CS70 Modular Arithmetic

Kelvin Lee

UC Berkeley

February 22, 2021

Kelvin Lee (UC Berkeley)

Discrete Math and Probability Theory

February 22, 2021 1 / 16

3

→ ∃ →

< 17 ▶

Overview

Basic Definitions

- 2 Multiplicative Inverse
- 3 Euclid's Algorithm
- 4 Extended Euclid's algorithm
- 5 Functions
- 6 Bijection
- 7 Fermat's Little Theorem
- 8 Chinese Remainder Theorem

Kelvin Lee (UC Berkeley)

2

イロト イヨト イヨト イヨト

Definition (Congruence)

3

イロト イヨト イヨト イヨト

Kelvin Lee (UC Berkeley)

Definition (Congruence)

x is **congruent** to y modulo m or $x \equiv y \pmod{m}$ if and only if any one of the following is true:

< /□ > < ∃

3

Definition (Congruence)

x is **congruent** to y modulo m or $x \equiv y \pmod{m}$ if and only if any one of the following is true:

•
$$(x - y)$$
 is divisible by m

< A > < E

3

Definition (Congruence)

x is **congruent** to y modulo m or $x \equiv y \pmod{m}$ if and only if any one of the following is true:

• (x - y) is divisible by m

• x and y have the same remainder w.r.t. m

Definition (Congruence)

x is **congruent** to y modulo m or $x \equiv y \pmod{m}$ if and only if any one of the following is true:

• (x - y) is divisible by m

• x and y have the same remainder w.r.t. m

• x = y + km for some integer k

Definition (Congruence)

x is **congruent** to y modulo m or $x \equiv y \pmod{m}$ if and only if any one of the following is true:

• (x - y) is divisible by m

• x and y have the same remainder w.r.t. m

• x = y + km for some integer k

• In modulo m, only the numbers $\{0, 1, 2, \ldots, m-1\}$ exist.

Definition (Congruence)

x is **congruent** to y modulo m or $x \equiv y \pmod{m}$ if and only if any one of the following is true:

• (x - y) is divisible by m

• x and y have the same remainder w.r.t. m

• x = y + km for some integer k

- In modulo m, only the numbers $\{0, 1, 2, \ldots, m-1\}$ exist.
- Division is not well-defined.

Definition (Congruence)

x is **congruent** to y modulo m or $x \equiv y \pmod{m}$ if and only if any one of the following is true:

• (x - y) is divisible by m

• x and y have the same remainder w.r.t. m

• x = y + km for some integer k

- In modulo m, only the numbers $\{0, 1, 2, \ldots, m-1\}$ exist.
- Division is not well-defined.

Definition (Multiplicative Inverse)

Definition (Congruence)

x is **congruent** to y modulo m or $x \equiv y \pmod{m}$ if and only if any one of the following is true:

• (x - y) is divisible by m

• x and y have the same remainder w.r.t. m

• x = y + km for some integer k

- In modulo m, only the numbers $\{0, 1, 2, \ldots, m-1\}$ exist.
- Division is not well-defined.

Definition (Multiplicative Inverse)

Normally we say that the **multiplicative inverse** of x is y if xy = 1.

Definition (Congruence)

x is **congruent** to y modulo m or $x \equiv y \pmod{m}$ if and only if any one of the following is true:

• (x - y) is divisible by m

• x and y have the same remainder w.r.t. m

• x = y + km for some integer k

- In modulo m, only the numbers $\{0, 1, 2, \ldots, m-1\}$ exist.
- Division is not well-defined.

Definition (Multiplicative Inverse)

Normally we say that the **multiplicative inverse** of x is y if xy = 1. In the modular space, the **multiplicative inverse** of x mod m is y if $xy \equiv 1 \pmod{m}$.

Theorem (Modular operations)

э

A D N A B N A B N A B N

Theorem (Modular operations)

 $a \equiv c \mod m \text{ and } b \equiv d \mod m \implies a + b \equiv c + d \pmod{m}$ and $a \cdot b \equiv c \cdot d \pmod{m}$.

-47 ▶

э

Theorem (Modular operations)

 $a \equiv c \mod m \text{ and } b \equiv d \mod m \implies a + b \equiv c + d \pmod{m}$ and $a \cdot b \equiv c \cdot d \pmod{m}$.

