
CS188: Artificial Intelligence
UC Berkeley

Kelvin Lee

December 7, 2020

These are course notes for UC Berkeley’s Fall 2020 CS188 Artificial Intelligence course
instructed by Professor Anca Dragan.

Contents
1 Introduction 4

1.1 Agents . 4
1.2 State Spaces and Search Problems . 4
1.3 Searching strategies . 5
1.4 Depth-First Search . 5
1.5 Breadth-First Search . 6
1.6 Uniform Cost Search . 7
1.7 Greedy Search . 7
1.8 A* Search . 8
1.9 Admissibility and Consistency . 8

2 Constraint Satisfaction Problems 10
2.1 Backtracking Search . 10
2.2 Filtering . 10
2.3 Arc Consistency . 10

2.3.1 K-Consistency . 11
2.4 Ordering . 11

2.4.1 Minimum Remaining Value (MRV) 11
2.4.2 Least Constraining Value (LCV) 11

2.5 Local Search . 11

3 Game Trees 12
3.1 Alpha-Beta Pruning . 12
3.2 Evaluation Function . 12
3.3 Expectimax . 13
3.4 Minimax vs Expectimax . 14
3.5 Utilities . 14

4 Non-deterministic Search 16
4.1 Markov Decision Processes . 16
4.2 Markovianess . 17
4.3 The Bellman Equation . 17
4.4 Value Iteration . 18
4.5 Policy Extraction . 18

1

CS188: Artificial Intelligence Kelvin Lee

4.6 Policy Iteration . 19
4.7 Summary . 20

5 Reinforcement Learning 21
5.1 Model-Based Learning . 21
5.2 Model-Free Learning . 21

5.2.1 Algorithms Categories: . 21
5.2.2 Algorithms: . 21
5.2.3 Direct Evaluation . 22
5.2.4 Temporal Difference Learning . 22
5.2.5 Q-Learning . 23
5.2.6 Approximate Q-Learning . 24

5.3 Exploration and Exploitation . 24
5.3.1 ε-Greedy Policies . 24
5.3.2 Exploration Functions . 25

5.4 Summary . 25

6 Probability 26
6.1 Probabilistic Inference . 26
6.2 Bayes’ Nets (Representation) . 27
6.3 Bayes’ Nets (Inference) . 27

6.3.1 Variable Elimination . 28
6.4 Bayes’ Nets (Sampling) . 28

6.4.1 Prior Sampling . 28
6.4.2 Rejection Sampling . 29
6.4.3 Likelihood Sampling . 29
6.4.4 Gibbs Sampling . 30

6.5 D-Separation . 30
6.6 Summary . 30

7 Markov Models 31
7.1 Hidden Markov Models . 31

7.1.1 Mini-Forward Algorithm . 31
7.1.2 The Forward Algorithm . 31
7.1.3 Viterbi Algorithm . 32

7.2 Particle Filtering . 33
7.2.1 Particle Filtering Simulation . 33

7.3 Summary . 33

8 Decision Networks 34
8.1 Value of Perfect Information . 34

9 Machine Learning 36
9.1 Näıve Bayes . 36
9.2 Parameter Estimation . 37

9.2.1 Maximum Likelihood Estimation 37
9.3 Laplace Smoothing . 37
9.4 Perceptron . 38

9.4.1 Binary Decision Rule . 39
9.4.2 Multiclass Decision Rule . 39
9.4.3 Properties of Perceptrons . 40

2

CS188: Artificial Intelligence Kelvin Lee

9.4.4 Problems with Perceptrons . 40

10 Neural Networks 41
10.1 Motivation . 41

10.1.1 Multi-layer Perceptron . 41
10.1.2 Accuracy . 41
10.1.3 Multi-layer Feedforward Neural Network 42
10.1.4 Gradient Ascent/Descent . 43

10.2 Optimization . 43
10.3 Backpropagation . 44

3

CS188: Artificial Intelligence Kelvin Lee

§1 Introduction
§1.1 Agents
The central problem in AI is the creation of a rational agent, an entity that has goals and
tries to perform a series of actions that yield the optimal expected outcome. Rational
agents exist in an environment. An environment and the agents reside within it create
a world.

• Reflex agent: doesn’t consider the consequences of its actions, but selects actions
based solely on the current state of the world

• Planning agents: maintains a model of the world and uses this model to simulate
performing various actions.

§1.2 State Spaces and Search Problems
A search problem requires four things:

• state space: Set of all possible states that are possible in the given world

• successor function: A function that takes in a state and an action and computes
the cost of performing that action as well as the successor state, the state the
world would be in if the given agent performed that action

• start state: The state in which an agent exists initially

• goal test: A function that takes a state as input, and determines whether it is a
goal state

The order in which states are considered is determined by a predetermined strategy.

Difference between a world state and a search state: A world state contains all
information about a give state, whereas a serach state contains only the information about
the world that’s necessary for planning(for space efficiency reasons).

Example 1.1
Consider the game of Pacman. We can have two types of search problem: pathing
and eat-all-dots.

Pathing Eat-all-dots
States (x, y) locations (x, y) location, dot booleans

Actions North, South, East, West North, South, East, West
Successor Update location only Update location and booleans
Goal test Is (x, y) =END? Are all dot booleans false?

In this case, we see that the states for pathing contain less information than that for
eat-all-dots.

4

CS188: Artificial Intelligence Kelvin Lee

§1.3 Searching strategies
When considering strategies for reaching the goal state from the starting state in a search
tree, we should consider the following:

• Completeness: if a solution to the search problem exists, it the strategy guaran-
teed to find it given infinite computational resources?

• Optimality: is the strategy guaranteed to find the lowest cost path to a goal
state?

• Branching factor b: the increase in the number of nodes on the fringe each time
a fringe node is dequeued and replaced with its children is O(b). At depth k in the
search tree, there exists O(bk) nodes.

• The maximum depth m.

• The depth of the shallowest solution s.

§1.4 Depth-First Search

• Description: always selects the deepest fringe node from the start node for
expansion.

• Fringe representation: removing the deepest node and replacing it on the fringe
with its children necessarily means the children are now the new deepest nodes -
their depth is one greater than the depth of the previous deepest node. This implies
that to implement DFS, we require a structure that always gives the most recently
added objects highest priority. A last-in, first-out (LIFO) stack does exactly this,
and is what is traditionally used to represent the fringe when implementing DFS.

• Completeness: DFS is not complete. May get stuck in a cycle forever.

• Optimality: finds the ”leftmost” solution in the search tree without regard for
path costs, and so is not optimal.

• Time Complexity: May end up exploring the entire search tree. Hence, given a
tree with maximum depth m, the runtime of DFS is O (bm).

• Space Complexity: In the worst case, DFS maintains b nodes at each of m depth
levels on the fringe. This is a simple consequence of the fact that once b children of
some parent are enqueued, the nature of DFS allows only one of the subtrees of
any of these children to be explored at any given point in time. Hence, the space
complexity of BFS is O(bm).

5

CS188: Artificial Intelligence Kelvin Lee

§1.5 Breadth-First Search

• Description: BFS is a strategy for exploration that always selects the shallowest
fringe node from the start node for expansion.

• Fringe representation: If we want to visit shallower nodes before deeper nodes,
we must visit nodes in their order of insertion. Hence, we desire a structure that
outputs the oldest enqueued object to represent our fringe. For this, BFS uses a
first-in, first-out (FIFO) queue, which does exactly this.

• Completeness: BFS is complete. If a solution exists, then the depth of the
shallowest node s must be finite, so BFS must eventually search this depth.

• Optimality: BFS is generally not optimal because it simply does not take costs
into consideration when determining which node to replace on the fringe. The
special case where BFS is guaranteed to be optimal is if all edge costs are
equivalent, because this reduces BFS to a special case of uniform cost search,
which is discussed below.

