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1 Mathematical Notations

1.1 Sets

• {}: empty set.

• A ⊂ B: A is a proper subset of B, i.e. A is strictly contained in B.

• A ⊆ B : A is a subset of B, i.e. A is strictly contained in B.

• |A| : cardinality of A, or the size of A.

• A ∪B : the union of A and B.

• A ∩B : the intersection of A and B.

• A\B : relative complement, elements in A but not in B.

• A×B : Cartesian product, {(a, b) | a ∈ A, b ∈ B}.

• P(S): the set of all subsets of S, also called power set of S.

1.2 Commonly used sets

• N : the set of all natural numbers: {0, 1, 2, 3, . . .}.

• Z : the set of all integer numbers: {. . . ,−2,−1, 0, 1, 2, . . .}.

• Q : the set of all rational numbers:
{
a
b | a, b ∈ Z, b 6= 0

}
.

• R : the set of all real numbers.

• C : the set of all complex numbers.

1.3 Universal and existential quantifiers

• ∀ : for all.

• ∃ : there exists.
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2 Proofs

2.1 Techniques

• Direct Proof: show P =⇒ Q where P is a given fact and Q is the claim.

• Contrapositive: prove ¬Q =⇒ ¬P if need to show P ⇒ Q,

• Contradiction: to prove claim P , assume ¬P is true and arrive at R ∧ ¬R, which is a
contradiction. Hence P is true.

• By cases: prove P in separate cases, if all cases are true, then P must be true.

• Induction: consists of three main components

1. Base case: show that P (0) is true.

2. Induction Hypothesis: Assume P (k) is true for any k ≥ 0.

3. Inductive Step: prove that P (k + 1) is true by showing P (k) =⇒ P (k + 1).

5
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3 Graph Theory

3.1 Basic Terminology

Definition 1 (Graph). A graph G is defined by a set of vertices V and a set of edges E. We
write G = (V,E).

• Directed graph: with directed edges, i.e., (u, v) 6= (v, u).

• Undirected graph: with undirected edges, i.e., (u, v) = (v, u).

Definition 2 (Degree). The degree of a vertex v is defined by the number of edges that are
incident to v. A vertex with degree 0 is an isolated vertex.

Definition 3 (In-degree). The in-degree of a vertex v is the number of ingoing edges to v.

Definition 4 (Out-degree). The out-degree of a vertex v is the number of outgoing edges from
v.

Theorem 5 (Handshaking). Let G = (V,E) be an undirected graph with m edges. Then∑
v∈V

deg(v) = 2m

(This applies even if multiple edges and loops are present.)

Theorem 6. An undirected graph has an even number of vertices of odd degree.

Proof. Let V1 and V2 be the set of vertices of even degree and the set of vertices of odd degree,
respectively, in an undirected graph G = (V,E) with m edges. Then

2m =
∑
v∈V

deg(v) =
∑
v∈V1

deg(v) +
∑
v∈V2

deg(v)

Because deg(v) is even for v ∈ V1, the first term in the right-hand side of the last equality is
even. Furthermore, the sum of the two terms on the right-hand side of the last equality is even,
because this sum is 2m. Hence, the second term in the sum is also even. Because all the terms
in this sum are odd, there must be an even number of such terms. Thus, there are an even
number of vertices of odd degree.

Theorem 7 (Euler’s Theorem). An undirected graph G = (V,E) has an Eulerian tour iff G
is even degree, and connected (except possibly for isolated vertices).

Proof. See notes.

6
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Definition 8 (Complete graph). A graph G is called complete if each pair of its vertices is
connected by an edge. We use Kn to denote a complete graph on n vertices.

Figure 1: Examples of complete graphs.

3.2 Bipartite Graphs

Definition 9 (Bipartite). A simple graph G is called bipartite if its vertex set V can be parti-
tioned into two disjoint sets V1 and V2 such that every edge in the graph connects a vertex in
V1 and a vertex in V2 (so that no edge in G connects either two vertices in V1 or two vertices in
V2). We use Kn,m to denote a complete bipartite graph partitioned into n and m vertices.

Figure 2: Examples of complete bipartite graphs.

Theorem 10. A simple graph is bipartite if and only if it is possible to assign one of two
different colors to each vertex of the graph so that no two adjacent vertices are assigned
the same color.

Proof. First, suppose that G = (V,E) is a bipartite simple graph. Then V = V1 ∪ V2, where
V1 and V2 are disjoint sets and every edge in E connects a vertex in V1 and a vertex in V2. If
we assign one color to each vertex in V1 and a second color to each vertex in V2, then no two
adjacent vertices are assigned the same color.

Now suppose that it is possible to assign colors to the vertices of the graph using just two
colors so that no two adjacent vertices are assigned the same color. Let V1 be the set of vertices
assigned one color and V2 be the set of vertices assigned the other color. Then, V1 and V2 are
disjoint and V = V1 ∪ V2. Furthermore, every edge connects a vertex in V1 and a vertex in
V2 because no two adjacent vertices are either both in V1 or both in V2. Consequently, G is
bipartite.

7
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3.3 Connectivity

Definition 11 (Connected). A graph is said to be connected if there is a path between any two
distinct vertices.

• A connected/disconnected graph always consists collection of connected compo-
nents, i.e., sets V1, ..., Vk of vertices, such that all vertices in a set Vi are connected.

3.4 Planarity

A graph is called planar if it can be drawn in the plane without any edges crossing (where a
crossing of edges is the intersection of the lines or arcs representing them at a point other than
their common endpoint).

Figure 3: K4 is planar because it can be drawn without crossing edges.

3.4.1 Euler’s Formula

Theorem 12 (Euler’s formula). For every connected planar graph with v vertices, f faces,
and e edges,

v + f = e+ 2.

Proof. By induction on e. It clearly holds when e = 0, and v = f = 1. Now take any connected
planar graph. We consider two cases:

1. If it is a tree, then f = 1 (drawing a tree on the plane does not subdivide the plane), and
e = v − 1 (check homework).

2. If it is not a tree, find a cycle and delete any edge of the cycle. This amounts to reducing
both e and f by one. By induction the formula is true in the smaller graph, and so it
must be true in the original one.

Question. What happens when the graph is disconnected? How does the number of connected
components enter the formula?

• Take a planar graph with f faces, and consider one face. It has a number of sides, that
is, edges that bound it clockwise.

• Note that an edge may be counted twice if it has the same face on both sides (such edges
are called bridges).

• Let si be the number of sides of face i. If we add the si’s we are going to get 2e, because
each edge is counted twice.

8
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• We conclude that, in any planar graph,

f∑
i=1

si = 2e

• Notice that, since we don’t allow parallel edges between the same two nodes, and if we
assume that there are at least two edges (so there are at least three vertices), every face
has at least three sides, or si ≥ 3 for all i.

• It follows that 3f ≤ 2e.

• Solving for f and plugging into Euler’s formula we get

e ≤ 3v − 6.

We have just proved the following corollary:

Corollary 13. If G is a connected planar simple graph with e edges and v vertices, where v ≥ 3,
then e ≤ 3v − 6.

Remark. This is an important fact.

• It tells us that planar graphs are sparse, they cannot have too many edges.

• It also tells us that K5 is not planar.

• K3,3 has v = 6, e = 9 so it satisfies the Euler’s formula. However, using the equation
above gives us 4f ≤ 2e, and solving for f and plugging into Euler’s formula, e ≤ 2v − 4,
which shows that K3,3 is non-planar.

So, we have established that K5 and K3,3 are both non-planar. In some sense, these are the
only non-planar graphs. This is made precise in the following famous result, due to the Polish
mathematician Kuratowski (this is what ”K” stands for).

Theorem 14 (Kuratowski’s Theorem). A graph is non-planar if and only if it contains K5

or K3,3.

Proof. See notes.
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3.5 Trees

If G is a tree, then

• G is connected and contains no cycles.

• G is connected and has n− 1 edges (where n = |V |).

• G is connected, and the removal of any single edge disconnects G.

• G has no cycles, and the addition of any single edge creates a cycle.

Figure 4: Examples of trees.

Theorem 15. G is connected and contains no cycles is equivalent to G is connected and
has n− 1 edges.

Proof. See notes.

3.6 Hypercubes

• The vertex set of the n-dimensional hypercube G = (V,E) is given by V = {0, 1}n, where
recall {0, 1}n denotes the set of all n-bit strings.

• Each vertex is labeled by a unique n-bit string, such as 00110 · · · 0100.

• Two vertices x and y are connected by edge {x, y} if and only if x and y differ in exactly
one bit position.