Theorem (Existence of multiplicative inverse)

3

- ∢ ⊒ →

Kelvin Lee (UC Berkeley)

Theorem (Modular operations)

 $a \equiv c \mod m \text{ and } b \equiv d \mod m \implies a + b \equiv c + d \pmod{m}$ and $a \cdot b \equiv c \cdot d \pmod{m}$.

Theorem (Existence of multiplicative inverse) $gcd(x,m) = 1 \implies x \text{ has a multiplicative inverse modulo m and it is}$ *unique*.

Kelvin Lee (UC Berkeley)

Discrete Math and Probability Theory

February 22, 2021 5 / 16

æ

イロト イヨト イヨト イヨト

How do we compute gcd of two numbers x and y?

3. 3

Image: A match a ma

How do we compute gcd of two numbers x and y?

Theorem (Euclid's Algorithm)

3

-

▲ 伊 ▶ ▲ 三

How do we compute gcd of two numbers x and y?

Theorem (Euclid's Algorithm)

Let $x \ge y > 0$. Then

 $gcd(x, y) = gcd(y, x \mod y)$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

How do we compute gcd of two numbers x and y?

Theorem (Euclid's Algorithm)

Let $x \ge y > 0$. Then

$$gcd(x, y) = gcd(y, x \mod y)$$

Example

How do we compute gcd of two numbers x and y?

Theorem (Euclid's Algorithm)

Let $x \ge y > 0$. Then

$$gcd(x, y) = gcd(y, x \mod y)$$

Example

Compute gcd(16,10):

How do we compute gcd of two numbers x and y?

Theorem (Euclid's Algorithm)

Let $x \ge y > 0$. Then

$$gcd(x, y) = gcd(y, x \mod y)$$

Example

Compute gcd(16,10):

```
\gcd(16,10)=\gcd(10,6)
```

How do we compute gcd of two numbers x and y?

Theorem (Euclid's Algorithm)

Let $x \ge y > 0$. Then

$$gcd(x, y) = gcd(y, x \mod y)$$

Example

Compute gcd(16,10):

gcd(16, 10) = gcd(10, 6)= gcd(6, 4)

How do we compute gcd of two numbers x and y?

Theorem (Euclid's Algorithm)

Let $x \ge y > 0$. Then

$$gcd(x, y) = gcd(y, x \mod y)$$

Example

Compute gcd(16,10):

gcd(16, 10) = gcd(10, 6)= gcd(6, 4)= gcd(4, 2)

How do we compute gcd of two numbers x and y?

Theorem (Euclid's Algorithm)

Let $x \ge y > 0$. Then

$$gcd(x, y) = gcd(y, x \mod y)$$

Example

Compute gcd(16,10):

gcd(16, 10) = gcd(10, 6)= gcd(6, 4)= gcd(4, 2)= gcd(2, 0)

How do we compute gcd of two numbers x and y?

Theorem (Euclid's Algorithm)

Let $x \ge y > 0$. Then

$$gcd(x, y) = gcd(y, x \mod y)$$

Example

Compute gcd(16,10):

gcd(16, 10) = gcd(10, 6)= gcd(6, 4)= gcd(4, 2)= gcd(2, 0)= 2.

Kelvin Lee (UC Berkeley)

Kelvin Lee (UC Berkeley)

Discrete Math and Probability Theory

February 22, 2021 6 / 16

▶ < ∃ >

• • • • • • • • • •

э

How to compute the multiplicative inverse?

Kelvin Lee (UC Berkeley)

э

< 17 ▶

How to compute the multiplicative inverse?

• Need an algorithm that returns integers *a* and *b* such that:

gcd(x, y) = ax + by.

A 1

How to compute the multiplicative inverse?

• Need an algorithm that returns integers *a* and *b* such that:

$$gcd(x, y) = ax + by.$$

Theorem (Bézout's Identity)

How to compute the multiplicative inverse?

• Need an algorithm that returns integers *a* and *b* such that:

$$gcd(x, y) = ax + by.$$

Theorem (Bézout's Identity)

For nonzero integers x and y, let d be the greatest common divisor such that d = gcd(x, y). Then, there exist integers a and b such that

$$ax + by = d$$
.

