t)
1 , . . . , x

(t)
n

)
, where x

(t)
i is the probability we follow/fraction of budget allocated

in strategy i. After choosing x(t), we are presented loss array l(t) =
(
l
(t)
1 , . . . , l

(t)
n

)
where 0 ≤

l
(t)
i ≤ 1, and therefore our loss at time t is∑

i=1

x
(t)
i · l

(t)
i

We then define regret RT at time T as such:

RT =

T∑
t=1

n∑
i=1

x
(t)
i · l

(t)
i −min

i

T∑
t=1

lti.

7.7 Multiplicative Weight Algorithm

Use parameter 0 ≤ ε ≤ 1/2, maintaining at each time step t a set of weights

w
(0)
i = 1, w

(t+1)
i = w

(t)
i · (1− ε)

l
(t)
i .
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At each step, algorithm chooses allocations proportionally to weights

x
(t)
i =

w
(t)
i∑
j w

(t)
j

.

Implications: This Multiplicative Weight Algorithm guarantees

RT ≤ 2
√
T lnn

From lecture:
Setup: We have n experts E1, . . . , En. ith expert on day t: loss `

(t)
i ∈ [0, 1]. T = number of days.

L∗ = total loss of best expert over T days.

1. Initialize wi = 1 to {Ei}ni=1. W =
∑n

i=1wi.

2. On each day we choose expert i with probability wi
W .

3. At the end of the day, expert j gets assigned wj = wj(1− ε)`
(t)
j .

L = expected loss suffered by MWU over T days.

Theorem 32.

L ≤ lnn

ε
+ (1 + ε)L∗.

Proof. W (t) =
∑n

i=1w
(t)
i and W (0) = n. Best expert’s weight on day T = (1− ε)L∗ . Thus,

(1− ε)L∗ ≤W (T ).

Lt = expected loss suffered by MWU on day t.

W (t+ 1) ≤W (t)(1− εLt)

(1− ε)L∗ ≤W (T ) ≤ n
T∏
t=1

(1− εLt)

L∗ ln(1− ε) ≤ lnn+

t∑
t=1

ln (1− εLt)

−L∗(ε+ ε2) ≤ lnn− ε
∑
t

Lt

L∗(1 + ε) ≤ lnn

ε
− L

L ≤ lnn

ε
+ (1 + ε)L.
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7.8 Reductions

7.8.1 The Notion of a Reduction

A problem A reduces to a problem B if any subroutine to solve B can be used to solve A. A
reduction includes pre-processing and post-processing of the input and output and they are in
polynomial time.

Remark. To prove a problem A reduces to B, we must show that there exists a solution of A
if and only if there exists a solution of B.

Claim 2. Suppose M is a matching in G. Then there exists an integral flow on G̃ with val(f) =
|M |.

Proof. Push 1 unit of flow on edges in M .

L(M) = vertices in L touching M.

R(M) = vertices in R touching M.

Push 1 unit of flow from s to v, ∀v ∈ L(M). Push 1 unit of flow from s to u, ∀u ∈ R(M). Then

val(f) = |L(M)| = |M |.

Claim 3. f is an integral flow on G̃. Then there exists a matching M on G such that |M | =
val(f).

Proof. Since capacities in G̃ are all 1, the flow on each edge could be either 0 or 1.

M = {(u, v)|u ∈ L, v ∈ R, f(u,v) = 1}.

|M | = val(f).

M is a matching because f is a flow and every vertex in L can get at most 1 unit of flow in and
every vertex in R can push at most 1 flow unit to t.

7.8.2 Reduction Between the Path Problem and the Cycle problem

• There is a simple relation between the problems of finding a Hamiltonian path and a
Hamiltonian cycle:

• In one direction, the Hamiltonian path problem for graph G is equivalent to the Hamilto-
nian cycle problem in a graph H obtained from G by adding a new vertex x and connecting
x to all vertices of G.

• Thus, finding a Hamiltonian path cannot be significantly slower (in the worst case, as a
function of the number of vertices) than finding a Hamiltonian cycle.