• For example, x = 0000 and y = 1000 are neighbors, but x = 0000 and y = 0011 are not.

• More formally, x = x1x2 . . . xn and y = y1y2 . . . yn are neighbors if and only if there is an
i ∈ {1, . . . , n} such that xj = yj for all j 6= i, and xi 6= yi.

• The n-dimensional hypercube has 2n vertices.

Figure 5: Examples of hypercubes.

10
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Lemma 16. The total number of edges in an n-dimensional hypercube is n2n−1.

Proof. The degree of each vertex is n, since n bit positions can be flipped in any x ∈ {0, 1}n.
since each edge is counted twice, once from each endpoint, this yields a total of n2n/2 = n2n−1

edges.

11
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4 Modular Arithmetic

4.1 Congruence

Definition 17 (Congruence). x is congruent to y modulo m or x ≡ y (mod m) if and only if
any one of the following is true:

• (x− y) is divisible by m

• x and y have the same remainder w.r.t. m

• x = y + km for some integer k

• In modulo m, only the numbers {0, 1, 2, . . . ,m− 1} exist.

• Division is not well-defined.

4.2 Multiplicative Inverse

Definition 18 (Multiplicative Inverse). In the modular space, the multiplicative inverse of
x mod m is y if xy ≡ 1(modm).

Theorem 19 (Modular operations). a ≡ c mod m and b ≡ d mod m =⇒ a + b ≡ c +
d (modm) and a · b ≡ c · d (modm).

Theorem 20 (Existence of multiplicative inverse). gcd (x,m) = 1 =⇒ x has a multiplicative
inverse modulo m and it is unique.

4.3 Euclid’s Algorithm

Question. How do we compute gcd of two numbers x and y?

Theorem 21 (Euclid’s Algorithm). Let x ≥ y > 0. Then

gcd(x, y) = gcd(y, x mod y)

Example 4.1. Compute gcd(16,10):

gcd (16, 10) = gcd (10, 6)

= gcd (6, 4)

= gcd (4, 2)

= gcd (2, 0)

= 2.

12
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4.4 Extended Euclid’s algorithm

Question. How to compute the multiplicative inverse?

• Need an algorithm that returns integers a and b such that:

gcd (x, y) = ax+ by.

Theorem 22 (Bézout’s Identity). For nonzero integers x and y, let d be the greatest common
divisor such that d = gcd(x, y). Then, there exist integers a and b such that

ax+ by = d.

• When gcd(x, y) = 1, we can deduce that b is an inverse of y mod x.

• This uses back substitutions repetitively so that the final expression is in terms of x and
y.

4.5 Functions

Definition 23 (Function). Let A and B be nonempty sets. A function f from A to B is an
assignment of exactly one element of B to each element of A. (vertical line test)

• To denote such a function, we write f : A→ B (f maps A to B).

• A is the domain and B is the co-domain.

• Pre-image is a subset of domain, and the image/range is the subset of co-domain.

– If f(a) = b, where a ∈ A and b ∈ B, then we say that b is the image of a and a is
the pre-image of b.

4.6 Bijection

Definition 24 (One-to-one). A function f is said to be one-to-one if and only if f(a) = f(a′)
implies that a = a′ for all a, a′ ∈ A. A function is said to be injective if it is one-to-one.

• To show that a function is one-to-one, we show that a 6= a′ =⇒ f(a) 6= f(a′). (Why?)

Definition 25 (Onto). A function f is called onto, or a surjection, if and only if for every
element b ∈ B there is an element a ∈ A such that f(a) = b. We also say that f is surjective
if it’s onto.

• To show that a function is onto, choose a = f−1(b) and so f(f−1(b)) = b.

Definition 26 (Bijection). A function f is a bijection if and only if it is both one-to-one and
onto. We also say that f is bijective.

• If f : A → B is a bijection, it will have an inverse function (a lemma from notes), and
|A| = |B|.

13
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4.7 Fermat’s Little Theorem

Theorem 27 (Fermat’s Little Theorem). For any prime p and any a ∈ {1, 2, ..., p − 1}, we
have

ap−1 ≡ 1 (modp).

Proof. Consider S = {1, 2, . . . , p− 1} and S′ = {a mod p, 2a mod p, . . . , (p− 1)a mod p}. They
are the same set under mod p (different order).

p−1∏
k=1

k ≡
p−1∏
k=1

ka (modp)

(p− 1)! ≡ ap−1(p− 1)! (modp)

ap−1 ≡ 1 (modp)

4.8 Chinese Remainder Theorem

Theorem 28 (Chinese Remainder Theorem). Let n1, n2, . . . , nk be positive integers that are
coprime to each other. Then, for any integers ai, the system of simultaneous congruences

x ≡ a1 (mod n1), x ≡ a2 (mod n2), . . . , x ≡ ak (mod nk)

has a unique solution

x =

(
k∑
i=1

aibi

)
mod N

where N =
∏k
i=1 ni and bi = N

ni

(
N
ni

)−1

ni

where
(
N
ni

)−1

ni

denotes the multiplicative inverse

(modni) of the integer N
ni

.

Proof. To see why x is a solution, notice that for each i = 1, 2, . . . , k, we have

x ≡ a1y1z1 + a2y2z2 + · · ·+ akykzk (modni)

≡ aiyizi (modni)

≡ ai (modni) .

• The second line follows since yj ≡ 0 mod ni for each j 6= i.

• The third line follows since yizi ≡ 1 mod ni.

Now, to prove uniqueness, suppose there are two solutions x and y.

• Then n1 |(x− y), n2| (x− y), . . . , nk | (x− y).

• Since n1, n2, . . . , nk are relatively prime, we have that n1n2 · · ·nk divides x− y, or

x ≡ y (modN) .

Thus, the solution is unique modulo N.

14
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General construction:

1. Compute N = n1 × n2 × · · · × nk.

2. For each i = 1, 2, . . . , k, compute

yi =
N

ni
= n1n2 · · ·ni−1ni+1 · · ·nk.

3. For each i = 1, 2, . . . , k, compute zi ≡ y−1
i mod ni (zi exists since n1, n2, . . . , nk are

pairwise coprime).

4. Compute

x =
k∑
i=1

aiyizi

and x mod N is the unique solution modulo N .

Intuitive way to solve for CRT:

1. Begin with the congruence with the largest modulus, x ≡ ak (modnk) .

2. Re-write this modulus as an equation, x = jknk + ak, for some positive integer jk.

3. Substitute the expression for x into the congruence with the next largest modulus, x ≡
ak (modnk) =⇒ jknk + ak ≡ ak−1 (modnk−1).

4. Solve this congruence for jk.

5. Write the solved congruence as an equation, and then substitute this expression for jk
into the equation for x.

6. Continue substituting and solving congruences until the equation for x implies the solution
to the system of congruences.

Example 4.2. Solve for the following system of congruences
x ≡ 1 (mod 3)
x ≡ 4 (mod 5)
x ≡ 6 (mod 7)

Solution. Start with mod 7.

1. Write x = 7k + 6.

2. Then we have 7k + 6 ≡ 4 (mod 5) =⇒ k ≡ 4 (mod 5).

3. Then solving for k gives 5j + 4.

4. Now we have x = 7k + 6 = 7(5j + 4) + 6 = 35j + 34.

5. Then 35j + 34 ≡ 1 (mod 3) =⇒ j ≡ 0 (mod 3) =⇒ j = 3t.

6. Finally, we have x = 35(3t) + 34 = 105t+ 34 =⇒ x ≡ 34 (mod 105).

15
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5 RSA

5.1 Basic Ideas

• Alice and Bob wish to communicate secretly over some (insecure) link, and Eve tries to
discover what they are saying.

• Alice transmits a message x (in binary) to Bob by applying her encryption function E
to x and send the encrypted message E(x) over the link.

• Bob, after receiving E(x), applies his decryption function D to it and recover the
original message: i.e., D(E(x)) = x.

• Since the link is insecure, Eve may know what E(x) is.

• We would like to have an encryption function E such that only knowing E(x) cannot
reveal anything about x.

• The idea is that each person has a public key known to the whole world and a private
key known only to him- or herself.

• Alice encodes x using Bob’s public key. Bob then decrypts it using his private key, thus
retrieving x.

5.2 RSA Scheme

• Let p and q be two large primes, and let N = pq (p and q are not public).

• Treat messages to Bob as numbers modulo N , excluding trivial values 0 and 1.

• Let e be any number that is relatively prime to (p−1)(q−1) (Typically e is a small value).