How to compute the multiplicative inverse?

• Need an algorithm that returns integers *a* and *b* such that:

$$gcd(x, y) = ax + by.$$

Theorem (Bézout's Identity)

For nonzero integers x and y, let d be the greatest common divisor such that d = gcd(x, y). Then, there exist integers a and b such that

$$ax + by = d$$
.

• When gcd(x, y) = 1, we can deduce that b is an inverse of y mod x.

・ 同 ト ・ ヨ ト ・ ヨ ト

How to compute the multiplicative inverse?

• Need an algorithm that returns integers *a* and *b* such that:

$$gcd(x, y) = ax + by.$$

Theorem (Bézout's Identity)

For nonzero integers x and y, let d be the greatest common divisor such that d = gcd(x, y). Then, there exist integers a and b such that

$$ax + by = d$$
.

• When gcd(x, y) = 1, we can deduce that b is an inverse of y mod x.

• This uses back substitutions repetitively so that the final expression is in terms of x and y.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶
- 2

イロト イヨト イヨト イヨト

Definition (Function)

æ

< □ > < □ > < □ > < □ > < □ >

Definition (Function)

Let A and B be nonempty sets. A **function** f from A to B is an assignment of exactly one element of B to each element of A. (vertical line test)

Definition (Function)

Let A and B be nonempty sets. A **function** f from A to B is an assignment of exactly one element of B to each element of A. (vertical line test)

• To denote such a function, we write $f : A \rightarrow B$ (f maps A to B).

Definition (Function)

Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A. (vertical line test)

• To denote such a function, we write $f : A \rightarrow B$ (f maps A to B).

• A is the **domain** and B is the **co-domain**.

Definition (Function)

Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A. (vertical line test)

- To denote such a function, we write $f : A \rightarrow B$ (f maps A to B).
- A is the **domain** and B is the **co-domain**.
- Pre-image is a **subset** of domain, and the image/range is the **subset** of co-domain.

Definition (Function)

Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A. (vertical line test)

- To denote such a function, we write $f : A \rightarrow B$ (f maps A to B).
- A is the **domain** and B is the **co-domain**.
- Pre-image is a **subset** of domain, and the image/range is the **subset** of co-domain.
 - If f(a) = b, where a ∈ A and b ∈ B, then we say that b is the image of a and a is the pre-image of b.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Kelvin Lee (UC Berkeley)

<ロト <問ト < 目と < 目と

Definition (One-to-one)

Kelvin Lee (UC Berkeley)

イロト イヨト イヨト イヨト

Definition (One-to-one)

A function f is said to be **one-to-one** if and only if f(a) = f(a') implies that a = a' for all $a, a' \in A$. A function is said to be **injective** if it is **one-to-one**.

▲ 同 ▶ → ● ▶

Definition (One-to-one)

A function f is said to be **one-to-one** if and only if f(a) = f(a') implies that a = a' for all $a, a' \in A$. A function is said to be **injective** if it is one-to-one.

• To show that a function is *one-to-one*, we show that $a \neq a' \implies f(a) \neq f(a')$. (Why?)

- 4 回 ト 4 ヨ ト 4 ヨ ト

Definition (One-to-one)

A function f is said to be **one-to-one** if and only if f(a) = f(a') implies that a = a' for all $a, a' \in A$. A function is said to be **injective** if it is **one-to-one**.

• To show that a function is *one-to-one*, we show that $a \neq a' \implies f(a) \neq f(a')$. (Why?)

Definition (Onto)

イロト 不得下 イヨト イヨト 二日

Definition (One-to-one)

A function f is said to be **one-to-one** if and only if f(a) = f(a') implies that a = a' for all $a, a' \in A$. A function is said to be **injective** if it is **one-to-one**.

• To show that a function is *one-to-one*, we show that $a \neq a' \implies f(a) \neq f(a')$. (Why?)

Definition (Onto)

A function f is called **onto**, or a surjection, if and only if for every element $b \in B$ there is an element $a \in A$ such that f(a) = b. We also say that f is **surjective** if it's onto.

イロト 不得下 イヨト イヨト 二日

Definition (One-to-one)

A function f is said to be **one-to-one** if and only if f(a) = f(a') implies that a = a' for all $a, a' \in A$. A function is said to be **injective** if it is **one-to-one**.