• In the other direction, the Hamiltonian cycle problem for a graph G is equivalent to the
Hamiltonian path problem in the graph H obtained by copying one vertex v of G, v′, that
is, letting v′ have the same neighbourhood as v, and by adding two dummy vertices of
degree one, and connecting them with v and v′, respectively.
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8 NP-complete Problems

8.1 Complexity

Definition 33 (Binary Relation). A binary relation R is a subset R ⊆ {0, 1}∗ × {0, 1}∗. It
contains elements (x, y), where x is the instance and y is the witness.
We say that a binary relation is efficiently verifiable if given (x, y) there exists an efficient
algorithm that decides whether (x, y) ∈ R.

Definition 34 (Language). A language L is a subset of {0, 1}∗.
Definition 35 (Language of Binary Relation). The language associated with R is defined as

L(R) = {x | (x, y) ∈ R}.

Definition 36 (Decision Problem). A decision problem is a computation problem to which
the answer is either yes or no.

Decide(R) := Given x decide whether ∃y such that (x, y) ∈ R.

Definition 37 (Search Problem). A search problem asks not just whether a solution exists,
but also what the solution is.

Search(R) := Given x find y such that (x, y) ∈ R if one exists.

Definition 38 (Complexity Class). A complexity class is simply a set of decision problems.

Claim 4. If R is efficiently verifiable, then Decide(R) can be solved in 2poly(|x|) time.

Proof. Consider the following brute force search algorithm:
AR(x) :=

1. For every possible y ∈ {0, 1}poly(|x|), check whether (x, y) ∈ R.

2. Output NO.

Thus the runtime is 2poly(|x|) · poly(|x|) = 2poly(|x|).

8.2 P and NP

Problem. Can decide(R) be solved efficiently, i.e. in polynomial-time?

Definition 39 (Polynomial-time). An algorithm is polynomial-time if there exists a constant
c such that the running time on an input of size n is O(nc).

Definition 40 (P). P is the set of decision problems which have polynomial-time solutions.
Mathematically,

P = {R such that Decide(R) can be solved efficiently.}

Definition 41 (Nondeterministic Polynomial-time NP). NP is the class of problems that are
efficiently verifiable. Mathematically,

NP = {R such that R is efficiently verifiable.}

Fact 42. P ⊆ NP.

Remark. The problem of P
?
= NP is a famous open problem.
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8.3 NP-completeness

Definition 43 (NP-hard). A problem A is NP-hard if ∀B ∈ NP, B → A (B reduces to A).

Definition 44 (NP-complete). A problem is NP-complete if it is in NP and is NP-hard.

Question. Do NP-complete problems exist?

Answer. Yes!

A detour to boolean circuits.

Definition 45 (Boolean Circuit). A boolean circuit is a DAG of gates of the following types:

• INPUT gates: Xi = 0 or Xi = 1.

• AND gates

• OR gates.

• NOT gates.

Problem (Circuit Value Problem). Given a boolean circuit, is its output 1?

Claim 5. Every efficiently solvable problem reduces to the circuit value problem.

Proof. Out of scope. Take CS172 for more details.

Now back to our original question, here’s an example of a NP-complete problem.

Definition 46 (CSAT). CSAT is the binary relation RCSAT such that

(C, y) ∈ RCSAT ⇐⇒ C(y) = 1,

where C is a boolean circuit.

Claim 6. CSAT is NP-complete.

Proof. Using the definition, we need to show two statements:

1. (CSAT ∈ NP): the process is efficiently verifiable with topological sort.

2. (CSAT is NP-hard): suppose we have a problem B ∈ NP, then that means we have an
efficient verifier VB(x, y) = RB(x, y).

• Preprocess: output circuit C for VB(x, ·) from the previous claim shown.

• Pass in C to CSAT, which would output y, which is exactly the witness for B.

Definition 47 (Formulas vs Circuits). Circuits are DAGs of gates whereas formulas are trees
of gates. The difference is that the latter does not reuse outputs from previous gates.

Definition 48 (SAT). Also known as SATISFIABILITY. Given a boolean formula φ : {0, 1}n →
{0, 1}, decide if ∃y ∈ {0, 1}n such that φ(y) = 1.