• Then Bob’s public key is the pair of numbers (N, e) and his private key is d = e−1

(mod (p− 1)(q − 1)).

5.3 RSA Encryption

• Encryption: Alice computes the value E(x) = xe mod N and sends this to Bob.

• Decryption: Upon receiving the value y = E(x), Bob computes D(y) = yd mod N ; this
will be equal to the original message x.

Theorem 29. Using the encryption and decryption functions E and D, we have D(E(x)) =
x (mod N) for every possible message x ∈ {0, 1, ..., N − 1}.

Proof. This can be proved using Chinese Remainder Theorem or Fermat’s Little Theorem. For
more details, please refer to notes.

16
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6 Polynomials

6.1 Properies of polynomials

• Property 1: A non-zero polynomial of degree d has at most d roots.

• Property 2: A polynomial of degree d is uniquely determined by d+ 1 distinct points.

6.2 Polynomial Interpolation

Question. Given d+ 1 distinct points, how do we determine the polynomial?

• We use a method called Lagrange Interpolation, which works similarly to the Chinese
Remainder Theorem.

• Suppose the given points are (x1, y1), . . . , (xd+1, yd+1). We want to find a polynomial p(x)
such that p (xi) = yi for i = 1, . . . , d+ 1.

• In other words, we want to find polynomials p1(x), . . . , pd+1(x) such that

p1(x) = 1 at x1 and p1(x) = 0 at x2, . . . , xd+1;

p2(x) = 1 at x2 and p2(x) = 0 at x1, x3 . . . , xd+1;

p3(x) = 1 at x3 and p3(x) = 0 at x1, x2, x4, . . . , xd+1 and so on...

6.3 Lagrange Interpolation

• Let’s start by finding p1(x).

• Since p1(x) = 0 at x2, . . . , xd+1, p1(x) must be a multiple of

q1(x) = (x− x2)(x− x3) . . . (x− xd+1).

• We also need p1(x) = 1 at x1. Notice that

q1(x1) = (x1 − x2)(x1 − x3) . . . (x− xd+1).

• Then p1(x) = q1(x)
q1(x1) is the polynomial we are looking for.

• Similarly for pi(x), we have pi(x) = qi(x)
qi(xi)

.

• After finding p1(x), . . . , pd+1(x), we can construct p(x) by scaling up each bit by corre-
sponding yi:

p(x) =
d+1∑
i=1

yi · pi(x)

This should remind you of CRT.

• Now let us define ∆i(x) in the following way (think of them as a basis):

∆i(x) =

∏
i 6=j(x− xj)∏
i 6=j(xi − xj)

.

• Then we have an unique polynomial

p(x) =

d+1∑
i=1

yi∆i(x).

17
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6.4 Finite Fields

• The properties of a polynomial would not hold if the values are restricted to being natural
numbers or integers because dividing two integers does not generally result in an integer.

• However, if we work with numbers modulo m where m is a prime number, then we can
add, subtract, multiply and divide.

• Then Property 1 and Property 2 hold if the coefficients and the variable x are restricted
to take on values modulo m. When we work with numbers modulo m, we are working
over a finite field, denoted by GF (m) (Galois Field).

6.5 Secret Sharing

6.5.1 Basic Ideas

• Suppose there are n people. Let s be the secret number and q be a prime number greater
than n and s. We will work over GF (q).

• Pick a random polynomial P (x) of degree k − 1 such that P (0) = s.

• Distribute P (1), . . . P (n) to each person so that each one receives one value.

• Then in order to know what s is, at least k of the n people must work together so that
they can perform Lagrange interpolation and find P .

• If there are less than k people, they will learn nothing about s!

18
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7 Error Correcting Codes

7.1 Basic Ideas

• Goal: Transmit messages across an unreliable communication channel.

• The channel may cause packets(parts of the message) to be lost, or even corrupted.

• Error correcting code is an encoding scheme to protect messages against these errors
by introducing redundancy.

7.2 Erasure Errors

• Erasure errors refer to some packets being lost during transmission.

• Suppose that the message consists of n packets and at most k packets are lost during
transmission.

• To prevent this error, we encode the initial message into a redundant encoding consisting
of n + k packets such that the receiver can reconstruct the message from any n received
packets using Lagrange interpolation.

7.3 General Errors

• Now suppose the packets are corrupted during transmission due to channel noise. Such
error is called general errors.

• Suppose that k out of n characters are corrupted and we have no idea which k these are.

• To guard against k general errors, we must transmit n+ 2k characters.

• To reconstruct the polynomial, we need to find a polynomial P (x) of degree n − 1 such
that P (i) = ri for at least n+ k values of i.

7.4 Error-locator Polynomial

• To efficiently find the polynomial P (x), we need the locations of the k errors.

• Let e1, ..., ek be the k locations at which errors occurred. We don’t know where these
errors are.

• Guessing where the errors are will take exponential time, which is inefficient, so we use
the error-locator polynomial:

E(x) = (x− e1)(x− e2) . . . (x− ek).

• Then we have the following:

P (i)E(i) = riE(i) for 1 ≤ i ≤ n+ 2k.

This is known as the Berlekamp–Welch algorithm.
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7.5 Berlekamp–Welch algorithm

• Define Q(x) = P (x)E(x). We have n+ 2k equations with n+ 2k unknown coefficients:

Q(i) = riE(i) for 1 ≤ i ≤ n+ 2k.

• We can solve the systems of linear equations and get E(x) and Q(x).

• Finally we compute Q(x)
E(x) to obtain P (x).
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8 Counting

8.1 Counting Rules

Theorem 30 (First Rule of Counting). If there are n ways of doing something, and m ways
of doing another thing after that, then there are n × m ways to perform both of these
actions.

• Order matters(permutations).

• Sampling k elements from n items:

– With replacement: nk.

– Without replacement: n!
(n−k)! .

Theorem 31 (Second Rule of Counting). If order doesn’t matter count ordered objects and
then divide by number of orderings.

• Without replacement and ordering doesn’t matter (combinations).

• Number of ways of choosing k-element subsets out of a set of size n:(
n

k

)
=

n!

(n− k)!k!
.

8.2 Stars and Bars

Stars and Bars is a technique used to solve for problems that sample with replacement but
order doesn’t matter by establishing a bijection between the problem and the stars and bars
problem.

Problem 1. Consider the equation a+b+c+d = 12 where a, b, c, d are non-negative integers.
How many solutions are there to this equation?

• Let’s simplify this problem a little bit. Suppose we have 12 and 3 bars.

? ? | ? ?| ? ? ? | ? ? ? ??

• How many ways can we arrange them?
(

12+3
3

)
=
(

15
3

)
• This is the answer to our original problem! Do you see the bijection between the two

problems?

Theorem 32 (Stars and Bars). The number of ways to distribute n indistinguishable objects
into k distinguishable bins is (

n+ k − 1

k − 1

)
.

• Don’t memorize the formula! Try to visualize the problem by connecting it to stars and
bars. Draw out the stars and the bars!
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• Again, this method is useful for with replacement but order doesn’t matter type of prob-
lems.

Theorem 33 (Zeroth Rule of Counting:). If a set A has a bijection relationship with a set
B, then |A| = |B|.

The stars and bars method relies on this counting rule and this is the key to many combinatorial
arguments as we will explore further later.

8.3 Binomial Theorem

Theorem 34 (Binomial Theorem). For all n ∈ N,

(a+ b)n =

n∑
k=0

(
n

k

)
akbn−k.

Proof. See notes.

Corollary 35. For all n ∈ N,
n∑
k=0

(−1)k
(
n

k

)
= 0.

Proof. Plug in a = −1 and b = 1 for the binomial theorem.

8.4 Combinatorial Proofs

• Intuitive counting arguments. No tedious algebraic manipulation.

• Proofs by stories: same story from multiple perspectives.

• Proving an identity by counting the same thing in two different ways.

• Useful identity: (
n

k

)
=

(
n

n− k

)
.

• Choosing k objects to include is equivalent to choosing n− k objects to exclude.

Example 8.1. Using combinatorial arguments, show that

n∑
i=0

(
n

i

)
= 2n.

Proof. We can use binomial theorem by letting a = b = 1, however this is not what the question
is asking for.
RHS: Total number of subsets of a set of size n.
LHS: The number of ways to choose a subset of size i is

(
n
i

)
. To find the total number of

subsets, we simply add all the cases when i = 0, 1, 2, . . . , n.
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8.5 Principle of Inclusion-Exclusion

Theorem 36 (Principle of Inclusion-Exclusion(General):). Let A1, . . . , An be arbitrary subsets
of the same finite set A. Then,

|A1 ∪ · · · ∪An| =
n∑
k=1

(−1)k−1
∑

S⊆{1,...,n}:|S|=k

|∩i∈SAi| .