• Time Complexity: We must search 1 + b + b2 + . . . + bs nodes in the worst
case, since we go through all nodes at every depth from 1 to s. Hence, the time
complexity is O (bs)

• Space Complexity: The fringe, in the worst case, contains all the nodes in the
level corresponding to the shallowest solution. Since the shallowest solution is
located at depth s, there are O (bs) nodes at this depth.

6

CS188: Artificial Intelligence Kelvin Lee

§1.6 Uniform Cost Search

• Description: Uniform cost search (UCS), our last strategy, is a strategy for
exploration that always selects the lowest cost fringe node from the start node for
expansion.

• Fringe representation: To represent the fringe for UCS, the choice is usually a
heap-based priority queue, where the weight for a given enqueued node v is the
path cost from the start node to v, or the backward cost of v. Intuitively, a priority
queue constructed in this manner simply reshuffles itself to maintain the desired
ordering by path cost as we remove the current minimum cost path and replace it
with its children.

• Completeness: Uniform cost search is complete. If a goal state exists, it must
have some finite length shortest path; hence, UCS must eventually find this shortest
length path.

• Optimality: UCS is optimal if we assume all edge costs are nonnegative.
By construction, since we explore nodes in order of increasing path cost, we’re
guaranteed to find the lowest-cost path to a goal state. The strategy employed
in Uniform cost Search is identical to that of Dijkstra’s algorithm, and the chief
difference is that UCS terminates upon finding a solution state instead of finding the
shortest path to all states. Note that having negative edge costs in our graph can
make nodes on a path have decreasing length, ruining our guarantee of optimality.
(See Bellman-Ford algorithm for a slower algorithm that handles this possibility)

• Time Complexity: Let us define the optimal path cost as C∗ and the minimal
cost between two nodes in the state space graph as ε. Then, we must roughly explore
all nodes at depths ranging from 1 to C∗/ε, leading to an runtime of O

(
bC
∗/ε
)

• Space Complexity: Roughly, the fringe will contain all nodes at the level of the
cheapest solution, so the space complexity of UCS is estimated as O

(
bC
∗/ε
)

§1.7 Greedy Search
• Description: Greedy search is a strategy for exploration that always selects the

fringe node with the lowest heuristic value for expansion, which corresponds to the
state it believes is nearest to a goal.

• Fringe representation: Greedy search operates identically to UCS, with a priority
queue fringe representation. The difference is that instead of using computed

7

CS188: Artificial Intelligence Kelvin Lee

backward cost (the sum of edge weights in the path to the state) to assign priority,
greedy search uses estimated forward cost in the form of heuristic values.

• Completeness and Optimality: Greedy search is not complete and not op-
timal, particularly in cases where a very bad heuristic function is selected. It
generally acts fairly unpredictably from scenario to scenario, and can range from
going straight to a goal state to acting like a badly-guided DFS and exploring all
the wrong areas.

§1.8 A* Search
• Description: A∗ search is a strategy for exploration that always selects the fringe

node with the lowest estimated total cost for expansion, where total cost is the
entire cost from the start node to the goal node.

• Fringe representation: Just like greedy search and UCS, A∗ search also uses a
priority queue to represent its fringe. Again, the only difference is the method of
priority selection. A∗ combines the total backward cost (sum of edge weights in the
path to the state) used by UCS with the estimated forward cost (heuristic value)
used by greedy search by adding these two values, effectively yielding an estimated
total cost from start to goal. Given that we want to minimize the total cost from
start to goal, this is an excellent choice.

• Completeness and Optimality: A∗ search is both complete and optimal, given
an appropriate heuristic (which we’ll cover in a minute). It’s a combination of the
good from all the other search strategies we’ve covered so far, incorporating the
generally high speed of greedy search with the optimality and completeness of UCS!

§1.9 Admissibility and Consistency
Main idea: estimated heuristic costs ≤ actual costs.

Definition 1.2 (Admissibility)
For a heuristic h to be admissible, the following must be true:

∀n, 0 ≤ h(n) ≤ h∗(n),

in other words, heuristic cost ≤ actual cost to goal.

Definition 1.3 (Consistency)
For a heuristic h to be consistent, we h underestimate the cost between all nodes:

h(A)− h(C) ≤ cost(A to C)

Consequences of consistency:

• The f value along a path never decreases

h(A) ≤ cost(A to C) + h(C)

• A∗ graph search is optimal

8

CS188: Artificial Intelligence Kelvin Lee

Remark 1.4. Consistency implies admissibility, but admissibility does not imply consis-
tency. Hence, consistency is a stronger condition.

Theorem 1.5
For a given search problem, if the admissibility constraint is satisfied by a heuristic
function h using A∗ tree search with h on that search problem will yield an optimal
solution.

Proof. To be added.

Theorem 1.6
For a given search problem, if the consistency constraint is satisfied by a heuristic
function h using A∗ graph search with h on that search problem will yield an
optimal solution.

Proof. To be added.

9

CS188: Artificial Intelligence Kelvin Lee

§2 Constraint Satisfaction Problems
Basic Ideas:

• A special subset of search problems.

• State is defined by variables Xi with values from a domain D (sometimes D depends
on i).

• Goal test is a set of constraints specifying allowable combinations of values for
subsets of variables.

• Consists of variables, domains, and constraints (unary, binary, higher-order).

§2.1 Backtracking Search
Backtracking search is the basic uninformed algorithm for solving CSPs.
Basic Ideas:

• One variable at a time.

• Check constraints as you go.

• Backtracking = DFS + above two improvements.

Backtracking can be inefficient, we can improve it by considering ordering and filtering.

§2.2 Filtering
• Filtering: keeps track of domains for unassigned variables and crosses off bad

options.

• Forward checking: crosses off values that violate a constraint when added to the
existing assignment, but doesn’t provide early detection for all failures.

§2.3 Arc Consistency
• An arc X → Y is consistent iff for every x in the tail there is some y in the head

which could be assigned without violating a constraint.

• Forward checking basically enforces consistency of arcs pointing to each new
assignment.

• If X loses a value, neighbors of X need to be rechecked.

• Arc consistency detects failure earlier than forward checking.

• Can be run as a preprocessor or after each assignment.

• We delete values from the tail.

• The runtime for arc consistency is O(n2d3).

• Limitations: Can have one solution left, multiple solutions left, or no solutions
left (and not know it).

• Arc consistency still runs inside a backtracking search.

10

CS188: Artificial Intelligence Kelvin Lee

§2.3.1 K-Consistency

• Increasing degrees of consistency.

• 1-Consistency (Node Consistency): Each single node’s domain has a value which
meets that node’s unary constraints.

• 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment
to one can be extended to the other.

• K-Consistency: For each k nodes, any consistent assignment to k − 1 can be
extended to the kth node.

• Higher k more expensive to compute.

• Arc consistency is the case when k = 2.

§2.4 Ordering
§2.4.1 Minimum Remaining Value (MRV)

• Choose the variable with the fewest legal left values in its domain.

• ”Fail-fast” ordering.

• The most constrained variable is most likely to run out of possible values and result
in backtracking if left unassigned, so it’s best to assign a value as soon as possible.

§2.4.2 Least Constraining Value (LCV)

• Choose the least constraining value, i.e, the one that rules out the fewest values
in the remaining variables.

§2.5 Local Search
• Local search is another widely used algorithm for solving CSP problems.

• Works by iterative improvement:
– start with some random assignment to values then iteratively select a ran-

dom conflicted variable and reassign its value to the ones that violates the
fewest cnostraints until no more constraint violations exist (min-conflicts
heuristic)

• In short, it improves a single option until you can’t make it better (no fringe).

• Successor function: local changes.

• Much faster and more memory efficient (but incomplete and suboptimal).