• To show that a function is *one-to-one*, we show that $a \neq a' \implies f(a) \neq f(a')$. (Why?)

Definition (Onto)

A function f is called **onto**, or a surjection, if and only if for every element $b \in B$ there is an element $a \in A$ such that f(a) = b. We also say that f is **surjective** if it's onto.

• To show that a function is *onto*, choose $a = f^{-1}(b)$ and so $f(f^{-1}(b)) = b$.

Kelvin Lee (UC Berkeley)

Definition (Bijection)

Kelvin Lee (UC Berkeley)

æ

A D N A B N A B N A B N

Definition (Bijection)

A function f is a **bijection** if and only if it is both *one-to-one* and *onto*. We also say that f is bijective.

47 ▶

Definition (Bijection)

A function f is a **bijection** if and only if it is both *one-to-one* and *onto*. We also say that f is bijective.

If f : A → B is a bijection, it will have an inverse function (a lemma from notes), and |A| = |B|.

Kelvin Lee (UC Berkeley)

Discrete Math and Probability Theory

February 22, 2021 10 / 16

2

A D N A B N A B N A B N

Theorem (Fermat's Little Theorem)

(日) (四) (日) (日) (日)

э

Theorem (Fermat's Little Theorem)

For any prime p and any a $\in \{1, 2, ..., p-1\}$, we have

3

(4) (日本)

Theorem (Fermat's Little Theorem)

For any prime p and any a $\in \{1, 2, ..., p-1\}$, we have

$$a^{p-1} \equiv 1 \pmod{p}.$$

3

- 4 回 ト 4 三 ト 4 三 ト

Theorem (Fermat's Little Theorem)

For any prime p and any a $\in \{1, 2, ..., p-1\}$, we have

$$a^{p-1} \equiv 1 \pmod{p}.$$

Proof:

- 31

< □ > < 同 > < 回 > < 回 > < 回 >

Theorem (Fermat's Little Theorem)

For any prime p and any a $\in \{1, 2, ..., p-1\}$, we have

 $a^{p-1} \equiv 1 \pmod{p}.$

Proof:

• Consider
$$S = \{1, 2, ..., p - 1\}$$
 and
 $S' = \{a \mod p, 2a \mod p, ..., (p - 1)a \mod p\}$

- 3

- 4 回 ト 4 ヨ ト 4 ヨ ト

Theorem (Fermat's Little Theorem)

For any prime p and any a $\in \{1, 2, ..., p-1\}$, we have

 $a^{p-1} \equiv 1 \pmod{p}.$

Proof:

• Consider
$$S = \{1, 2, \dots, p-1\}$$
 and

 $S' = \{a \bmod p, 2a \bmod p, \dots, (p-1)a \bmod p\}.$

• They are the same set under mod *p* (different order).

- 3

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Fermat's Little Theorem)

For any prime p and any a $\in \{1, 2, ..., p-1\}$, we have

 $a^{p-1} \equiv 1 \pmod{p}.$

Proof:

• They are the same set under mod *p* (different order).

$$\prod_{k=1}^{p-1} k \equiv \prod_{k=1}^{p-1} ka \; (\bmod p)$$

3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem (Fermat's Little Theorem)

For any prime p and any a $\in \{1, 2, ..., p-1\}$, we have

 $a^{p-1} \equiv 1 \pmod{p}.$

Proof:

• Consider
$$S = \{1, 2, ..., p - 1\}$$
 and
 $S' = \{a \mod p, 2a \mod p, ..., (p - 1)a \mod p\}.$

• They are the same set under mod *p* (different order).

$$\prod_{k=1}^{p-1} k \equiv \prod_{k=1}^{p-1} ka \; (\bmod p)$$

$$(p-1)! \equiv a^{p-1}(p-1)! \pmod{p} \implies$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem (Fermat's Little Theorem)

For any prime p and any a $\in \{1, 2, ..., p-1\}$, we have

 $a^{p-1} \equiv 1 \pmod{p}.$

Proof:

• Consider
$$S = \{1, 2, ..., p - 1\}$$
 and
 $S' = \{a \mod p, 2a \mod p, ..., (p - 1)a \mod p\}.$