An instance of SAT looks as follows:

(x ∨ y ∨ z) ∧ (x ∨ ȳ) ∧ (y ∨ z̄) ∧ (z ∨ x̄) ∧ (x̄ ∨ ȳ ∨ z̄).

This is a Boolean formula in conjunctive normal form (CNF): a collection of clauses with
each consisting of the disjunction (∨) of several literals, where a literal is either a Boolean
variable or the negation of one.
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Theorem 49 (Cook-Levin). SAT is NP-complete.

Proof. We first show that SAT ∈ NP, i.e., given φ, y, is there an algorithm to decide if φ(y) = 1?
Yes! In fact, we can just directly evaluate the formula. Thus, we know that SAT must be in
NP. Now we show that SAT is NP-hard, i.e., for each B ∈ NP, we can reduce B to SAT. It
suffices to show that CSAT reduces to SAT since we know that CSAT is NP-complete from
above.

Definition 50 (3SAT). Given a CNF formula φ on inputs x1, . . . , xn where each clause involves
at most 3 literals. Decide whether ∃x ∈ {0, 1}n that satisfies φ.

Theorem 51. 3SAT is NP-complete.

Proof. Note that 3SAT ∈ NP by direct evaluation. To show that 3SAT is NP-hard, we simply
show that SAT reduces to 3SAT. Let φ : {0, 1}n → {0, 1} be a boolean formula. We want to
transform φ into a 3CNF φ′ such that φ is satisfiable iff φ′ is satisfiable and |φ′| = poly(|φ|).

8.3.1 Independent Set

Definition 52 (Independent Set). An independent set is a set of vertices in which no pair of
which share an edge.

IS = {((G, g), S) such that S is an independent set in G of size g.}

Theorem 53. Independent Set is NP-complete.

Proof. IS ∈ NP because can be verified efficiently by checking size and edges. We can also
show that it is also NP-hard by showing that 3SAT reduces to IS. To do so, we must relate
Boolean logic with graphs. Here’s an example:

Figure 1: The graph corresponding to (x̄ ∨ y ∨ z̄)(x ∨ ȳ ∨ z)(x ∨ y ∨ z)(x̄ ∨ ȳ).

For each clause, we only need one literal to be true. We can then form a triangle for each
clause and connect each literal with its negation with an edge because if one of them is chosen
for one clause, then the other cannot be chosen from the other clause (if x = 1, then x = 0).
As for why we form a triangle for each clause, it is because a triangle has its three vertices
maximally connected, and thus we are forced to pick only one of them for the independent set.
To force exactly one choice from each clause, we can simply set g to be the number of clauses.
In our example, g = 4. Now there are two claims we want to show:
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Claim 7. If S is an IS in G of size g, then there exists a ∈ {0, 1}n such that φ(a) = 1.

Proof. For any variable x, the set S cannot contain vertices labeled both x and x̄, because any
such pair of vertices is connected by an edge. So assign x a value of true if S contains a vertex
labeled x, and a value of false if S contains a vertex labeled x̄ (if S contains neither, then
assign either value to x). Since S has g vertices, it must have one vertex per clause; this truth
assignment satisfies those particular literals, and thus satisfies all clauses.

Claim 8. If G has no independent set of size g, then φ is unsatisfiable.

Proof. It is easier to prove the contrapositive, that if φ has a satisfying assignment then G
has an independent set of size g. This is simple: for each clause, pick any literal whose value
under the satisfying assignment is true (there must be at least one such literal), and add the
corresponding vertex to S.

Then we are done.

8.3.2 INDEPENDENT SET → CLIQUE:

Definition 54 (Clique). A set S ⊆ V of vertices in an undirected graph G = (V,E) is called a
clique if all pairs in S are connected by an edge.

• Define G = (V,E), where E contains those unordered pairs of vertices that are not in E.
Then

Theorem 55 (Observation).

S is an independent set of G ⇐⇒ S is a clique of G.

• These nodes have no edges between them in G if and only if they have all possible edges
between them in G.

• Therefore, we can reduce INDEPENDENT SET to CLIQUE by mapping an instance
(G, g).

• Hence CLIQUE is also NP-complete.