11

CS188: Artificial Intelligence Kelvin Lee

§3 Game Trees
• Zero-sum games (Opposite utilities)

• General games (Independent utilities)

§3.1 Alpha-Beta Pruning
• Has no effect on minimax value computed for the root.

• Values of intermediate nodes might be wrong
– Important: children of the root may have the wrong value

• Good child ordering improves effectiveness of pruning

• With “perfect ordering”:
– Time complexity drops to O(bm/2)

– Doubles solvable depth!

Implementation:

§3.2 Evaluation Function

Definition 3.1 (Evaluation Function)
Evaluation functions are functions that take in a state and output an estimate of
the true minimax value of that node.

• Evaluation functions are widely employed in depth-limited minimax

• Because evaluation functions can only yield estimates of the values of non-terminal
utilities, this removes the guarantee of optimal play when running minimax.

The most common design for an evaluation function is a linear combination of features.

Eval(s) = w1f1(s) + w2f2(s) + . . .+ wnfn(s)

Each fi(s) corresponds to a feature extracted from the input state s, and each feature is
assigned a corresponding weight wi.

12

CS188: Artificial Intelligence Kelvin Lee

Example 3.2
In a game of checkers we might construct an evaluation function with 4 features:
number of agent pawns, number of agent kings, number of opponent pawns, and
number of opponent kings.

• We select appropriate weights based loosely on their importance.

• It makes most sense to select positive weights for our agent’s pawns/kings and
negative weights for our opponents pawns/kings.

• The features corresponding to our agent’s/opponent’s kings deserve weights
with greater magnitude than the features concerning pawns.

Below is a possible evaluation function that conforms to the features and weights
we’ve just brainstormed:

Eval(s) = 2 · kings(s) + pawns(s)− 2 · opp kings(s)− opp pawns(s)

Keep in mind that the evaluation function yields higher scores for better posi-
tions as frequently as possible.

§3.3 Expectimax
We’ve now seen how minimax works and how running full minimax allows us to respond
optimally against an optimal opponent. However, minimax has some natural constraints
on the situations to which it can respond.

• Because minimax believes it is responding to an optimal opponent, it’s often overly
pessimistic in situations where optimal responses to an agent’s actions are not
guaranteed.

• Such situations include scenarios with inherent randomness such as card or dice
games or unpredictable opponents that move randomly or suboptimally.

This randomness can be represented through a generalization of minimax known as
expectimax.

• Expectimax introduces chance nodes into the game tree, which instead of con-
sidering the worst case scenario as minimizer nodes do, considers the average
case.

Our rule for determining values of nodes with expectimax is as follows:

∀ agent-controlled states, V (s) = max
s′∈successors(s)

V
(
s′
)

∀ chance states, V (s) =
∑

s′∈successors(s)
p
(
s′ | s

)
V
(
s′
)

∀ terminal states, V (s) = known

13

CS188: Artificial Intelligence Kelvin Lee

The pseudocode for expectimax is quite similar to minimax, with only a few small
tweaks to account for expected utility instead of minimum utility, since we’re replacing
minimizing nodes with chance nodes:

§3.4 Minimax vs Expectimax
• Minimax: Used when our opponent(s) behaves optimally, and can be optimized

using α−β pruning. Minimax provides more conservative actions than expectimax,
and so tends to yield favorable results when the opponent is unknown as well.

• Expectimax: Used when we facing a suboptimal opponent(s), using a probability
distribution over the moves we believe they will make to compute the expected
value of states.

§3.5 Utilities
Rational agents must follow the principle of maximum utility - they must always
select the action that maximizes their expected utility. However, obeying this principle
only benefits agents that have rational preferences.
Let’s now properly define the mathematical language of preferences:

• If an agent prefers receiving a prize A to receiving a prize B, this is written A � B

• If an agent is indifferent between receiving A or B, this is written as A ∼ B

• A lottery is a situation with different prizes resulting with different probabilities.
To denote lottery where A is received with probability p and B is received with
probability (1− p), we write

L = [p,A; (1− p), B]

In order for a set of preferences to be rational, they must follow the five Axioms of
Rationality:

14

CS188: Artificial Intelligence Kelvin Lee

Theorem 3.3 (Axioms of Rationality)
Orderability:

(A � B) ∨ (B � A) ∨ (A ∼ B)

A rational agent must either prefer one of A or B, or be indifferent between the two.
Transitivity:

(A � B) ∧ (B � C)⇒ (A � C)

If a rational agent prefers A to B and B to C, then it prefers A to C.
Continuity:

A � B � C ⇒ ∃p[p,A; (1− p), C] ∼ B

If a rational agent prefers A to B but B to C, then it’s possible to construct a
lottery L between A and C such that the agent is indifferent between L and B with
appropriate selection of p.
Substitutability:

A ∼ B ⇒ [p,A; (1− p), C] ∼ [p,B; (1− p), C]

A rational agent indifferent between two prizes A and B is also indifferent between
any two lotteries which only differ in substitutions of A for B or B for A.
Monotonicity:

A � B ⇒ (p ≥ q)⇔ [p,A; (1− p), B] � [q,A; (1− q), B]

If a rational agent prefers A over B, then given a choice between lotteries involving
only A and B the agent prefers the lottery assigning the highest probability to A

If all five axioms are satisfied by an agent, then it’s guaranteed that the agent’s behavior
is describable as a maximization of expected utility, which implies that there exists
a real-valued utility function U that when implemented will assign greater utilities to
preferred prizes, and also that the utility of a lottery is the expected value of the utility
of the prize resulting from the lottery.

These two statements can be summarized in two concise mathematical equivalences:

U(A) ≥ U(B)⇔ A � B

U ([p1, S1; . . . ; pn, Sn]) =
∑
i

piU (Si)

15

CS188: Artificial Intelligence Kelvin Lee

§4 Non-deterministic Search
• Want to account for another influencing factor - the dynamics of world itself

• The environment in which an agent is placed may subject the agent’s actions to
being nondeterministic, which means that there are multiple possible successor
states that can result from an action taken in some state

• Such problems where the world poses a degree of uncertainty are known as nonde-
terministic search problems, and can be solved with models known as Markov
decision processes, or MDPs

§4.1 Markov Decision Processes

Definition 4.1 (Markov Decision Processes)
A Markov Decision Process is defined by several properties:

• A set of states S

• A set of actions A

• A start state

• A start state

• Possibly one or more terminal states

• Possibly a discount factor γ

• A transition function T (s, a, s′)
it’s a probability function which represents the probability that an agent taking
an action a ∈ A from a state s ∈ S ends up in a state s′ ∈ S

• A reward function R (s, a, s′)
Typically, MDPs are modeled with small ”living” rewards at each step to
reward an agent’s survival, along with large rewards for arriving at a terminal
state. Rewards may be positive or negative depending on whether or not they
benefit the agent in question, and the agent’s objective is naturally to acquire
the maximum reward possible before arriving at some terminal state.

The movement of an agent through a MDP can thus be modeled as follows:

s0
a0→ s1

a1−→ s2
a2→ s3

a3−→ . . .

Knowing that an agent’s goal is to maximize it’s reward across all timesteps, we can
correspondingly express this mathematically as a maximization of the following utility
function:

U ([s0, a0, s1, a1, s2, . . .]) = R (s0, a0, s1) +R (s1, a1, s2) +R (s2, a2, s3) + . . .

16

CS188: Artificial Intelligence Kelvin Lee

§4.2 Markovianess
Markov decision processes satisfy the Markov property, or memoryless property.

Definition 4.2 (Markov Property)
The future and the past are conditionally independent, given the present.
Mathematically,

P (St+1 = st+1 | St = st, At = at, . . . , S0 = s0) = P (St+1 = st+1 | St = st, At = at)

where each St and At denote the random variables representing our agent’s state
and actions respectively during time t.