Proof. See notes.

Theorem 37 (Principle of Inclusion-Exclusion(Simplified):).

|A ∪B| = |A|+ |B| − |A ∩B|.

8.6 Summary

with replacement w/o replacement

order matters nk n!
(n−k)!

order doesn’t matter
(
n+k−1
k−1

) (
n
k

)

23

https://www.eecs70.org/static/notes/n10.pdf


CS70: Discrete Mathematics and Probability Theory Kelvin Lee

9 Countability

Question. How do we determine if two sets have the same cardinality, or size?

This is obvious for finite sets, but for infinite sets it becomes quite tricky. We’ll see how to
formulate the question.

9.1 Bijection

• Two finite sets have the same size if and only if their elements can be paired up, so that
each element of one set has a unique partner in the other set, and vice versa.

• We formalize this through the concept of a bijection, which is discussed in section 4.6.

9.2 Cardinality

• To show that two infinite sets have the same cardinality, we demonstrate a pairing between
elements of the two sets, i.e., establish a bijection (one-to-one correspondence) between
the two sets.

Problem 2. Are there more natural numbers N than there are positive integers Z+?

Answer. It is tempting to answer yes, because every positive integer is also a natural number,
and the natural numbers have one extra element 0. However, we can actually define a mapping
between the natural numbers and the positive integers as follows:

• Define a function f : N→ Z+ such that f(n) = n+1. Then we can see there’s a one-to-one
correspondence in the following figure (try to prove it on your own).

Figure 6: Bijection between N and Z+

• Since we have shown a bijection between N and Z+, this tells us that there are exactly as
many natural numbers as there are positive integers.

• This also implicityly showed the fact that ∞+ 1 =∞!

Exercise 1. Show that the cardinality for the set of natural numbers and the set of even natural
numbers are the same.

Problem 3. What about N and Z?

Answer. It may seem obvious that Z is larger because it includes negative numbers. However,
they both actually have the same size! Let’s see why, consider the following function f :

0→ 0, 1→ −1, 2→ 1, 3→ −2, 4→ 2, . . . , 124→ 62, . . .
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In other words, the function is defined as follows:

f(x) =

{ x
2 , if x is even

−(x+1)
2 , if x is odd

This function f : N→ Z is in fact a bijection, refer to the notes for the details. Thus, the two
sets have the same size.

Definition 38 (Countable). A set S is countable if there is a bijection between S and N or
some subset of N.

• Intuitively, any finite set S is clearly countable. But the actual reasoning behind is
because there is a bijection between S and the subset {0, 1, 2, ...,m − 1}, where m = |S|
is the size of S.

• The examples we did earlier are countable because they are subsets of N.

Problem 4. Now consider the set of rational numbers Q, is it larger than N? Recall that

Q =
{
x
y | x, y ∈ Z, y 6= 0

}
.

Answer. The two sets actually have the same cardinality! Let’s look at this using a different
way by introducing some new definitions and an important theorem.

Definition 39. If there is a injective function f : A→ B, then |A| ≤ |B|.
Definition 40. If there is a surjective function f : A→ B, then |A| ≥ |B|.

Theorem 41 (Schröder–Bernstein Theorem (Cantor–Bernstein)). If A and B are sets with
|A| ≤ |B| and |B| ≤ |A|, then |A| = |B|. In other words, if there are injective functions
f : A→ B and g : B → A, then there is a bijection h between A and B.

Proof. The proof of this theorem is out of scope for this class. We’ll skip that for now.

Remark. This theorem will be very useful when we want to show a set S is countable. We can
give separate injections f : S → N and g : N → S, instead of designing a bijection (which is
trickier).

• Now back to our problem. First it is obvious that |N| ≤ |Q| because N ⊆ Q.

• Now the theorem comes in handy and all we need to do now is to prove |Q| ≤ |N|.

• Recall the definition, we must exhibit an injection f : Q→ N.

• Notice that each rational number a
b (gcd(a, b) = 1) can be represented by the point

(a, b) ∈ Z× Z (the set of all pairs of integers).

• However, not all points are valid, espeically when the corresponding a
b is undefined (except

for (0, 0), which is used to represent rational number 0). The points whose rational
representation is an unfactored fraction are also invalid.

• Thus, we can actually tell that |Z× Z| ≥ |Q|.
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• If we are able to come up with an injection from Z × Z to N, then this will also be an
injection from Q to N (why?).

• The idea is to map each pair (a, b) to its position along the spiral, starting at the origin, as
shown in the picture above (basically we are indexing throught each point starting from
index 0).

• It is clear that this mapping maps every pair of integers injectively to a natural number.

• Thus we have |Q| ≤ |Z×Z| ≤ |N|. Remember that |N| ≤ |Q|, then by the Cantor-Bernstein
Theorem |N| = |Q|.

9.3 Cantor’s Diagonalization

Now let’s consider the set of real numbers, R[0, 1] specifically. We’ll see that it is uncountable
using a method called diagonalization.

Theorem 42. The real interval R[0, 1] is uncountable.

Proof. Assume for the sake of contradiction that there is a bijection f : N→ R[0, 1]. Then, we
can enumerate the real numbers in an infinite list f(0), f(1), f(2), . . . as follows:

f(0) = 0. 5 2149356 . . .
f(1) = 0.1 4 162985 . . .
f(2) = 0.94 7 82712 . . .
f(3) = 0.530 9 8175 . . .

...

The number circled in the diagonal can be some real number r = 0.5479 . . .. Now consider the
real number s obtained by modifying every digit of r such that each digit d is replaced with
d + 2 (mod 10), so s = 0.7691..... Then we claim that s is not included in our infinite list of
real numbers. Suppose for contradiction that it us, and that it was the nth number in the list,
f(n). But by construction s differs from f(n) in the (n + 1)th digit, so they cannot be equal!
So we have constructed a real number s that is not in the range of f. But this contradicts the
assertion that f is a bijection. Thus the real numbers are not countable.

Remark. The reason that we modified each digit by adding 2 (mod 10) instead of adding 1 is
that the same real number can have two decimal expansions; for example 0.999 . . . = 1.000 . . ..
But if two real numbers differ by more than 1 in any digit they cannot be equal. Thus our
modification is safe. (We can also replace each digit by some different digit chosen from the
range {1, 2, . . . , 8}.)
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Theorem 43. If A and B are countable sets, then A ∪B is also countable.

9.4 Power Sets and Higher Orders of Infinity

Definition 44 (Power Set). Recall that the power set of S, denoted by P(S), is the set of all
subsets of S. More formally, it is defined as P(S) = {T : T ⊆ S}.
Question. What is the cardinality of P(S)?

Answer. If |S| = k is finite, then |P(S)| = 2k.(why?)

• For finite sets S, the cardinality of the power set of S is exponentially larger than the
cardinality of S.

• What about infinite (countable) sets?

• We claim that there is no bijection from S to P(S) so P(S) is not countable.

• For example the set of all subsets of natural numbers is not countable, even though the
set of natural numbers itself is countable.

Theorem 45. |P(N)| > |N|.

Proof. See notes.
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10 Discrete Probability

10.1 Probabilistic Models

A probabilistic model is a mathematical description of an uncertain situation. The elements
of a probabilistic model includes

• sample space Ω : set of all all possible outcomes of an experiment.

• probability law: assigns to a set A of possible outcomes (event) a nonnegative value
P(A) (probability of A) that encodes the knowledge about the likelihood of the elements
of A.

A recap of all basic terminologies:

Definition 46 (Experiment). An experiment is a procedure that yields one of a given set of
possible outcomes.

Definition 47 (Sample space). The sample space of the experiment is the set of possible
outcomes.

Definition 48 (Sample point). A sample point is an element of the sample space.

Definition 49 (Event). An event is a subset of the sample space.

10.2 Probability Space

Definition 50 (Probability Space). The probability space is defined by the triple (Ω,F ,P)
where Ω is the sample space, F ⊆ Ω is the event space and P is the probability function, satis-
fying the following axioms:

Probability Axioms (Kolmogorov):

• Nonnegativity: for all sample points ω ∈ Ω,

P(ω) ≥ 0.

• Additivity: any countable sequence of disjoint sets (mutually exclusive events) E1, E2, . . .
satisfies

P

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

P (Ei) .

• Normalization: the sum of all probabilities must be 1, thus∑
ω∈Ω

P(ω) = P(Ω) = 1.