• They are the same set under mod *p* (different order).

$$\prod_{k=1}^{p-1} k \equiv \prod_{k=1}^{p-1} ka \; (\bmod p)$$

 $(p-1)! \equiv a^{p-1}(p-1)! \pmod{p} \implies a^{p-1} \equiv 1 \pmod{p}$

Kelvin Lee (UC Berkeley)

Discrete Math and Probability Theory

February 22, 2021 11 / 16

(日) (四) (日) (日) (日)

2

Theorem (Chinese Remainder Theorem)

э

<ロト <問ト < 目と < 目と

Theorem (Chinese Remainder Theorem)

Let $n_1, n_2, ..., n_k$ be positive integers that are coprime to each other. Then, for any integers a_i , the system of simultaneous congruences

3

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Chinese Remainder Theorem)

Let $n_1, n_2, ..., n_k$ be positive integers that are coprime to each other. Then, for any integers a_i , the system of simultaneous congruences

$$x\equiv a_1\pmod{n_1}, x\equiv a_2\pmod{n_2},\ \dots, x\equiv a_k\pmod{n_k}$$

3

A D N A B N A B N A B N

Theorem (Chinese Remainder Theorem)

Let $n_1, n_2, ..., n_k$ be positive integers that are coprime to each other. Then, for any integers a_i , the system of simultaneous congruences

$$x\equiv a_1\pmod{n_1}, x\equiv a_2\pmod{n_2},\ \dots, x\equiv a_k\pmod{n_k}$$

has a unique solution

$$x = \left(\sum_{i=1}^{k} a_i b_i\right) \bmod N$$

3

A D N A B N A B N A B N

Theorem (Chinese Remainder Theorem)

Let $n_1, n_2, ..., n_k$ be positive integers that are coprime to each other. Then, for any integers a_i , the system of simultaneous congruences

$$x\equiv a_1\pmod{n_1}, x\equiv a_2\pmod{n_2},\ \dots, x\equiv a_k\pmod{n_k}$$

has a unique solution

$$x = \left(\sum_{i=1}^k a_i b_i\right) \bmod N$$

where $N = \prod_{i=1}^{k} n_i$ and $b_i = \frac{N}{n_i} \left(\frac{N}{n_i}\right)_{n_i}^{-1}$ where $\left(\frac{N}{n_i}\right)_{n_i}^{-1}$ denotes the multiplicative inverse (mod n_i) of the integer $\frac{N}{n_i}$.

3

< □ > < □ > < □ > < □ > < □ > < □ >

Kelvin Lee (UC Berkeley)

Discrete Math and Probability Theory

February 22, 2021 12 / 16

< □ > < 同 > < 回 > < 回 > < 回 >

2

Proof:

To see why x is a solution, notice that for each i = 1, 2, ..., k, we have

 $x \equiv a_1y_1z_1 + a_2y_2z_2 + \cdots + a_ky_kz_k \pmod{n_i}$

- 20

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof:

To see why x is a solution, notice that for each i = 1, 2, ..., k, we have

$$x \equiv a_1 y_1 z_1 + a_2 y_2 z_2 + \dots + a_k y_k z_k \pmod{n_i}$$
$$\equiv a_i y_i z_i \pmod{n_i}$$

3

ヨト イヨト

< /⊒> <
Proof:

To see why x is a solution, notice that for each i = 1, 2, ..., k, we have

$$x \equiv a_1 y_1 z_1 + a_2 y_2 z_2 + \dots + a_k y_k z_k \pmod{n_i}$$
$$\equiv a_i y_i z_i \pmod{n_i}$$
$$\equiv a_i \pmod{n_i}.$$

イロト 不得 トイラト イラト 一日

Proof:

Kelvin Lee (UC Berkeley)

To see why x is a solution, notice that for each i = 1, 2, ..., k, we have

$$x \equiv a_1 y_1 z_1 + a_2 y_2 z_2 + \dots + a_k y_k z_k \pmod{n_i}$$
$$\equiv a_i y_i z_i \pmod{n_i}$$
$$\equiv a_i \pmod{n_i}.$$

• The second line follows since $y_j \equiv 0 \mod n_i$ for each $j \neq i$.