In other words, given present state, knowing the past doesn’t give us any more information
about the future. These memoryless probabilities are encoded by the transition function:
T
(
s, a, s′

)
= P

(
s′ | s, a

)
§4.3 The Bellman Equation
In order to talk about the Bellman equation for MDPs, we must first introduce two new
mathematical quantities:

• The optimal value of a state s, V ∗(s) - the optimal value of s is the expected value
of the utility an optimally-behaving agent that starts in s will receive, over the rest
of the agent’s lifetime.

• The optimal value of a q-state (s, a), Q∗(s, a) - the optimal value of (s, a) is the
expected value of the utility an agent receives after starting in s, taking a, and
acting optimally henceforth.

Using these two new quantities and the other MDP quantities discussed earlier, the
Bellman equation is defined as follows:

Definition 4.3 (Bellman Equation)

V ∗(s) = max
a

∑
s′

T
(
s, a, s′

) [
R
(
s, a, s′

)
+ γV ∗

(
s′
)]

Let’s also define the equation for the optimal value of a q-state (more commonly known
as an optimal q-value):

Q∗(s, a) =
∑
s′

T
(
s, a, s′

) [
R
(
s, a, s′

)
+ γV ∗

(
s′
)]

Note that this second definition allows us to reexpress the Bellman equation as

Definition 4.4 (Bellman Equation 2.0)

V ∗(s) = max
a

Q∗(s, a)

17

CS188: Artificial Intelligence Kelvin Lee

The term [R (s, a, s′) + γV ∗ (s′)] represents the utility attained by acting optimally
after arriving in state s′ from q-state (s, a), so∑

s′

T
(
s, a, s′

) [
R
(
s, a, s′

)
+ γV ∗

(
s′
)]

is simply a weighted sum of utilities, with each utility weighted by its probability of
occurrence.

Bellman’s usage is as a condition for optimality. In other words, if we can somehow
determine a value V (s) for every state s ∈ S such that the Bellman equation holds true
for each of these states, we can conclude that these values are the optimal values for their
respective states. Indeed, satisfying this condition implies ∀s ∈ S, V (s) = V ∗(s)

§4.4 Value Iteration
Value iteration is a dynamic programming algorithm that uses an iteratively longer time
limit to compute time-limited values until convergence (that is, until the V values are the
same for each state as they were in the past iteration: ∀s, Vk+1(s) = Vk(s)). It operates
as follows:

1. ∀s ∈ S, initialize V0(s) = 0. This should be intuitive, since setting a time limit of 0
timesteps means no actions can be taken before termination, and so no rewards
can be acquired.

2. Repeat the following update rule until convergence:

Definition 4.5 (Value Iteration)

∀s ∈ S, Vk+1(s)← max
a

∑
s′

T
(
s, a, s′

) [
R
(
s, a, s′

)
+ γVk

(
s′
)]

Note that though the Bellman equation looks essentially identical in construction to
the update rule above, they are not the same. The Bellman equation gives a condition
for optimality, while the update rule gives a method to iteratively update values until
convergence. When convergence is reached, the Bellman equation will hold for every state:

∀s ∈ S, Vk(s) = Vk+1(s) = V ∗(s).

§4.5 Policy Extraction
Recall that the ultimate goal in solving a MDP is to determine an optimal policy. This
can be done once all optimal values for states are determined using policy extraction.

The intuition behind is very simple: if you’re in a state s, you should take the action a
which yields the maximum expected utility. Not surprisingly, a is the action which takes
us to the q-state with maximum q-value, allowing for a formal definition of the optimal
policy:

18

CS188: Artificial Intelligence Kelvin Lee

Definition 4.6

∀s ∈ S, π∗(s) = argmax
a

Q∗(s, a) = argmax
a

∑
s′

T
(
s, a, s′

) [
R
(
s, a, s′

)
+ γV ∗

(
s′
)]

It’s useful to keep in mind for performance reasons that it’s better for policy extraction
to have the optimal q-values of states, in which case a single argmax operation is all
that is required to determine the optimal action from a state. Storing only each V ∗(s)
means that we must recompute all necessary q-values with the Bellman equation before
applying argmax, equivalent to performing a depth-1 expectimax.

§4.6 Policy Iteration
Cons for value iteration:

• must update the values of all |S| states (where |n| refers to the cardinality operator),
each of which requires iteration over all |A| actions as we compute the q-value for
each action.

• The computation of each of these q-values, in turn, requires iteration over each of
the |S| states again, leading to a poor runtime of O

(
|S|2|A|

)
.

• overcomputing since the policy as computed by policy extraction generally converges
significantly faster than the values themselves.

Policy iteration operates as follows:

1. Define an initial policy. This can be arbitrary, but policy iteration will converge
faster the closer the initial policy is to the eventual optimal policy.

2. Repeat the following until convergence:
• Evaluate the current policy with policy evaluation. For a policy π, policy

evaluation means computing V π(s) for all states s, where V π(s) is expected
utility of starting in state s when following π :

V π(s) =
∑
s′

T
(
s, π(s), s′

) [
R
(
s, π(s), s′

)
+ γV π (s′)]

Define the policy at iteration i as πi. since we are fixing a single action for
each state, we no longer need the max operator which effectively leaves us
with a system of |S| equations generated by the above rule. Each V πi(s) can
then be computed by simply solving this system. Alternatively, we can also
compute V πi(s) by using the following update rule until convergence, just like
in value iteration:

V πi
k+1(s)←

∑
s′

T
(
s, πi(s), s′

) [
R
(
s, πi(s), s′

)
+ γV πi

k

(
s′
)]

However, this second method is typically slower in practice.
• Once we’ve evaluated the current policy, use policy improvement to generate

a better policy. Policy improvement uses policy extraction on the values

19

CS188: Artificial Intelligence Kelvin Lee

of states generated by policy evaluation to generate this new and improved
policy:

πi+1(s) = argmax
a

∑
s′

T
(
s, a, s′

) [
R
(
s, a, s′

)
+ γV πi

(
s′
)]

If πi+1 = πi, the algorithm has converged, and we can conclude that πi+1 =
πi = π∗

§4.7 Summary
• Value iteration: Used for computing the optimal values of states, by iterative

updates until convergence.

• Policy evaluation: Used for computing the values of states under a specific
policy.

• Policy extraction: Used for determining a policy given some state value function.
If the state values are optimal, this policy will be optimal. This method is used
after running value iteration, to compute an optimal policy from the optimal
state values; or as a subroutine in policy iteration, to compute the best policy for
the currently estimated state values.

• Policy iteration: A technique that encapsulates both policy evaluation and policy
extraction and is used for iterative convergence to an optimal policy. It tends to
outperform value iteration, by virtue of the fact that policies usually converge
much faster than the values of states.

20

CS188: Artificial Intelligence Kelvin Lee

§5 Reinforcement Learning
Basic idea:

• Receive feedback in the form of rewards

• Agent’s utility is defined by the reward function

• Must learn to act so as to maximize expected rewards

• All learning is based on observed samples of outcomes

• Still assumes a MDP(Online/Offline)

• Still looking for a policy

• New twist: don’t know T or R

§5.1 Model-Based Learning
• generates an approximation of the transition function T̂ (s, a, s′) by counting and

normalization (to be interpreted as probabilities)

• generates a policy πexploit by running value or policy iteration with our current
models for T̂ and R̂ and use πexploit for exploitation

• traverses the MDP taking actions seeking reward maximization rather than seeking
learning

• can be expensive to maintain counts

Hence, we need model-free learning to avoid counts and the memory overhead required
by model-based learning.

§5.2 Model-Free Learning
§5.2.1 Algorithms Categories:

• Passive Reinforcement Learning: agent is given a policy to follow and learns
the value of states under that policy as it experiences episodes, similar to policy
evaluation for MDPs except that T and R are unknown.