Definition 51 (Probability). For any event A ⊆ Ω, we define the probability of A to be

P(A) =
∑
ω∈A

P(ω).
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10.2.1 Properties of Probability Laws

• P(∅) = 0.

• P(A) = 1− P(A), where A (or Ac) is the complement of A.

• P(A ∪B) = P(A) + P(A)− P(A ∩B).

• If A ⊆ B, then P(A) ≤ P(B).

10.3 Discrete Uniform Probability Space

Theorem 52 (Discrete Uniform Probability Law). In a uniform probability space, all sample
points have the same probability 1

|Ω| . Thus the probability of an event A is

P(A) =
|A|
|Ω|

.

Remark. For uniform spaces, computing probabilities is simply counting sample points.

Example 10.1 (Poker Hands). Consider shuffling a deck of cards and dealing a poker hand.
In this case, the sample space Ω = {all possible poker hands}. Hence, |Ω| =

(
52
5

)
. Assuming

that the probability of each outcome is equally likely and so we have an uniform probability
space.
Let A be the event that the poker hand is a flush (same suit). Since the probability space
is uniform, computing P(A) reduces to simply computing |A|, the number of poker hands
that are flushes. There are 13 cards in each suit, so the number of flushes in each suit is(

13
5

)
. The total number of flushes is therefore 4 ·

(
13
5

)
. Then we have

P (hand is a flush) ≈ 0.002.

Example 10.2 (Balls and Bins). Consider the experiment of throwing 20 labelled balls into
10 labeled bins. Assume that each ball is equally likely to land in any bin.
The sample space Ω is equal to {(b1, b2, . . . , b20) : 1 ≤ bi ≤ 10 for each i = 1, . . . , 20} , where
the component bi denotes the bin in which ball i lands. Then |Ω| = 1020, since each element
bi in the sequence has 10 possible choices and there are 20 elements in the sequence. In
general, throwing m balls into n bins gives a sample space of size nm.

Let A be the event that bin 1 is empty. Since the probability space is uniform, we simply
need to count how many outcomes have this property. This is exactly the number of ways
all 20 balls can fall into the remaining nine bins, which is 920. Hence, P(A) = 920

1020
=(

9
10

)20 ≈ 0.12. Let B be the event that bin 1 contains at least one ball. This event is the
complement A of A. So P(B) = 1− P(A) ≈ 0.88. More generally, if we throw m balls into
n bins, we have:

P(bin 1 is empty) =

(
n− 1

n

)m
=

(
1− 1

n

)m
.
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10.3.1 Birthday Paradox

The birthday paradox examines the chances that two people in a group have the same birth-
day. It is called a ”paradox” because it is counter-intuitive. Suppose there are 365 days in a
year. Then S = {1, . . . , 365}, and the experiment consists of drawing a sample of n elements
from S, where the elements are the birth dates of n people in a group. Then |Ω| = 365n because
there are 365 possible birth dates for each person. Let A be the event that at least a pair of
people have the same birthday. If we want to determine P(A), it is simpler to first compute the
probability of the complement of A; i.e., P(A), where A is the event that no two people have
the same birthday.

Since the probability space is uniform, we just need to determine |A|, the number of ways for
no two people to have the same birthday. There are 365 choices for the first person, 364 for the
second, . . . , 365−n+ 1 choices for the n-th person, for a total of 365× 364×· · ·× (365−n+ 1)
by the First Rule of Counting from previous section; we are sampling without replacement and
the order matters. Thus we have

P(A) =
|A|
|Ω|

=
365× 364× · · · × (365− n+ 1)

365n
,

so P(A) = 1 − P(A) = 1 − 365×364×···×(365−n+1)
365n . Here P(A) is a function of n. As n increases

P(A) increases. For example, with n = 23 people, you should be willing to bet that at least a
pair of people have the same birthday, since P(A) is larger than 50%. For n = 60 people, P(A)
is over 99%!

10.4 Conditional Probability

Conditional probability provides a way to reason about the outcome of an experiment, based
on partial information. We wish to quantify the likelihood that the outcome also belongs to some
other given event A by constructing a new probability law to take into account the available
knowledge.

Definition 53 (Conditional Probability). Let B be an event such that P(B) > 0. The conditional
probability of A given B, denoted by P(A|B) is defined as

P(A|B) =
|A ∩B|
|B|

=
P(A ∩B)

P(B)
.

10.4.1 Independence

Definition 54 (Independence). Event A and B are independent if and only if

P(A ∩B) = P(A)P(B) or P(A|B) = P(A).

Definition 55 (Mutual Independence). Events {A}ni=1 are mutually independent if

P

(⋂
i∈S

Ai

)
=
∏
i∈S

P(Ai).

Definition 56 (Chain Rule). For any events A1, . . . , An,

P

(
n⋂
i=1

Ai

)
= P (A1) · P (A2 | A1) · P (A3 | A1 ∩A2) · · · · · P

(
An

∣∣∣∣∣
n−1⋂
i=1

Ai

)
.
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10.4.2 Conditional Independence

Definition 57 (Conditional Independence). Given event C such that P(C) > 0, events A and B
are called conditionally independent if

P(A ∩B|C) = P(A|C)P(B|C),

or
P(A|B ∩ C) = P(A|C).

10.4.3 Law of Total Probability

We define a partition of an event as follows:

• (Partition of an event). We say that an event A is partitioned into n events A1, . . . , An
if

1. A = A1 ∪A2 ∪ · · · ∪An,
2. Ai ∩Aj = ∅ for all i 6= j (i.e., A1, . . . , An are mutually exclusive).

In simpler terms, each outcome in A belongs to exactly one of the events A1, . . . , An.

• Now, let A1, . . . , An be a partition of the sample space Ω. Then, the Law of Total
Probability for any event B is as follows:

Theorem 58 (Law of Total Probability).

P(B) =

n∑
i=1

P (B ∩Ai) =

n∑
i=1

P (B | Ai)P (Ai) .

10.4.4 Bayes’ Rule

Given P(B|A), how do we compute P(A|B)?

• Using the definition and chain rule, we have

P(A | B) =
P(A ∩B)

P(B)
=

P(B | A)P(A)

P(B)
.

• Combining with Law of Total Probability, we have the following result:

Theorem 59 (Bayes’ Rule). Let {A}ni=1 be disjoint events that form a partition of the sample
space, and that P(Ai) > 0 for all i. Then, for any event B such that P(B) > 0,

P(Ai ∩B) =
P(Ai)P(B|Ai)

P(B)
=

P(Ai)P(B|Ai)∑n
j=1 P(Aj)P(B|Aj)

.
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10.4.5 Inclusion-Exclusion Principle

Theorem 60 (Inclusion-Exclusion Principle). Let A1, . . . , An be events in some probability
space, where n ≥ 2. Then, we have

P

(
n⋃
i=1

Ai

)
=

n∑
k=1

(−1)k−1
∑

S⊆{1,...,n}:|S|=k

P

(⋂
i∈S

Ai

)
.

The right hand side is equivalent to

n∑
i=1

P (Ai)−
∑
i<j

P (Ai ∩Aj) + . . .+ (−1)n−1P (A1 ∩A2 ∩ · · · ∩An) .

10.4.6 Union Bound

• Very useful for proving upper bounds for randomized algorithms.

Theorem 61 (Union Bound). Let A1, . . . , An be events in some probability space. Then

P

(
n⋃
i=1

Ai

)
≤

n∑
i=1

P(Ai).
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11 Discrete Random variables

Definition 62 (Random variable). A random variable X on a sample space Ω is a function
X : Ω→ R that assigns to each sample point ω ∈ Ω a real number X(ω).

Remark (Functions of R.V.s are also R.V.s). Let Y = g(X). Then

P(Y = y) =
∑

x|g(x)=y

P(X = x).

An R.V. itself is a function, and we know that the function of a function is also a function.

Definition 63. The distribution of a discrete random variable X is the collection of values
{(x,P(X = x)) : x ∈ X}, where X is the set of all possible values taken by X.

Definition 64 (Probability Mass Function). The probability mass function, or PMF, of a
discrete random variable X is a function mapping X’s values to their associated probabilities.
It is the function p : R→ [0, 1] defined by

pX(x) = P(X = x).

Definition 65 (Joint Distribution). The joint distribution for two discrete random variables
X and Y is the collection of values {((x, y),P(X = x, Y = y)) : x ∈ X , y ∈ Y}, where X is the
set of all possible values taken by X and Y is the set of all possible values taken Y .