8.3.3 INDEPENDENT SET → VERTEX COVER:

Definition 56 (Vertex Cover). A set S ⊆ V is called a vertex cover if S touches all edges.

Theorem 57 (Observation).

S is a vertex cover of graph G = (V,E) ⇐⇒ V − S is an independent set of G.

•• Therefore, to solve an instance (G, g) of INDEPENDENT SET, simply look for a vertex
cover of G with |V | − g nodes. If such a vertex cover exists, then take all nodes not in it.
If no such vertex cover exists, then G cannot possibly have an independent set of size g.
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9 Coping with NP-completeness

Suppose we want to solve a problem A. We can either

1. try to show that A ∈ P

• (direct, or reduce to shortest paths, max flow, DP, LP, . . . )

2. try to show that A is NP-hard

• (reduce from 3SAT, . . . )

3. if NP-hard, what do we do next? Here are some ideas:

• Change problem from A to A
′

(special case only).

• Use inefficient algorithms (exponential time) but mitigate inefficiency.

• Insist on polynomial-time algorithms, but relax correctness requirement but not by
too much. We call these approximation algorithms.

• Heuristics.

9.1 Approximation Algorithms (for optimization problems)

General Setting: You are trying to find an optimal solution to problem A that minimizes
some objective function (e.g. Vertex Cover, Set Cover, TSP).
Given instance I:

• OPT(I): value of optimal solution.

• A(I): value of the solution produces by our efficient algorithm.

• The approximation ratio of algorithm A is defined to be

α := max
I

A(I)

OPT(I)
.

• α measures by the factor by which the output of algorithm A exceeds the optimal solution,
on the worst-case input.

• Our goal is to look for an approximation algorithm A whose α is as small as possible.

But how can we come close to the optimum if we cannot determine the optimum? Let’s look
at the following examples.

9.2 Vertex Cover

We already know that vertex cover is NP-complete.

• Input: An undirected graph G = (V,E).

• Output: A subset of the vertices S ⊆ V that touches every edge.

• Goal: Minimize |S|.

Theorem 58. vertex cover has an approximation algorithm with approximation ratio
α = 2.
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Proof. Leverage a connection between VCs and matchings (M ⊆ E where no pair of edges share
an endpoint).

Claim 9.
S ⊆ V is a vertex cover and M ⊆ E is a matching =⇒ |M | ≤ |S|.

Proof. For each edge e ∈ M , there exists a vertex v ∈ V that only touches e and no other e’s
in M . In particular,

max
M
|M | ≤ min

S
|S|.

Claim 10. M ⊆ E is a maximal matching (it cannot be extended further). Then S =
{endpoints of edges in M} is a vertex cover.

Proof. If S is not a vertex cover, then there exists an edge e ∈ E that has no endpoints in S.
But in such case we could add e to M which contradicts maximality.

Now we have the following algorithm:

1. Find a maximal matching M̃ in G.

2. Output S = {endpoints of M̃}.

max
M
|M | ≤ min

S
|S| ≤ |S(M̃)| = 2|M̃ |.

This implies that

2|M̃ |
minS |S|

≤ 2|M̃ |
maxM |M |

≤ 2|M̃ |
|M̃ |

= 2 =⇒ α = 2.

9.3 Traveling Salesman Problem

• Input: undirected graph G = (V,E) and distances ` : E → N.

• Output: tour T = (`1, . . . , `n) (cycle that visits each vertex once).

• Goal: minimize ∑
e∈T

`(e)

The following is an instance of hardness of approximation.

Claim 11. If tsp has approximation algorithm with c in polynomial time, then P = NP.

Proof. If there is an algorithm that approximates tsp with α = c, then we can solve rud-cycle
efficiently. (Thus, P = NP.) Suppose we are given G = (V,E) instance of rud-cycle. For
each edge in G, label it with ` = 1. For each missing edge in G, label it with ` = cn. If G has
a rud-cycle, then G

′
has tour of length n. On the other hand, if G does not have one, then

any tour on G
′

has length at least cn+ n− 1 = (c+ 1)n− 1. The approximatino algorithm can
distinguish between the two.
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9.4 Heuristics (maximization problems)

9.4.1 Local Search/Hill Climbing

• Goal: given f : R→ R, maximize f(x) for x ∈ R.