• Active Reinforcement Learning: agent uses the feedback received to iteratively
update policy while learning until eventually determining the optimal policy after
sufficient exploration.

§5.2.2 Algorithms:

• Direct Evaluation (passive)

• Temporal Difference Learning (passive)

• Q-Learning (active)

• Approximate Q-Learning (active)

21

CS188: Artificial Intelligence Kelvin Lee

§5.2.3 Direct Evaluation

Pros:

• easy to understand

• doesn’t require any knowledge of T,R

• eventually computes the correct average values, using just sample transitions

Cons:

• wastes information about state connections

• each state must be learned separately, so it takes a long time to learn

§5.2.4 Temporal Difference Learning

Basic Ideas:

• learning from every experience, rather than simply keeping track of total
rewards and number of times states are visited and learning at the end as direct
evaluation does

• policy still fixed, still doing evaluation

• converges to learning true state values much faster with fewer episodes than direct
evaluation

• move values toward value of whatever successor occurs: running average

Definition 5.1 (TD Learning)

Sample of V(s) : sample = R (s, π(s), s′) + γV π (s′)
Update to V(s) : V π(s)← (1− α)V π(s) + (α) sample
Same update: V π(s)← V π(s) + α (sample− V π(s))

Cons:

• less stable and may converge to the wrong solution

• can’t turn values into (new) policy

22

CS188: Artificial Intelligence Kelvin Lee

§5.2.5 Q-Learning

Major issue with direct evaluation and TD learning: optimal policy requires knowledge
of the q-values of states.

To compute q-values from the values we have, we require a transition function and
reward function as dictated by the Bellman equation.

Q∗(s, a) =
∑
s′

T
(
s, a, s′

) [
R
(
s, a, s′

)
+ γV ∗

(
s′
)]

Basic Idea:

• learn the q-values of states directly, bypassing the need to ever know any values,
transition functions, or reward functions

• uses Q-Value iteration:

Definition 5.2 (Q-Value Iteration)

Qk+1(s, a)←
∑
s′

T
(
s, a, s′

) [
R
(
s, a, s′

)
+ γmax

a′
Qk
(
s′, a′

)]

• derived the same way as TD learning, but by acquiring q-value samples:

Definition 5.3 (Q-Learning)

sample = R
(
s, a, s′

)
+ γmax

a′
Q
(
s′, a′

)
and incoporating them into an exponential moving average.

Q(s, a)← (1− α)Q(s, a) + α · sample

• converges to optimal policy even acting suboptimally, i.e. off-policy learning

Caveats:

• need to explore enough

• the learning rate α has to be small enough eventually but not decrease it too quickly

• in the limit, it doesn’t matter what actions are selected

• impossible to visit all states and store all Q-values

23

CS188: Artificial Intelligence Kelvin Lee

§5.2.6 Approximate Q-Learning

Basic Ideas:

• feature-based representation of states, which represents each state as a vector
known as a feature vector.

• write a q function (or value function) for any state using a few weights:

Definition 5.4 (Linear Value Functions)

V (s) = w1f1(s) + w2f2(s) + . . .+ wnfn(s)
Q(s, a) = w1f1(s, a) + w2f2(s, a) + . . .+ wnfn(s, a)

Advantage: experience is summed up in a few powerful numbers
Disadvantage: states may share features but actually be very different in value!

• Q-learning with linear Q-functions:

Definition 5.5 (Approximate Q-Learning)

transition = (s, a, r, s′)
difference = [r + γmaxa′ Q (s′, a′)]−Q(s, a)

Q(s, a)← Q(s, a) + α[difference] Exact Q’s

wi ← wi + α[difference]fi(s, a) Approximate Q’s

• Intuitive interpretation: Adjust weights of active features. E.g., if something
unexpectedly bad happens, blame the features that were on: disprefer all states
with that state’s features Formal justification: online least squares

§5.3 Exploration and Exploitation
§5.3.1 ε-Greedy Policies

• acts randomly and explores with probability ε

• follows current established policy and exploit with probability (1− ε)

• large value for ε =⇒ the agent will still behave mostly randomly

• a small value for ε =⇒ the agent will explore infrequently =⇒ learn the optimal
policy very slowly

• hence, ε must be manually tuned and lowered over time

24

CS188: Artificial Intelligence Kelvin Lee

§5.3.2 Exploration Functions

• avoids the trouble of tuning ε manually

• use a modified q-value iteration update to give some preference to visiting less-visited
states. The modified update is as follows:

Q(s, a)← (1− α)Q(s, a) + α ·
[
R
(
s, a, s′

)
+ γmax

a′
f
(
s′, a′

)]

• there exists some degree of flexibility in designing an exploration function, but a
common choice is to use

f(s, a) = Q(s, a) + k

N(s, a)

with k being some predetermined value, and N(s, a) denoting the number of times
q-state (s, a) has been visited.

§5.4 Summary
Reinforcement learning has an underlying MDP, and the goal of reinforcement learning
is to solve this MDP by deriving an optimal policy. The difference is the lack of
knowledge of the transition function T and the reward function R for the
underlying MDP. As a result, agents must learn the optimal policy through online
trial-by-error rather than pure offline computation. There are many ways to do this:

• Model-based learning: Runs computation to estimate the values of the transition
function T and the reward function R and uses MDP-solving methods like value or
policy iteration with these estimates.

• Model-free learning: Avoids estimation of T and R, instead using other methods
to directly estimate the values or q-values of states.

– Direct evaluation: follows a policy π and counts total rewards reaped from
each state and the total number of times each state is visited. If enough
samples are taken, this converges to the true values of states under π, albeit
being slow and wasting information about the transitions between
states.

– Temporal difference learning: follows a policy π and uses an exponential
moving average with sampled values until convergence to the true values of
states under π. TD learning and direct evaluation are examples of on-policy
learning, which learn the values for a specific policy before deciding whether
that policy is suboptimal and needs to be updated.

– Q-Learning: learns the optimal policy directly through trial and error
with q-value iteration updates. This an example of off-policy learning,
which learns an optimal policy even when taking suboptimal actions.

– Approximate Q-Learning: does the same thing as Q-learning but uses a
feature-based representation for states to generalize learning.

25

CS188: Artificial Intelligence Kelvin Lee

§6 Probability
§6.1 Probabilistic Inference

Definition 6.1 (Probabilistic Inference)
Probabilistic inference is the task of deriving a desired probability from other
known probabilities (e.g. conditional from joint).

• Given joint PDF, we can trivially perform compute any desired probablity distri-
bution P (Q1 . . . Qk | e1 . . . ek) using inference by enumeration, which includes
three types of variables:

1. Query variables Qi: unknown values
2. Evidence variables ei: observed variables with known values
3. Hidden variables: values present in the overall joint distribution but not in

the distribution we are currently trying to compute.
In this procedure, we collect all the rows consistent with the observed evidence
variables, sum out all hidden variables, then normalize the table so that it is a
probability distribution (i.e. values sum to 1).

Theorem 6.2 (Product Rule)

P (y)P (x | y) = P (x, y)

Theorem 6.3 (Chain Rule)

P (x1, x2, . . . xn) =
∏
i

P (xi | x1 . . . xi−1)

Theorem 6.4 (Bayes’ Rule)

P (x | y) = P (y | x)P (x)
P (y)

26

CS188: Artificial Intelligence Kelvin Lee

Theorem 6.5 (Conditional Independence)
X is conditionally independent of Y given Z

X ⊥⊥ Y | Z

if and only if:
∀x, y, z : P (x, y | z) = P (x | z)P (y | z)

or, equivalently, if and only if

∀x, y, z : P (x | z, y) = P (x | z)

§6.2 Bayes’ Nets (Representation)

Definition 6.6 (Bayes’ Nets)
Bayes’ nets is a technique for describing complex joint distributions (models) using
simple, local distributions (conditional probabilities)

Basic Ideas:
• a set of nodes, one per variable X

• directed, acyclic graph

• a conditional distribution (CPT) for each node

• each node is conditionally independent of all its ancestor nodes in the graph, given
all of its parents

• given all CPTs for a graph, we can calculate the probability of a given assignment
using chain rule:

P (x1, x2, . . . , xn) =
n∏
i=1

P (xi|parents(Xi))

§6.3 Bayes’ Nets (Inference)

Definition 6.7 (Inference)
Inference is the process of calculating the joint PDF for some set of query variables
based on some set of observed variables.