Definition 66 (Marginal Distribution). Given the joint distribution for X and Y, the marginal
distribution for X is as follows:

P(X = x) =
∑
y∈Y

P(X = x, Y = y)

Definition 67 (Independence). Random variables X and Y are said to be independent if the
events X = x and Y = y are independent for all values x, y. Equivalently, the joint distribution
of independent R.V’s decomposes as

P(X = x, Y = y) = P(X = x)P(Y = y), ∀x, y.

Definition 68 (Indicator Random variable). Ii, or Xi, denotes the indicator random variable
that takes on values {0, 1} according to whether a specified event occurs or not. Usually {Ii}ni=1

are mutually independent and they are said to be independent and identically distributed (i.i.d).
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11.1 Expectation

Definition 69 (Expectation). The expectation of a discrete random variable X is defined as

E[X] =
∑
x∈X

x · P(X = x).

Alternatively, we also have

E[X] =
∑
ω∈Ω

X(ω) · P(ω).

11.1.1 Linearity of Expectation

Theorem 70 (Linearity of Expectation). For any two random variables X and Y on the same
probability space, we have

E[X + Y ] = E[X] + E[Y ].

For any constant a, c, we also have

E[aX + c] = aE[X] + c.

Proof. Let g(X,Y ) = X + Y . Then we have

E[X + Y ] =
∑
x,y

(x+ y)P(X = x, Y = y)

=
∑
x,y

xP(X = x, Y = y) +
∑
x,y

yP(X = x, Y = y)

=
∑
x

∑
y

xP(X = x, Y = y) +
∑
y

∑
x

yP(X = x, Y = y)

=
∑
x

x
∑
y

P(X = x, Y = y) +
∑
y

y
∑
x

P(X = x, Y = y)

=
∑
x

xP(X = x) +
∑
y

yP(Y = y)

= E[X] + E[Y ].

The proof of the second equality is left as an exercise.

This is a powerful theorem because this always applies without any assumption about the R.V.s.

Remark. Be careful that this doesn’t imply that E[XY ] = E[X]E[Y ], or E
[

1
X

]
= 1

E[X] . These
are not true in general.

11.2 Variance

Definition 71 (Variance). The variance of a random variable X is

Var(X) = E[(X − E[X])2].

Definition 72 (Standard Deviation). The standard deviation of a random variable X

σ :=
√

Var(X).
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Theorem 73. For a random variable X,

Var(X) = E[X2]− E[X]2.

Proof.

Var(X) = E
[
(X − E[X])2

]
= E

[
X2 − 2XE[X] + E[X]2

]
= E

[
X2
]
− E[2XE[X]] + E

[
E[X]2

]
= E

[
X2
]
− 2E[X]2 + E[X]2

= E
[
X2
]
− E[X]2.

Note that E[X] is a constant.

Fact. For any constant c and any random variable X, we have

Var(cX) = c2Var(X).

Theorem 74. For independent random variables X,Y , we have E[XY ] = E[X]E[Y ].

Proof.

E[XY ] =
∑
x

∑
y

xy · P(X = x, Y = y)

=
∑
x

∑
y

xy · P(X = x) · P(Y = y)

=

(∑
x

x · P(X = x)

)
·

(∑
y

y · P(Y = y)

)
= E[X] · E[Y ]

where the second line made crucial use of independence.

Theorem 75. For independent random variables X,Y ,

Var(X + Y ) = Var(X) + Var(Y ).

Proof.

Var(X + Y ) = E
[
(X + Y )2

]
− (E[X + Y ])2

= E
[
X2
]

+ E
[
Y 2
]

+ 2E[XY ]− (E[X] + E[Y ])2

=
(
E
[
X2
]
− E[X]2

)
+
(
E
[
Y 2
]
− E[Y ]2

)
+ 2(E[XY ]− E[X]E[Y ])

= Var(X) + Var(Y ) + 2(E[XY ]− E[X]E[Y ]).

= Var(X) + Var(Y ).

11.2.1 Covariance

Covariance is a measure of the joint variability of two random variables.

35



CS70: Discrete Mathematics and Probability Theory Kelvin Lee

Definition 76 (Covariance). The covariance of random variables X and Y , denoted Cov(X,Y ),
is defined as

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ].

Remark. Some important facts about covariance.

1. If X,Y are independent, then Cov(X,Y ) = 0. However, the converse is not true.

2. Cov(X,X) = Var(X).

3. Bilinearity :

Cov

 n∑
i=1

aiXi,

m∑
j=1

bjYj

 =

n∑
i=1

m∑
j=1

aibjCov(Xi, Yj).

4. For general random variables X and Y ,

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y ).

11.2.2 Correlation

Definition 77 (Correlation). Suppose X,Y are random variables with σX , σY > 0. Then the
correlation of X and Y is

ρ(X,Y ) =
Cov(X,Y )√

Var(X)Var(Y )
=

Cov(X,Y )

σXσY

and −1 ≤ ρ(X,Y ) ≤ 1.

11.3 Discrete Probability Distribution

11.3.1 Bernoulli Distribution

A Bernoulli random variable X, denoted as Bernoulli(p), has a PDF of the form

P(X = i) =

{
p, if i = 1
1− p, if i = 0,

where 0 ≤ p ≤ 1.
Expectation:

E[X] = p.

Variance:
Var(X) = E[X2]− E[X]2 = p− p2 = p(1− p).

11.3.2 Binomial Distribution

A binomial random variable X, denoted as Bin(n, p), has a PDF of the form

P(X = k) =

(
n

k

)
pk(1− p)n−k, for k = 0, 1, . . . , n.

Quick check on normalization:

n∑
i=0

P(X = i) = 1 =⇒
n∑
i=0

(
n

i

)
pi(1− p)n−i = 1.
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A probabilistic proof of the Binomial Theorem for a = p and b = 1− p.
Fact. A binomial random variable is equivalent to sum of n i.i.d Bernoulli variables with pa-
rameter p.

Expectation:

E[X] = E

[
n∑
i=1

Yi

]
=

n∑
i=1

E[Yi] =
n∑
i=1

p = np, where Yi ∼ Bernoulli(p).

Variance:

Var(X) = Var

(
n∑
i=1

Yi

)
= np(1− p), where Yi ∼ Bernoulli(p).

11.3.3 Hypergeometric Distribution

We are given N = G + B balls, where G balls are good and B balls are bad. Sample n balls
without replacement and observe k successes. Denoted as Hypergeometric(N,B, n) and has a
PDF of the form

P(X = k) =

(
G
k

)(
B
n−k
)(

N
n

) .

11.3.4 Geometric Distribution

A geometric random variable X, denoted as Geo(p), has a PDF of the form

P(X = k) = (1− p)k−1p, for i = 1, 2, 3, . . . .

It represents the number of trials until first success, where p is the probability of success.
Quick check on normalization:

∞∑
i=1

P(X = i) =
∞∑
i=1

(1− p)i−1p = p
∞∑
i=1

(1− p)i−1 = p · 1

1− (1− p)
= 1.

Expectation:

E[X] =
∞∑
i=1

P(X ≥ i) =
∞∑
x=1

(1− p)i−1 =
1

1− (1− p)
=

1

p
,

where the first equality uses the tail sum formula, which is on the next page.
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Theorem 78 (Tail Sum Formula). LetX be a random variable that takes values in {0, 1, 2, . . .}.
Then

E[X] =
∞∑
i=1

P(X ≥ i).

Proof. We can manipulate the formula for the expectation:

E[X] =
∞∑
x=1

xP(X = x)

=

∞∑
x=1

x∑
i=1

P(X = x)

=

∞∑
i=1

∞∑
x=i

P(X = x)

=

∞∑
i=1

P(X ≥ i).

This is called the Tail Sum Formula because we are summing over the tail probabilities of the
distribution.

Remark. Here’s a smarter way to derive the expectation. Suppose we toss our first coin. There
are two possibilities: we get a head with probability p and call it a day, or we get a tail with
probability 1 − p and we are right back where we just started. In the latter case, we expect
1 + E[X] trials until our first success because we already used one trial. Hence,

E[X] = p · 1 + (1− p)(1 + E[X]).

This makes use of an important property called the memoryless property, which will be
covered later.

Variance:

Var(X) =
1− p
p2

.

11.3.5 Poisson Distribution

A Poisson random variable X, denoted as Poisson(λ), has a PDF of the form

P(X = k) =
λke−λ

k!
, for i = 0, 1, 2, . . . .

It is used to model rare events and is an approximation of the limiting case of binomial distri-
bution.
Quick check on normalization:

∞∑
i=0

P(X = i) =
∞∑
i=0

λke−λ

k!
= e−λ

∞∑
i=0

λk

k!
= e−λ · eλ = 1.