Algorithm 4 Local Search

procedure Search(f)
x := random point
while T > 0 do

x′ := pick neighbor(x)
if f(x′) > f(x) then

x← x′

9.4.2 Simulated Annealing

Algorithm 5 Simulated Annealing

procedure Search(f)
x := random point
while t1 > 0 do

while t2 > 0 do
x′ := pick neighbor(x)
if f(x′) > f(x) then

x← x′

else
with probability p = e−(f(x)−f(x′))/T x← x′
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10 Primality Testing

The goal of primality testing is to test whether a number is prime efficiently.

Theorem 59 (Fermat’s Little Theorem). If p is prime, then for every 1 ≤ a < p,

ap−1 ≡ 1 (mod p).

Proof. Consider S = {1, 2, . . . , p− 1} and S′ = {a mod p, 2a mod p, . . . , (p− 1)a mod p}. They
are the same set under mod p (different order).

p−1∏
k=1

k ≡
p−1∏
k=1

ka (modp)

(p− 1)! ≡ ap−1(p− 1)! (modp)

ap−1 ≡ 1 (modp).

The Fermat’s test picks a random positive integer a < N and checks if N passes the FLT. If it
does, it is considered a prime, or it will be considered composite otherwise.

Remark. This theorem is not an if-and-only-if condition, meaning that it doesn’t say what
happens when N isn’t prime. Thus, it is possible for a composite number N to pass this test.
For example 341 = 11 · 31 is not prime, but 2340 ≡ 1 (mod 341).

Definition 60 (Carmichael Numbers). Carmichael Numbers are rare composite numbers N
that passes Fermat’s test for all a that are relatively prime to N , i.e. they are composite
numbers that satisfy

aN−1 ≡ 1 (mod N) where gcd(a,N)= 1.

The smallest Carmichael number is 561.

Remark. Any non-Carmichael composite number N must fail Fermat’s test for some a.

Claim 12. If aN−1 6≡ 1 mod N for some a relatively prime to N, then it must hold for at least
half the choices of a < N .

Proof. Fix some value of a for which aN−1 6= 1 mod N. Notice that every b < N such that
bN−1 ≡ 1 mod N has a twin, a · b that fails the test:

(a · b)N−1 ≡ aN−1 · bN−1 ≡ aN−1 6≡ 1 mod N.

All these elements a · b, for fixed a but different b, are distinct. Thus, the one-to-one function
b→ a · b implies that at least as many elements fail the test as pass it.

Modified version of Fermat’s Test:
Suppose we ignore Carmichael numbers, then we have the following:

• If N is prime, then aN−1 ≡ 1 mod N for all a < N .

• If N is not prime, then aN−1 ≡ 1 mod N for at most half the values of a < N .

Then the Fermat’s test has the following probabilistic behavior:

P( returns yes when N is prime ) = 1
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P( returns yes when N is not prime ) ≤ 1

2
.

We can reduce the error by repeating the procedure many times, by randomly picking several
values of a and testing them all. Then

P( returns yes when N is not prime ) ≤ 1

2k
.

We can thus choose a large enough k to substantially reduce the probability of error.

10.0.1 Generating Random Primes

A random n-bit number has roughly 1/n (actually 1/ (ln 2n) ≈ 1.44/n ) chance of being
prime.

Theorem 61 (Lagrange’s Prime Number Theorem). Let π(x) be the number of primes ≤ x.
Then π(x) ≈ x/(lnx), or more precisely

lim
x→∞

π(x)

(x/ lnx)
= 1.

This implies the abundance of prime numbers, so generating prime numbers becomes a simple
task and can be done as follows:

1. Pick a random n -bit number N .

2. Run a primality test on N .

3. If it passes the test, output N ; else repeat the process.

10.1 Universal Hashing

Definition 62 (Hash Functions). A hash function h is a function that maps the universe U of
keys to [m] := {0, 1, 2, . . . ,m− 1}:

h : U → [m].

A hash family on U is a set of hash functions H.

Definition 63 (Universal). A hash family H is universal if for any x 6= y ∈ U , we have

Ph∈H [h(x) = h(y)] ≤ 1

m
.