• can be solved by forming joint PDF and using inference by enumeration, which
requires creation of and iteration over an exponentially large table

• alternate approach: eliminate variables one by one:
1. join (multiply together) all factors involving X.
2. Sum out X.

Definition 6.8 (factor)
A factor is an unnormalized probability.

27

CS188: Artificial Intelligence Kelvin Lee

§6.3.1 Variable Elimination

Basic Ideas:

• eliminate by joining and summing over the variables (marginalizing)

• NP-hard, but usually much faster than inference by enumeration

• order of elimination affects efficiency (eliminate leaf nodes first usually)

§6.4 Bayes’ Nets (Sampling)
Basic Ideas:

• repeated simulation

• draw N samples from a sampling distribution S

• compute an approximate posterior probability

• show this converges to the true probability P

Why sample?

• Learning: get samples from an unknown distribution

• Inference: getting a sample is faster than computation (e.g. with variable elimina-
tion)

§6.4.1 Prior Sampling

• This process generates samples with probability:

SPS (x1 . . . xn) =
n∏
i=1

P (xi | Parents (Xi)) = P (x1 . . . xn)

• Let the number of samples of an event be NPS (x1 . . . xn). Then

lim
N→∞

P̂ (x1, . . . , xn) = lim
N→∞

NPS (x1, . . . , xn) /N

= SPS (x1, . . . , xn)
= P (x1 . . . xn)

i.e., the sampling procedure is consistent.

Remark 6.9. However, this method may require the generation of a very large number of
samples in order to perform analysis of unlikely scenarios.

28

CS188: Artificial Intelligence Kelvin Lee

§6.4.2 Rejection Sampling

• Modified prior sampling with sample rejections

• Reject samples that are inconsistent with evidence

Remark 6.10. If evidence is unlikely, we will end up rejecting lots of samples.

§6.4.3 Likelihood Sampling

• Set all variables equal to the evidence in our query

• Weight by probability of evidence given parents to make sampling distribution
consistent

• Sampling distribution if z sampled and e fixed evidence

SWS(z, e) =
l∏

i=1
P (zi | Parents (Zi))

with weights

w(z, e) =
m∏
i=1

P (ei | Parents (Ei))

Together, weighted sampling distribution is consistent

SWS(z, e) · w(z, e) =
l∏

i=1
P (zi | Parents (zi))

m∏
i=1

P (ei | Parents (ei))

= P (z, e)

29

CS188: Artificial Intelligence Kelvin Lee

• Take evidence into account

• Most samples will reflect the state of the world suggested by the evidence

Remark 6.11. Evidence influences the choice of downstream variables, but not upstream
ones. Weights obtained in likelihood weighting can sometimes be very small. Sum of weights
over all samples is indicative of how many ”effective” samples were obtained, so we want
high weight.

§6.4.4 Gibbs Sampling

• 1. Fix evidence R = +r
2. Initialize other variables randomly
3. Repeat:

Choose a non-evidence variable X and resample X from

P (X|all other variables)

• Later samples will eventually converge to the correct distribution

• Both upstream and downstream variables condition on evidence.

§6.5 D-Separation
Basic Ideas:

• Two nodes A and B are guaranteed to be independent according to the if there
exist no active paths between them

• If there exists at least one active path, no independence guarantees can be made

§6.6 Summary
Bayes’ Nets is a powerful representation of joint probability distributions. Its topological
structure encodes independence and conditional independence relationships that can be
used to model arbitrary distributions to perform inference and sampling.

30

CS188: Artificial Intelligence Kelvin Lee

§7 Markov Models
§7.1 Hidden Markov Models
Basic Ideas

• Markov Models with observations as hidden variables

• Contains state variables and evidence variables

• Represented compactly with initial distribution, transition model, and sensor model

Definition 7.1 (Belief Distribution)
The belief distribution at time t with all evidence E1, . . . , Et observed up to date
is defined as

B (Xt) = P (Xt | e1, . . . , et)

Similarly, we denote B′ (Xt) as:

B′ (Xt) = P (Xt | e1, . . . , et−1)

Notation 7.2 (e1:t). ei represents evidence observed at timestep i,

e1:t = e1, . . . , et

Definition 7.3 (Stationary Distribution)
Stationary distribution is the distribution that remains unchanged as time pro-
gresses, i.e.,

P (Xt+1) = P (Xt)

§7.1.1 Mini-Forward Algorithm

P (Xt+1) =
∑
xt

P (Xt+1 | xt)P (xt)

§7.1.2 The Forward Algorithm

Time Elapse Update

P (Xt+1 | e1:t) =
∑
xt

P (Xt+1, xt | e1:t)

=
∑
xt

P (Xt+1 | xt, e1:t)P (xt | e1:t)

=
∑
xt

P (Xt+1 | xt)P (xt | e1:t)

which can be simplified to

B′ (Xt+1) =
∑
xt

P (Xt+1 | xt)B (xt)

31

CS188: Artificial Intelligence Kelvin Lee

• As time passes, uncertainty accumulates

Observation Update

• Assume we have current belief P (X|previous evidence):

B′ (Xt+1) = P (Xt+1 | e1:t)

Then, after evidence comes in:

P (Xt+1 | e1:t+1) = P (Xt+1, et+1 | e1:t) /P (et+1 | e1:t)
∝Xt+1 P (Xt+1, et+1 | e1:t)
= P (et+1 | e1:t, Xt+1)P (Xt+1 | e1:t)
= P (et+1 | Xt+1)P (Xt+1 | e1:t)

which can be simplified to

B (Xt+1) ∝Xt+1 P (et+1 | Xt+1)B′ (Xt+1)

• Beliefs reweighted by likelihood of evidence

• Have to renormalize

• Uncertainty decreases as we get more observations

B(X) ∝ P (e | X)B′(X)

§7.1.3 Viterbi Algorithm

• Solves for the most likely sequence of hidden states given the observed variables so
far

– Compute probability of best path to (state, time) tuple given evidence observed
so far

– Find terminal state on path with highest probability, traverse backward to
return path

• Want to find maximum likelihood estimate of the sequence of hidden states:

arg max
x1,...,xN

P (x1:N , e1:N)

• Dynamic programming:
– Define mt [xt] = maxx1:t−1 P (x1:t, e1:t) , the maximum probability of a path

starting at any x0 and the evidence seen so far to a given xt at time t.

mt [xt] = max
x1:t−1

P (et | xt)P (xt | xt−1)P (x1:t−1, e1:t−1)

= P (et | xt) max
xt−1

P (xt | xt−1) max
x1:t−2

P (x1:t−1, e1:t−1)

= P (et | xt) max
xt−1

P (xt | xt−1)mt−1 [xt−1]

Theorem 7.4 (Viterbi Algorithm)

mt [xt] = max
x1:t−1

P (x1:t, e1:t) = P (et | xt) max
xt−1

P (xt | xt−1)mt−1 [xt−1]

32

CS188: Artificial Intelligence Kelvin Lee

§7.2 Particle Filtering
Basic Ideas:

• simulate motion of a set of particles through a state graph to approximate belief
distribution

• stores a list of particle positions instead of a full probability table

§7.2.1 Particle Filtering Simulation

• Particle initialization by sampling particles randomly, uniformly, or from some
initial distribution

• Similar to forward algorithm, with a time elapse update followed by an observation
update at each timestep:

– Time Elapse Update: Update the value of each particle according to
transition model Pr (Ti+1 | ti).