Remark. The second equality uses the Taylor series expansion

ex =

∞∑
i=1

xi

i!
.
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Expectation:

E[X] =
∞∑
i=0

i · P(X = i)

=
∞∑
i=1

λie−λ

i!

= λe−λ
∞∑
i=1

λi−1

(i− 1)!

= λe−λeλ (eλ =
∞∑
j=1

λj

j!
with j = i− 1)

= λ.

Variance:

Similarly, we can calculate E[X(X − 1)] as follows:

E[X(X − 1)] =

∞∑
i=0

i(i− 1) · P(X = i)

=

∞∑
i=2

i(i− 1)
λi

i!
e−λ i=0 and i=1 terms are equal to 0)

= λ2e−λ
∞∑
i=2

λi−2

(i− 2)!

= λ2e−λeλ ( since eλ =

∞∑
j=0

λj

j!
with j = i− 2)

= λ2

Therefore,

Var(X) = E
[
X2
]
− E[X]2 = E[X(X − 1)] + E[X]− E[X]2 = λ2 + λ− λ2 = λ.
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Theorem 79. Let X ∼ Poisson(λ) and Y ∼ Poisson(µ) be independent Poisson random
variables. Then X + Y ∼ Poisson(λ+ µ).

Proof. For all k = 0, 1, 2, . . . , we have

P(X + Y = k) =
k∑
j=0

P(X = j, Y = k − j)

=
k∑
j=0

P(X = j)P(Y = k − j)

=
k∑
j=0

λj

j!
e−λ

µk−j

(k − j)!
e−µ

= e−(λ+µ) 1

k!

k∑
j=0

k!

j!(k − j)!
λjµk−j

= e−(λ+µ) (λ+ µ)k

k!

where the second equality follows from independence, and the last equality from the binomial
theorem.

Theorem 80. If X1, X2, ..., Xn are independent Poisson random variables with parameters
λ1, λ2, . . . , λn respectively, then

X1 +X2 + . . .+Xn ∼ Poisson(λ1 + λ2 + . . .+ λn).

Proof. This can be shown by induction.
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12 Concentration Inequalities and the Laws of Large Numbers

12.1 Markov’s Inequality

Theorem 81 (Markov’s Inequality). For a non-negative random variable X with finite
mean,

P[X ≥ c] ≤ E[X]

c

for any positive constant c.

Proof. Let X denote the range of X and consider any constant c ∈ X . Then,

E[X] =
∑
x∈X

x · P(X = x)

≥
∑
x≥c

x · P(X = x)

≥
∑
x≥c

c · P(X = x)

= c
∑
x≥c

P(X = x)

= c P[X ≥ c].

Here’s a smarter way to prove this inequality.

Proof. Since X is a non-negative and c > 0, then for all ω ∈ Ω

X(ω) ≥ I{X(ω) ≥ c}.

The RHS is 0 if X(ω) < c and is c if X(ω) ≥ c implied by the indicator function. Taking
expectations of both sides gives

E[X] ≥ cE[I{X ≥ c}] = c P(X ≥ c).

What if X can be negative? We’ll have the following result.

Theorem 82 (Generalized Markov’s Inequality). Let X be an arbitrary random variable with
finite mean. Then, for any positive constants c and r,

P(|X| ≥ c) ≤ E (|X|r)
cr

.

Proof. For c > 0 and r > 0, we have

|X|r ≥ |X|rI{|X| ≥ c} ≥ crI{|X| ≥ c}

(Note that the last inequality would not hold if r were negative.) Taking expectations of both
sides gives

E [|X|r] ≥ crE[I{|X| ≥ c}] = crP(|X| ≥ c).
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12.2 Chebyshev’s Inequality

We have seen that the variance (or, more correctly the standard deviation) is a measure of spread,
or deviation from the mean. We can now make this intuition quantitatively precise:

Theorem 83 (Chebyshev’s Inequality). For a random variable X with finite expectation
E[X] = µ,

P[|X − µ| ≥ c] ≤ Var(X)

c2

and for any positive constant c.

Proof. Define Y = (X−µ)2 and note that E[Y ] = E
[
(X − µ)2

]
= Var(X). Also, notice that the

event that we are interested in, |X−µ| ≥ c, is exactly the same as the event Y = (X−µ)2 ≥ c2.
Therefore, P[|X −µ| ≥ c] = P

[
Y ≥ c2

]
. Moreover, Y is obviously nonnegative, so we can apply

Markov’s inequality in Theorem 17.1 to get

P[|X − µ| ≥ c] = P
[
Y ≥ c2

]
≤ E[Y ]

c2
=

Var(X)

c2

This completes the proof.

12.3 Law of Large Numbers

Theorem 84 (Law of Large Numbers). Let X1, X2, . . . , be a sequence of i.i.d. random
variables with common finite expectation E [Xi] = µ for all i. Then Sn = X1 +X2 + · · ·+Xn

satisfies

P
(∣∣∣∣ 1nSn − µ

∣∣∣∣ < ε

)
→ 1 as n→∞

for every ε > 0, however small.

Proof. Let Yn = X1+···+Xn
n . Then

P (|Yn − µ| ≥ ε) ≤
Var (Yn)

ε2

=
Var (X1 + · · ·+Xn)

n2ε2

=
nVar (X1)

n2ε2

=
Var (X1)

nε2
→ 0, as n→∞

Remark. The Law of Large Numbers says that the probability of any deviation ε from the
mean, however small, tends to zero as the number of observations n in our average tends to
infinity. Thus, by taking n large enough, we can make the probability of any given deviation as
small as we like.
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13 LLSE, MMSE, and Conditional Expectation

13.1 LLSE

Definition 85 (Least Linear Squares Estimate). Let X and Y be random variables. The least
linear squares estimate (LLSE) of Y given X is defined as

L(Y | X) := E(Y ) +
Cov(X,Y )

Var(X)
(X − E(X))

Observe that the LLSE is a random variable: in fact, it is a function of X.

Theorem 86 (Projection Property of LLSE). The LLSE satisfies

E(Y − L(Y | X)) = 0

E((Y − L(Y | X))X) = 0.

Proof. The proofs are actually relatively straightforward using linearity. Proof of first equation:

E(Y − L(Y | X)) = E

(
Y − E(Y )− Cov(X,Y )

Var(X)
(X − E(X))

)
= E(Y )− E(Y )− Cov(X,Y )

Var(X)
(E(X)− E(X))

= 0

Proof of second equation:

E((Y − L(Y | X))X) = E

(
X

(
Y − E(Y )− Cov(X,Y )

Var(X)
(X − E(X))

))
= E(XY )− E(X)E(Y )− Cov(X,Y )

Var(X)

(
E
(
X2
)
− E(X)2

)
= Cov(X,Y )− Cov(X,Y )

Var(X)
·Var(X)

= Cov(X,Y )− Cov(X,Y )

= 0.

13.2 MMSE

13.3 Conditional Expectation
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14 Continuous Probability

14.1 Continuous Random Variables

Definition 87 (Probability Density Function). A probability density function, or PDF, for
a real-valued random variable X is a function f : R→ R satisfying:

1. Non-negativity: f(x) ≥ 0 for all x ∈ R.

2. Normalization: ∫ ∞
−∞

f(x)dx = 1.

The probability that the value of X falls within an interval is

P(a ≤ X ≤ b) =

∫ b

a
f(x)dx for all a < b.

For an interval [x, x+ dx] with very small length dx, we have

P(x ≤ X ≤ x+ dx) =

∫ x+dx

x
f(t)dt ≈ f(x)dx.

Remark. f(x) doesn’t correspond to the probability of anything! In particular, f(x) does not
have to be bounded by 1. For example, the density of the uniform distribution on the interval
[0, `] with ` = 1

2 is equal to f(x) = 1/
(

1
2

)
= 2 for 0 ≤ x ≤ 1

2 , which is greater than 1. To connect
density f(x) with probabilities, we need to look at a very small interval [x, x+dx] close to x like
we did above. Therefore, we can interpret f(x) as the probability per unit length in the vicinity
of x.

14.1.1 Cumulative Distribution Function

Definition 88. For a continuous random variable X, the cumulative distribution function,
or CDF, is the function as follows:

F (x) = P(X ≤ x) =

∫ x

−∞
f(z)dz.

It is closely related to the PDF for X:

f(x) =
dF (x)

dx
.