In other words, if we sample h uniformly at random from H, the chance of a collision (h(x) =
h(y)), is at most 1

m .

A hash function is considered better if there are less collisions, i.e. we want Ph∈H [h(x) = h(y)]
to be small.

Claim 13 (Pairwise Independence). The family H : [n] → [p] consisting of functions ha,b(x) =
ax+ b mod p where p is a prime number greater than n and a, b ∈ Zp is pairwise independent,

Pa,b[h(x) = c, h(y) = d] =
1

p2
∀x 6= y.

Proof. If h(x) = c and h(y) = d then the following linear equations are satisfied over Zp

ax+ b = c ay + b = d
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The linear system has a unique solution (a, b) as the determinant (x − y) 6= 0 for distinct
x, y. The claim follows as |H| = p2 and there is a unique function such that h(x) = c and
h(y) = d.

Fact 64. Pairwise independence implies universality.

10.2 Streaming

• The streaming model is one way to model the problem of analyzing massive data.

• The model assumes that the data is presented as a stream S = (x1, x2, . . . , xm), where
the items xi are drawn drawn from a universe of size n.

• The available memory is much less than the size of the stream, so a streaming algorithm
must process a stream in a single pass using sublinear space.

• The number of occurrences of element i in the stream is denoted by mi.

Definition 65 (Frequency Moments). The frequency moments are natural statistics for streams:

Fk =
∑
i

mk
i

• F0 =
∑

im
0
i = number of distinct elements in stream.

• F1 =
∑

im
1
i = length of stream.

• F2 =
∑

im
2
i ≈ variance.

10.2.1 Counting Distinct Items

Exactly counting the number of distinct elements in a stream requires O(n) space, which is too
much. We can reduce that by using approximate counting:

• Outputs yes if the number of distinct items N > 2k, no if N < k.

• Ignore the output if k ≤ N ≤ 2k.

Specifically, we do the following steps:

1. Choose a function h : [n]→ [m] uniformly.

2. Output yes if there is some xi ∈ S such that h(xi) = 0, else output no.

Since h(x) is uniformly distributed on [m], so for all x ∈ U we have Ph∈H[h(x) = 0]= 1/m. If
there are at most k distinct items in the stream, the probability that none of the N items hash
to 0 is,

P[A(x) = no | N ≤ k] =

(
1− 1

m

)N
≥
(

1− 1

m

)k
.

If N is greater than 2k then we have

P[A(x) = no | N > 2k] =

(
1− 1

m

)N
≤
(

1− 1

m

)2k

.

Specifying a random hash function requires O(n logm) bits of storage, and this can be reduced
by choosing h from a family H of small size having good independence properties like pairwise
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independence, as covered earlier in claim 13.

For the streaming algorithm we require a pairwise independent hash function familyH : [n]→
[m] where m is not a prime number, the family ha,b = (ax + b (mod p)) (mod m) for a prime
larger than p is approximately pairwise independent.

10.2.2 Analysis of Approximate Counting

We analyze the algorithm using a random hash function from a pairwise independent family
H : [n]→ [4k]. From claim 13, it follows that Pa,b[h(x) = 0] = 1/m for all x ∈ [U ]. If there are
k elements in the stream the probability of some element being hashed to 0 can be bounded
using the union bound P [∪Ai] ≤

∑
P [Ai]:

P[A(x) = yes | N < k] ≤ k

m
=

1

4

The inclusion exclusion principle is used to show that the probability of the output being yes
is large if there are more than 2k elements in the stream. Truncating the inclusion exclu-
sion formula to the first two terms yields P [∪Ai] ≥

∑
P [Ai] −

∑
P [Ai ∩Aj ] . Using pairwise

independence,

P[A(x) = yes | N ≥ 2k] ≥ 2k

m
− 2k · (2k − 1)

2m
≥ 2k

m

(
1− k

m

)
=

3

8

The yes and no cases are separated by a gap of 1/8, the memory used by the algorithm is
O(log n) as numbers a, b need to be stored. Using a combination of standard tricks, the quality
of approximation can be improved to 1± ε.
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