– Observation Update: Use sensor model P (Fi | Ti) to weight a particle in
state ti with sensor reading fi, assign a weight of P (fi | ti) . The algorithm is
as follows:

1. Calculate the weights of all particles as described above.
2. Calculate the total weight for each state.
3. If the sum of all weights across all states is 0 , reinitialize all particles.
4. Else, normalize the distribution of total weights over states and resample

your list of particles from this distribution.

Remark 7.5. Note the similarity of the observation update to likelihood weighting, both
downweight samples based on evidence.

§7.3 Summary
• Markov models: encode time-dependent random variables that possess the

Markov property. We can compute a belief distribution at any timestep of our
choice for a Markov model using probabilistic inference with the mini-forward
algorithm.

• Hidden Markov Models: Markov models with the additional property that new
evidence which can affect our belief distribution can be observed at each timestep.
To compute the belief distribution at any given timestep with Hidden Markov
Models, we use the forward algorithm.

Remark 7.6. Sometimes, running exact inference on these models can be too compu-
tationally expensive, in which case particle filtering is a better method to approximate
inference.

33

CS188: Artificial Intelligence Kelvin Lee

§8 Decision Networks
Basic Ideas:

• Bayes nets with nodes for utility and actions

• Model effect of various actions on utilities based on an overarching graphical
probabilistic model

• Chance nodes(ovals): each outcome in a chance node has an associated proba-
bility, which can be determined by running inference on the underlying Bayes’ net
it belongs to

• Action nodes(rectangles): nodes representing a choice between any of a number
of actions which we have the power to choose from

• Utility nodes(diamonds): output a utility based on the values taken on by their
parents

• Expected utility of taking an action A = a given evidence E = e and n chance
nodes:

EU(a | e) =
∑

x1,...,xn

P (x1, . . . , xn | e)U (a, x1, . . . , xn)

where each xi represents a value that the ith chance node can take on

Definition 8.1 (Maximum Expected Utility (MEU))
Maximum Expected Utility is the expected utility of the action that has
the highest expected utility:

MEU(E = e) = max
a
EU(A = a | E = e)

§8.1 Value of Perfect Information

Definition 8.2 (Value of Perfect Information (VPI))
Value of Perfect Information mathematically quantifies the amount an agent’s
maximum expected utility is expected to increase if it observes some new evidence.

MEU(e) = max
a

∑
s

P (s | e)U(s, a)

MEU
(
e, e′

)
= max

a

∑
s

P
(
s | e, e′

)
U(s, a)

MEU
(
e, E′

)
=
∑
e′

P
(
e′ | e

)
MEU

(
e, e′

)
V PI

(
E′ | e

)
= MEU

(
e, E′

)
−MEU(e)

Properties:

•• Nonnegativity:
∀E′, e : V PI(E′|e) ≥ 0

Observing new information =⇒ more informed decision, so MEU can only increase
(or stay the same if the information is irrelevant

34

CS188: Artificial Intelligence Kelvin Lee

• Nonadditivity:

VPI (Ej , Ek | e) 6= VPI (Ej | e) + VPI (Ek | e)

VPI of observing two new evidence variables is equivalent to observing one, incorpo-
rating it into our current evidence, then observing the other. This is encapsulated
by the order-independence property of VPI, described more below.

• Order-independence:

VPI (Ej , Ek | e) = VPI (Ej | e) + VPI (Ek | e, Ej) = VPI (Ek | e) + VPI (Ej | e, Ek)

Observing multiple new evidences yields the same gain in maximum expected utility
regardless of the order of observation.

35

CS188: Artificial Intelligence Kelvin Lee

§9 Machine Learning
Algorithms:

• Supervised learning algorithms

• Unsupervised learning algorithms

Dataset types:

• Training data: used to generate a model mapping inputs to outputs

• Validation data (hold-out/development data): used to measure model’s perfor-
mance by making predictions on inputs and generating an accuracy score

• Test set: portion of unseen data and is the equivalent of a ”final exam” to gauge
performance on real-world data

• Hyperparameters: model-specific values

§9.1 Näıve Bayes
• A a specific type of model for solving classification problems

• Assume all features are independent effects of the label

P (Y, F1 . . . Fn) = P (Y)
∏
i

P (Fi | Y)

prediction (f1, · · · fn) = argmax
y

P (Y = y | F1 = f1, . . . FN = fn)

= argmax
y

P (Y = y, F1 = f1, . . . FN = fn)

= argmax
y

P (Y = y)
n∏
i=1

P (Fi = fi | Y = y)

36

CS188: Artificial Intelligence Kelvin Lee

§9.2 Parameter Estimation
• Estimating the distribution of a random variable parametrized by unknown θ

• Learn the most likely value of θ given sample

§9.2.1 Maximum Likelihood Estimation

• Maximize the likelihood of the data

• Each identically distributed sample xi is conditionally independent of the others
given θ (i.i.d)

Definition 9.1 (Likelihood function)

L (θ) = Pθ (x1, . . . , xN)

Since the samples xi are i.i.d., we rewrite the above as:

L (θ) =
N∏
i=1

Pθ (xi)

• Relative frequencies are the maximum likelihood estimates

θML = arg max
θ

P (X | θ)

= arg max
θ

∏
i

Pθ (Xi)
−→ PML(x) = count(x)

total samples

• The maximum likelihood estimate for θ is a value that satisfies
∂

∂θ
L (θML) = 0

§9.3 Laplace Smoothing
• Mitigates the problem of overfitting (doesn’t generalize well to previously unseen

data)

• Laplace smoothing with strength k assumes having seen k extra of each outcome

• For a given sample the MLE for an outcome x that can take on |X| different values
from a sample of size N is

PMLE(x) = count(x)
N

then the Laplace estimate with strength k is

Theorem 9.2 (Laplace Smoothing)
General:

PLAP,k(x) = count(x) + k

N + k|X|
Conditional:

PLAP,k(x | y) = count(x, y) + k

count(y) + k|X|

37

CS188: Artificial Intelligence Kelvin Lee

• Special cases (k = 0, k =∞):

PLAP,0(x) = PMLE(x)

PLAP,∞(x) = 1
|X|

• k is an hyperparameter typically determined by trial-and-error

§9.4 Perceptron

• Inputs are feature values

• Each feature has a weight

• Sum is the activation

activationw(x) =
∑
i

wi · fi(x) = w · f(x)

w · f(x) = ‖w‖‖f(x)‖ cos(θ)

classify(x) =
{

+ if cos(θ) > 0
− if cos(θ) < 0

classify(x) =
{

+ if θ < π
2 (i.e. when θ is less than 90◦, or acute)

− if θ > π
2 (i.e. when θ is greater than 90◦, or obtuse)

• Decision boundary(blue dotted line) orthogonal to w.

38

CS188: Artificial Intelligence Kelvin Lee

§9.4.1 Binary Decision Rule

Weight Updates:

• Start with w = 0

• For each training instance:
Classify by dot product:

y =
{

+1 if w · f(x) ≥ 0
−1 if w · f(x) < 0

• If correct (y = y∗), no change.

