CS70
 Graph Theory

Kelvin Lee
UC Berkeley

February 9, 2021

Overview

(1) Basic Definitions
(2) Connectivity
(3) Eulerian Tour
(4) Complete Graphs
(5) Bipartite Graphs
(6) Planarity
(7) Trees
8) Hypercubes

Basic Definitions

Definition (Graph)

A graph G is defined by a set of vertices V and a set of edges E, denoted by $G=(V, E)$. There are directed and undirected graphs.

Definition (Edge)

We use $(u, v) \in E$ to denote an edge from vertex u to vertex v. If the graph is undirected then we have $(u, v),(v, u) \in E$.

Definition (Degree)

The degree of a vertex v is the number of edges that are incident to v. A vertex with degree 0 is an isolated vertex.

Paths, Cycles, Walks, Tours
Definition (Path)
A path in $G=(V, E)$ is a sequence of edges $\left\{\left(v_{i}, v_{i+1}\right)\right\}_{i=1}^{k-1}$ where each vertex are distinct (no repeated vertex).

Definition (Cycle)
A cycle is simply a path with $v_{1}=v_{k}$ (no repeated vertex).

Definition (Walk)

A walk is a sequence of edges with possible repeated vertex or edge.

Definition (Tour)
A tour is a walk that with $v_{1}=v_{k}$ (with possibly repeated vertex).

Handshaking Theorem

Theorem (Handshaking)
Let $G=(V, E)$ be an undirected graph with m edges. Then

$$
\sum_{v \in V} \operatorname{deg}(v)=2 m
$$

Connectivity

Definition (Connected)

A graph is connected if there is a path between any two distinct vertices.

Definition (Connected Components)
A connected component is a maximal set of connected nodes in a graph.

Eulerian Tour

Definition (Eulerian Tour)

An Eulerian Tour is a tour that visits each edge exactly once.

Theorem (Euler's Theorem)
An undirected graph $G=(V, E)$ has an Eulerian tour iff all vertices have even degree and are connected.

Complete Graphs

Definition (Complete graph)

A graph G is complete if each pair of its vertices is connected by an edge. We use K_{n} to denote a complete graph on n vertices.

Figure: Examples of complete graphs.

A complete graph has $|V|(|V|-1) / 2$ edges.

Bipartite Graphs

Definition (Bipartite)

A graph $G=(V, E)$ is bipartite if $V=V_{1} \cup V_{2}$ and $V_{1} \cap V_{2}=\emptyset$ such that vertices in V_{1} are only connected by those in V_{2}. We use $K_{n, m}$ to denote a complete bipartite graph partitioned into n and m vertices.

Figure: Complete bipartite graphs.

Planarity

Definition (Planar)

A graph is called planar if it can be drawn in the plane without any edges crossing (where a crossing of edges is the intersection of the lines or arcs representing them at a point other than their common endpoint).

Figure: K_{4} is planar because it can be drawn without crossing edges.

Euler's Formula

How to check for planarity?
Theorem (Euler's formula)
For every connected planar graph with v vertices, f faces, and e edges,

$$
v+f=e+2
$$

Corollary

If G is a connected planar simple graph with e edges and v vertices, where $v \geq 3$, then $e \leq 3 v-6$.

This can be used to check that K_{5} is non-planar.

Corollary

If a connected planar simple graph has e edges and v vertices with $v \geq 3$ and no cycles of length three, then $e \geq 2 v-4$.

This can be used to check that $K_{3,3}$ is non-planar.

Non-planarity

Theorem (Kuratowski's Theorem)
A graph is non-planar iff it contains K_{5} or $K_{3,3}$
To prove that a graph G is non-planar, show that you can find K_{5} or $K_{3,3}$ as a subgraph in G.

Trees

Definition (Tree)

If G is a tree, then

- G is connected and contains no cycles.
- G is connected and has $|V|-1$ edges.
- G is connected, and the removal of any single edge disconnects G.
- G has no cycles, and the addition of any single edge creates a cycle.

Trees

Figure: More examples of trees.

Theorem
G is connected and has $|V|-1$ edges is equivalent to G is connected and contains no cycles.

Hypercubes

- An n-dimensional hypercube $G=(V, E)$ has $V=\{0,1\}^{n}$, the set of all n-bit strings and each vertex is labeled by a unique n-bit string.
- Vertices $x=x_{1} x_{2} \ldots x_{n}$ and $y=y_{1} y_{2} \ldots y_{n}$ are neighbors if and only if there is an $i \in\{1, \ldots, n\}$ such that $x_{j}=y_{j}$ for all $j \neq i$, and $x_{i} \neq y_{i}$.
- The n-dimensional hypercube has 2^{n} vertices.

Figure: Hypercubes.

Hypercubes

Lemma

The total number of edges in an n-dimensional hypercube is $n 2^{n-1}$.

Proof:

The degree of each vertex is n, since n bit positions can be flipped in any
$x \in\{0,1\}^{n}$. since each edge is counted twice, once from each endpoint, this yields a total of $n 2^{n} / 2=n 2^{n-1}$ edges.

Problem Time!