3

イロト イポト イヨト イヨト

Proof:

To see why x is a solution, notice that for each i = 1, 2, ..., k, we have

$$x \equiv a_1 y_1 z_1 + a_2 y_2 z_2 + \dots + a_k y_k z_k \pmod{n_i}$$
$$\equiv a_i y_i z_i \pmod{n_i}$$
$$\equiv a_i \pmod{n_i}.$$

- The second line follows since $y_j \equiv 0 \mod n_i$ for each $j \neq i$.
- The third line follows since $y_i z_i \equiv 1 \mod n_i$.

Proof:

To see why x is a solution, notice that for each i = 1, 2, ..., k, we have

$$x \equiv a_1 y_1 z_1 + a_2 y_2 z_2 + \dots + a_k y_k z_k \pmod{n_i}$$
$$\equiv a_i y_i z_i \pmod{n_i}$$
$$\equiv a_i \pmod{n_i}.$$

- The second line follows since $y_j \equiv 0 \mod n_i$ for each $j \neq i$.
- The third line follows since $y_i z_i \equiv 1 \mod n_i$.

Now, to prove uniqueness, suppose there are two solutions x and y.

Proof:

To see why x is a solution, notice that for each i = 1, 2, ..., k, we have

$$x \equiv a_1 y_1 z_1 + a_2 y_2 z_2 + \dots + a_k y_k z_k \pmod{n_i}$$
$$\equiv a_i y_i z_i \pmod{n_i}$$
$$\equiv a_i \pmod{n_i}.$$

- The second line follows since $y_j \equiv 0 \mod n_i$ for each $j \neq i$.
- The third line follows since $y_i z_i \equiv 1 \mod n_i$.

Now, to prove uniqueness, suppose there are two solutions x and y.

• Then
$$n_1 | (x - y), n_2 | (x - y), \dots, n_k | (x - y).$$

Proof:

To see why x is a solution, notice that for each i = 1, 2, ..., k, we have

$x \equiv a_1y_1z_1 + a_2y_2z_2 + \cdots + a_ky_kz_k$	$(\mod n_i)$
$\equiv a_i y_i z_i$	$(\mod n_i)$
$\equiv a_i$	$(\mod n_i)$.

- The second line follows since $y_j \equiv 0 \mod n_i$ for each $j \neq i$.
- The third line follows since $y_i z_i \equiv 1 \mod n_i$.

Now, to prove uniqueness, suppose there are two solutions x and y.

- Then $n_1 | (x y), n_2 | (x y), \dots, n_k | (x y).$
- Since n₁, n₂,..., n_k are relatively prime, we have that n₁n₂...n_k divides x y, or

Proof:

To see why x is a solution, notice that for each i = 1, 2, ..., k, we have

$$x \equiv a_1 y_1 z_1 + a_2 y_2 z_2 + \dots + a_k y_k z_k \pmod{n_i}$$
$$\equiv a_i y_i z_i \pmod{n_i}$$
$$\equiv a_i \pmod{n_i}.$$

- The second line follows since $y_j \equiv 0 \mod n_i$ for each $j \neq i$.
- The third line follows since $y_i z_i \equiv 1 \mod n_i$.

Now, to prove uniqueness, suppose there are two solutions x and y.

- Then $n_1 | (x y), n_2 | (x y), \dots, n_k | (x y).$
- Since n₁, n₂,..., n_k are relatively prime, we have that n₁n₂...n_k divides x y, or

$$x \equiv y \pmod{N}.$$

Proof:

To see why x is a solution, notice that for each i = 1, 2, ..., k, we have

$$x \equiv a_1 y_1 z_1 + a_2 y_2 z_2 + \dots + a_k y_k z_k \pmod{n_i}$$
$$\equiv a_i y_i z_i \pmod{n_i}$$
$$\equiv a_i \pmod{n_i}.$$

- The second line follows since $y_j \equiv 0 \mod n_i$ for each $j \neq i$.
- The third line follows since $y_i z_i \equiv 1 \mod n_i$.

Now, to prove uniqueness, suppose there are two solutions x and y.