• If wrong: (add if y∗ = 1, subtract if y∗ = −1)

w = w± y∗ · f

§9.4.2 Multiclass Decision Rule

• A weight vector wy for each class

• Activation of a class y:
wy · f(x)

• Prediction highest score(activation) wins

y = arg max
y

wy · f(x)

39

CS188: Artificial Intelligence Kelvin Lee

Weight Updates:

• Start with all weights = 0

• Pick up training examples one by one

• Predict with current weights

y = arg max
y

wy · f(x)

• If correct, no change

• If wrong: lower score of wrong answer, raise score of right answer

wy = wy − f(x)
wy∗ = wy∗ + f(x)

§9.4.3 Properties of Perceptrons

• Separability: true if some parameters get the training set perfectly correct

• Convergence: if the training is separable, perceptron will eventually converge
(binary case)

• Mistake Bound: the maximum number of mistakes (binary case) related to the
margin or degree of separability

mistakes <
k

δ2

§9.4.4 Problems with Perceptrons

• Noise: if the data isn’t separable, weights might thrash
– Averaging weight vectors over time can help (averaged perceptron)

• Mediocre generalization: finds a ”barely” separating solution

• Overtraining: test / held-out accuracy usually rises, then falls

40

CS188: Artificial Intelligence Kelvin Lee

§10 Neural Networks
§10.1 Motivation
§10.1.1 Multi-layer Perceptron

• Can express a much wider set of functions by increasing complexity

• Goal: select the best set of weights to parameterize the network

Theorem 10.1 (Universal Approximation Theorem)
A two-layer neural network with a sufficient number of neurons can approximate
any continuous function to any desired accuracy.

§10.1.2 Accuracy

Binary Case:
• The accuracy of the binary perceptron after making m predictions can be expressed

as:
lacc(w) = 1

m

m∑
i=1

(
sgn

(
w · f

(
x(i)

))
== y(i)

)
where sgn(x) represents the indicator function, which evaluates to 0 when x is
negative, and 1 when x is positive

Multiclass Case:
• Want more expressive output than a binary label

• It becomes useful to produce a probability for each of the N classes

• To do so, transition from storing a weight vector to storing a weight vector for each
class j

• Estimate probabilities with the softmax function σ(x), which defines the proba-
bility of classifying x(i) to class j as:

Definition 10.2 (Softmax Function σ(x))

σ
(
x(i)

)
j

= ef(x(i))T
wj∑N

k=1 e
f(x(i))T

wk

= P
(
y(i) = j | x(i)

)

41

CS188: Artificial Intelligence Kelvin Lee

• Likelihood for weights:

`(w) =
m∏
i=1

P
(
y(i) | x(i);w

)

• Want to find the set of weights that maximizes this quantity

• Identical to finding the maximum of the log-likelihood expression (monotonic):

``(w) = log
m∏
i=1

P
(
y(i) | x(i);w

)
=

m∑
i=1

logP
(
y(i) | x(i);w

)

§10.1.3 Multi-layer Feedforward Neural Network

• Non-linearities make network more expressive

• Common activation functions:
– Sigmoid function

– Rectified Linear Unit (ReLU)

42

CS188: Artificial Intelligence Kelvin Lee

§10.1.4 Gradient Ascent/Descent

• Improve accuracy by optimizing weights via maximizing log-likelihood function

• To maximize log-likelihood function, the gradient vector gives the local direction
of steepest ascent (or descent if reverse the vector)

∇w``(w) =
[
∂``(w)
∂w1

, . . . ,
∂``(w)
∂wn

]

Definition 10.3 (Gradient Ascent)
Gradient ascent is a greedy algorithm that calculates this gradient for the
current weight values, then updates the parameters along the direction of the
gradient, scaled by a step size, α, the learning rate.

•• Algorithm:
Initialize weights w For i = 0, 1, 2, . . .

w ← w + α∇w``(w)

• If instead minimizing a function f, the update should subtract the scaled gradient

w← w− α∇wf(w)

which gives the gradient descent algorithm

• Crude rule of thumb: update changes w about 0.1− 1%

§10.2 Optimization
• Goal: maximize

``(w) = log
m∏
i=1

P
(
y(i) | x(i); w

)
=

m∑
i=1

logP
(
y(i) | x(i); w

)

• Alternative: Batch Gradient Ascent

43

CS188: Artificial Intelligence Kelvin Lee

• At each iteration, use all data points to compute gradients for the parameters w,
update the parameters, and repeat until convergence (local maximum)

• Slow due to large datasets, thus rarely used

• Instead, use mini-batching.

Definition 10.4 (Mini-batching)
Mini-batching rotates through randomly sampled batches of k data points at a
time, compute gradients of the loss function using the selected batch (sum over
the k datapoints in the batch, instead of all m datapoints in the training set)

• Quicker computation of each gradient update

• The limit where batch size k = 1 is known as stochastic gradient ascent(SGA)

Remark 10.5. Neural networks are powerful (and universal!) function approximators,
but can be difficult to design and train. The following are some examples of ongoing
research in deep learning focusing on neural network design:

1. Network Architectures: designing a network (choosing activation functions, num-
ber of layers, etc.) that’s a good fit for a particular problem

2. Learning Algorithms: how to find parameters that achieve a low value of the loss
function, a difficult problem since gradient descent is a greedy algorithm and neural
nets can have many local optima

3. Generalization and Transfer Learning: since neural nets have many parameters,
it’s often easy to overfit training data - how do you guarantee that they also have
low loss on testing data you haven’t seen before?

§10.3 Backpropagation
• Used to efficiently calculate the gradients for each parameter in a neural network

Theorem 10.6 (Chain Rule (Calculus))

∂f

∂ti
= ∂f

x1
· ∂x1
∂ti

+ ∂f

x2
· ∂x2
∂ti

+ . . .+ ∂f

xn
· ∂xn
∂ti

• To compute the gradient of a given node ti with respect to the output z, take a
sum of children (ti) terms

• The goal during backpropagation is to determine the gradient of output with respect
to each of the inputs

44

	Introduction
	Agents
	State Spaces and Search Problems
	Searching strategies
	Depth-First Search
	Breadth-First Search
	Uniform Cost Search
	Greedy Search
	A* Search
	Admissibility and Consistency

	Constraint Satisfaction Problems
	Backtracking Search
	Filtering
	Arc Consistency
	K-Consistency

	Ordering
	Minimum Remaining Value (MRV)
	Least Constraining Value (LCV)

	Local Search

	Game Trees
	Alpha-Beta Pruning
	Evaluation Function
	Expectimax
	Minimax vs Expectimax
	Utilities

	Non-deterministic Search
	Markov Decision Processes
	Markovianess
	The Bellman Equation
	Value Iteration
	Policy Extraction
	Policy Iteration
	Summary

	Reinforcement Learning
	Model-Based Learning
	Model-Free Learning
	Algorithms Categories:
	Algorithms:
	Direct Evaluation
	Temporal Difference Learning
	Q-Learning
	Approximate Q-Learning

	Exploration and Exploitation
	-Greedy Policies
	Exploration Functions

	Summary

	Probability
	Probabilistic Inference
	Bayes' Nets (Representation)
	Bayes' Nets (Inference)
	Variable Elimination

	Bayes' Nets (Sampling)
	Prior Sampling
	Rejection Sampling
	Likelihood Sampling
	Gibbs Sampling

	D-Separation
	Summary

	Markov Models
	Hidden Markov Models
	Mini-Forward Algorithm
	The Forward Algorithm
	Viterbi Algorithm

	Particle Filtering
	Particle Filtering Simulation

	Summary

	Decision Networks
	Value of Perfect Information

	Machine Learning
	Naïve Bayes
	Parameter Estimation
	Maximum Likelihood Estimation

	Laplace Smoothing
	Perceptron
	Binary Decision Rule
	Multiclass Decision Rule
	Properties of Perceptrons
	Problems with Perceptrons

	Neural Networks
	Motivation
	Multi-layer Perceptron
	Accuracy
	Multi-layer Feedforward Neural Network
	Gradient Ascent/Descent

	Optimization
	Backpropagation