14.2 Expectation and Variance

Definition 89 (Expectation). The expectation of a continuous random variable X with PDF
f is

E[X] =

∫ ∞
−∞

xf(x)dx.

Definition 90 (Variance). The variance of a continuous random variable X with PDF f is

Var[X] = E[X2]− E[X]2 =

∫ ∞
−∞

x2f(x)dx−
(∫ ∞
−∞

xf(x)dx

)2

.
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14.2.1 Exponential Random Variable

An exponential random variable X, denoted as Exp(λ), has a PDF of the form

f(x) =

{
λe−λx, if x ≥ 0
0, otherwise

Quick check on normalization:∫ ∞
−∞

f(x)dx =

∫ ∞
0

λe−λxdx = −e−λx
∣∣∣∞
0

= 1.

Expectation:

E[X] =

∫ ∞
−∞

xf(x)dx =

∫ ∞
0

λxe−λxdx = − xe−λx
∣∣∣∞
0

+

∫ ∞
0

e−λxdx = 0 +

(
−e
−λx

λ

)∣∣∣∣∞
0

=
1

λ
.

Variance:

E
[
X2
]

=

∫ ∞
−∞

x2f(x)dx =

∫ ∞
0

λx2e−λxdx = − x2e−λx
∣∣∣∞
0

+

∫ ∞
0

2xe−λxdx = 0 +
2

λ
E[X] =

2

λ2
.

Var(X) = E
[
X2
]
− E[X]2 =

2

λ2
− 1

λ2
=

1

λ2
.

Theorem 91 (Minimum of Exponential Random Variables). Let X1, . . . , Xn be independent
exponential random variables with parameters λ1, . . . , λn respectively. Then the minimum
of the random variables is also exponentially distributed:

min {X1, . . . , Xn} ∼ Exp (λ1 + · · ·+ λn) .

Proof.
P (min {X1, . . . , Xn} > t) = P (X1 > t, . . . ,Xn > t)

=
n∏
i=1

P (Xi > t)

=
n∏
i=1

e−λit

= e−(
∑n

i=1 λi)t.
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14.3 Normal Random Variables

Definition 92 (Normal/Gaussian RV). A normal or Gaussian random variable X, denoted by
N (µ, σ2) where µ is the mean and σ2 is the variance, has a PDF of the form

f(x) =
1√
2πσ

e−(x−µ)2/2σ2
,

Let’s verify that
1√
2πσ

∫ ∞
−∞

e−(x−µ)2/2σ2
dx = 1.

Proof. We can show this for µ = 0 and σ2 = 1 and this will show for the general case. The trick
is to show that (∫ ∞

−∞
fX(x)dx

)2

= 1

We have (∫ ∞
−∞

fX(x)dx

)2

=

(∫ ∞
−∞

fX(x)dx

)(∫ ∞
−∞

fY (y)dy

)
=

∫ ∞
−∞

∫ ∞
−∞

fX(x)fY (y)dxdy

=

∫ ∞
−∞

∫ ∞
−∞

1

2π
e−(x2+y2)/2dxdy.

Using polar integration, we have dydx = rdrdθ. Then∫ 2π

0

∫ ∞
0

1

2π
e−r

2/2rdrdθ

=

∫ ∞
0

e−r
2/2rdr

=

∫ 0

−∞
esds

= 1.

Definition 93 (Standard Normal RV). The PDF of the standard normal distribution N (0, 1)
(with mean 0 and variance 1) is

f(x) =
1√
2π
e−x

2/2.

Since its CDF cannot be expressed in elementary functions, the CDF is denoted by Φ

Φ(x) = P(X ≤ x) = P(X < x) =
1√
2π

∫ x

−∞
e−t

2/2dt.

Remark. The CDF of a normal random variable is symmetrical, so

Φ(−x) = 1− Φ(x).
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Theorem 94. If X ∼ N
(
µ, σ2

)
, then Y = X−µ

σ ∼ N (0, 1). Equivalently, if Y ∼ N (0, 1),
then

X = σY + µ ∼ N
(
µ, σ2

)
.

Proof. Given that X ∼ N
(
µ, σ2

)
, we can calculate the distribution of Y = X−µ

σ as:

P(a ≤ Y ≤ b) = P(σa+µ ≤ X ≤ σb+µ) =
1√

2πσ2

∫ σb+µ

σa+µ
e−(x−µ)2/(2σ2)dx =

1√
2π

∫ b

a
e−y

2/2dy.

Hence Y is standard normal, which is obtained from X by shifting the origin to µ and scaling
by σ.

Theorem 95 (Sum of Independent Standard Normal RVs). Let X ∼ N (0, 1) and Y ∼ N (0, 1)
be independent standard normal random variables, and suppose a, b ∈ R are constants.
Then Z = aX + bY ∼ N

(
0, a2 + b2

)
.

Proof. Since X and Y are independent, the joint density is

f(x, y) = f(x) · f(y) =
1

2π
e−(x2+y2)/2

The key observation is that f(x, y) is rotationally symmetric around the origin, i.e., f(x, y) only
depends on the value x2 + y2, the distance of the point (x, y) from the origin (0, 0).

Figure 7: The joint density function f(x, y) = 1
2πe
−(x2+y2)/2 is rotationally symmetric.

Thus, f(T (x, y)) = f(x, y) where T is any rotation of the plane R2 about the origin. It follows
that for any setA ⊆ R2

P[(X,Y ) ∈ A] = P[(X,Y ) ∈ T (A)].

Now given any t ∈ R, we have

P(Z ≤ t) = P(aX + bY ≤ t) = P((X,Y ) ∈ A)

where A is the half plane {(x, y) | ax+ by ≤ t}. The boundary line ax+ by = t lies at a distance
d = t√

a2+b2
from the origin. Therefore, as illustrated in the figure the set A can be rotated into

the set

T (A) =

{
(x, y) | x ≤ t√

a2 + b2

}
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Figure 8: The half plane ax+ by ≤ t is rotated into the half plane x ≤ t√
a2+b2

.

This rotation does not change the probability:

P[Z ≤ t] = P[(X,Y ) ∈ A] = P[(X,Y ) ∈ T (A)] = P
[
X ≤ t√

a2 + b2

]
= P

[√
a2 + b2X ≤ t

]
since the equation above holds for all t ∈ R, we conclude that Z has the same distribution as√
a2 + b2X. Since X is standard normal, we know that

√
a2 + b2X ∼ N (0, a2 + b2). Hence

Z = aX + bY ∼ N (0, a2 + b2).

Theorem 96 (Sum of Independent Normal RVs). Let X ∼ N
(
µX , σ

2
X

)
and Y ∼ N

(
µY , σ

2
Y

)
be independent normal random variables. Then for any constants a, b ∈ R,

Z = aX + bY ∼ N (aµX + bµY , a
2σ2
X + b2σ2

Y ).

Proof. Z1 = X−µX
σX

and Z2 = Y−µY
σY

are independent standard normal random variables. Then

Z = aX + bY = a (µX + σXZ1) + b (µY + σY Z2) = (aµX + bµY ) + (aσXZ1 + bσY Z2)

By Theorem 95, Z ′ = aσXZ1 + bσY Z2 ∼ N (0, a2σ2
X + b2σ2

Y ) since aµX + bµY is a constant.
Then by Theorem 94, Z = µ+ Z ′ ∼ N (aµX + bµY , a

2σ2
X + b2σ2

Y ), as desired.

14.4 Central Limit Theorem

Here comes the most important theorem in this class:

Theorem 97 (Central Limit Theorem). Let X1, X2, . . . , Xn be a sequence of i.i.d. random
variables with common finite expectation E [Xi] = µ and finite variance Var (Xi) = σ2. Let
Sn =

∑n
i=1Xi. Then, the distribution of Sn−nµ

σ
√
n

converges to N (0, 1) as n → ∞. In other

words, for any constant c ∈ R

P
(
Sn − nµ
σ
√
n
≤ c
)
→ 1√

2π

∫ c

−∞
e−x

2/2dx as n→∞

Proof. Out of scope.

Remark. The CLT is a stronger claim that WLLN. It states that the distribution of the sample
average Sn/n for large enough n converges to normal distribution with mean and variance both
equal to those of the sample mean. Thus all trace of the distribution of X (no matter how
complex) disappears as n gets large.
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15 Finite Markov Chains

Definition 98 (Invariant/Stationary Distribution). A distribution π is invariant for the transition
probability matrix P if it satisfies the following balance equations:

π = πP.

Definition 99 (Irreducible). A Markov chain is irreducible if it can go from every state i to
every other state j, possibly in finite steps.

15.1 Hitting Time
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