- Then $n_1 | (x y), n_2 | (x y), \dots, n_k | (x y).$
- Since n₁, n₂,..., n_k are relatively prime, we have that n₁n₂...n_k divides x y, or

$$x \equiv y \pmod{N}.$$

General construction:

Kelvin Lee (UC Berkeley)

(日) (四) (日) (日) (日)

э

General construction:

• Compute $N = n_1 \times n_2 \times \cdots \times n_k$.

- 4 回 ト - 4 回 ト

General construction:

1 Compute
$$N = n_1 \times n_2 \times \cdots \times n_k$$
.

2 For each $i = 1, 2, \ldots, k$, compute

$$y_i = \frac{N}{n_i} = n_1 n_2 \cdots n_{i-1} n_{i+1} \cdots n_k.$$

(日) (四) (日) (日) (日)

э

General construction:

Oracle Set 1 Compute
$$N = n_1 \times n_2 \times \cdots \times n_k$$
.

2 For each $i = 1, 2, \ldots, k$, compute

$$y_i = \frac{N}{n_i} = n_1 n_2 \cdots n_{i-1} n_{i+1} \cdots n_k.$$

• For each i = 1, 2, ..., k, compute $z_i \equiv y_i^{-1} \mod n_i$ (z_i exists since $n_1, n_2, ..., n_k$ are pairwise coprime).

- 小田 ト イヨト 一日

General construction:

• Compute
$$N = n_1 \times n_2 \times \cdots \times n_k$$
.

2 For each $i = 1, 2, \ldots, k$, compute

$$y_i=\frac{N}{n_i}=n_1n_2\cdots n_{i-1}n_{i+1}\cdots n_k.$$

For each i = 1, 2, ..., k, compute z_i ≡ y_i⁻¹ mod n_i (z_i exists since n₁, n₂, ..., n_k are pairwise coprime).

Compute

$$x = \sum_{i=1}^{k} a_i y_i z_i$$

and $x \mod N$ is the unique solution modulo N.

Kelvin Lee (UC Berkeley)

- 34

Intuitive way to solve for CRT:

Kelvin Lee (UC Berkeley)

Discrete Math and Probability Theory

February 22, 2021 14 / 16

(日) (四) (日) (日) (日)

э

Intuitive way to solve for CRT:

1 Begin with the congruence with the largest modulus, $x \equiv a_k \pmod{n_k}$.

< 47 ▶

Intuitive way to solve for CRT:

- **O** Begin with the congruence with the largest modulus, $x \equiv a_k \pmod{n_k}$.
- Re-write this modulus as an equation, x = j_kn_k + a_k, for some positive integer j_k.

Intuitive way to solve for CRT:

- **O** Begin with the congruence with the largest modulus, $x \equiv a_k \pmod{n_k}$.
- Re-write this modulus as an equation, x = j_kn_k + a_k, for some positive integer j_k.
- Substitute the expression for x into the congruence with the next largest modulus, $x \equiv a_k \pmod{n_k} \Longrightarrow j_k n_k + a_k \equiv a_{k-1} \pmod{n_{k-1}}$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Intuitive way to solve for CRT:

- **9** Begin with the congruence with the largest modulus, $x \equiv a_k \pmod{n_k}$.
- Re-write this modulus as an equation, x = j_kn_k + a_k, for some positive integer j_k.
- Substitute the expression for x into the congruence with the next largest modulus, $x \equiv a_k \pmod{n_k} \Longrightarrow j_k n_k + a_k \equiv a_{k-1} \pmod{n_{k-1}}$.
- Solve this congruence for j_k .

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Intuitive way to solve for CRT:

- **9** Begin with the congruence with the largest modulus, $x \equiv a_k \pmod{n_k}$.
- Re-write this modulus as an equation, x = j_kn_k + a_k, for some positive integer j_k.
- Substitute the expression for x into the congruence with the next largest modulus, $x \equiv a_k \pmod{n_k} \Longrightarrow j_k n_k + a_k \equiv a_{k-1} \pmod{n_{k-1}}$.
- Solve this congruence for j_k .
- Write the solved congruence as an equation, and then substitute this expression for j_k into the equation for x.

Intuitive way to solve for CRT:

- **9** Begin with the congruence with the largest modulus, $x \equiv a_k \pmod{n_k}$.
- Re-write this modulus as an equation, x = j_kn_k + a_k, for some positive integer j_k.
- Substitute the expression for x into the congruence with the next largest modulus, $x \equiv a_k \pmod{n_k} \Longrightarrow j_k n_k + a_k \equiv a_{k-1} \pmod{n_{k-1}}$.
- Solve this congruence for j_k .
- Write the solved congruence as an equation, and then substitute this expression for j_k into the equation for x.
- Continue substituting and solving congruences until the equation for x implies the solution to the system of congruences.

Example

Kelvin Lee (UC Berkeley)

2

イロト イヨト イヨト イヨト

Example

$$\begin{cases} x \equiv 1 \pmod{3} \\ x \equiv 4 \pmod{5} \\ x \equiv 6 \pmod{7} \end{cases}$$

2

イロト イヨト イヨト イヨト

Example

$$\begin{cases} x \equiv 1 \pmod{3} \\ x \equiv 4 \pmod{5} \\ x \equiv 6 \pmod{7} \end{cases}$$

Solution:

(日) (四) (日) (日) (日)

Example

$$\begin{cases} x \equiv 1 \pmod{3} \\ x \equiv 4 \pmod{5} \\ x \equiv 6 \pmod{7} \end{cases}$$

Solution:

• Start with mod 7. Write x = 7k + 6.

3

< □ > < □ > < □ > < □ > < □ > < □ >

Example

$$\begin{cases} x \equiv 1 \pmod{3} \\ x \equiv 4 \pmod{5} \\ x \equiv 6 \pmod{7} \end{cases}$$

Solution:

- Start with mod 7. Write x = 7k + 6.
- Then we have $7k + 6 \equiv 4 \pmod{5} \implies k \equiv 4 \pmod{5}$.

3

- 4 回 ト 4 ヨ ト 4 ヨ ト

Example

$$\begin{cases} x \equiv 1 \pmod{3} \\ x \equiv 4 \pmod{5} \\ x \equiv 6 \pmod{7} \end{cases}$$

Solution:

- Start with mod 7. Write x = 7k + 6.
- Then we have $7k + 6 \equiv 4 \pmod{5} \implies k \equiv 4 \pmod{5}$.
- Then solving for k gives 5j + 4.

3

・ 何 ト ・ ヨ ト ・ ヨ ト

Example

$$\begin{cases} x \equiv 1 \pmod{3} \\ x \equiv 4 \pmod{5} \\ x \equiv 6 \pmod{7} \end{cases}$$

Solution:

- Start with mod 7. Write x = 7k + 6.
- Then we have $7k + 6 \equiv 4 \pmod{5} \implies k \equiv 4 \pmod{5}$.
- Then solving for k gives 5j + 4.
- Now we have x = 7k + 6 = 7(5j + 4) + 6 = 35j + 34.

- 20

- 4 回 ト 4 三 ト 4 三 ト

Example

$$\begin{cases} x \equiv 1 \pmod{3} \\ x \equiv 4 \pmod{5} \\ x \equiv 6 \pmod{7} \end{cases}$$

Solution:

- Start with mod 7. Write x = 7k + 6.
- Then we have $7k + 6 \equiv 4 \pmod{5} \implies k \equiv 4 \pmod{5}$.
- Then solving for k gives 5j + 4.
- Now we have x = 7k + 6 = 7(5j + 4) + 6 = 35j + 34.
- Then $35j + 34 \equiv 1 \pmod{3} \implies j \equiv 0 \pmod{3} \implies j = 3t$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example

$$\begin{cases} x \equiv 1 \pmod{3} \\ x \equiv 4 \pmod{5} \\ x \equiv 6 \pmod{7} \end{cases}$$

Solution:

- Start with mod 7. Write x = 7k + 6.
- Then we have $7k + 6 \equiv 4 \pmod{5} \implies k \equiv 4 \pmod{5}$.
- Then solving for k gives 5j + 4.
- Now we have x = 7k + 6 = 7(5j + 4) + 6 = 35j + 34.
- Then $35j + 34 \equiv 1 \pmod{3} \implies j \equiv 0 \pmod{3} \implies j = 3t$.
- Finally, we have $x = 35(3t) + 34 = 105t + 34 \implies x \equiv \boxed{34}$ (mod 105).

Kelvin Lee (UC Berkeley)

Problem Time!

э

A D N A B N A B N A B N