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x is congruent to y modulo m or x = y(modm) if and only if any one of
the following is true:
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x is congruent to y modulo m or x = y(modm) if and only if any one of
the following is true:

@ (x —y) is divisible by m
@ x and y have the same remainder w.r.t. m

@ x =y + km for some integer k

@ In modulo m, only the numbers {0,1,2,..., m— 1} exist.
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x is congruent to y modulo m or x = y(modm) if and only if any one of
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Basic Definitions

Definition (Congruence)

x is congruent to y modulo m or x = y(modm) if and only if any one of
the following is true:

(x — y) is divisible by m

x and y have the same remainder w.r.t. m

@ x =y + km for some integer k

@ In modulo m, only the numbers {0,1,2,..., m — 1} exist.

@ Division is not well-defined.
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Normally we say that the multiplicative inverse of x is y if xy = 1.
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Basic Definitions

Definition (Congruence)

x is congruent to y modulo m or x = y(modm) if and only if any one of
the following is true:

(x — y) is divisible by m

x and y have the same remainder w.r.t. m

@ x =y + km for some integer k

@ In modulo m, only the numbers {0,1,2,..., m — 1} exist.
@ Division is not well-defined.
Definition (Multiplicative Inverse)
Normally we say that the multiplicative inverse of x is y if xy = 1.

In the modular space, the multiplicative inverse of x mod m is y if

xy = 1(modm).
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Theorem (Modular operations)

c-d (modm).

a=cmodmandb=dmodm = a+b=c+d(modm)anda-b=
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c-d (modm).

Theorem (Existence of multiplicative inverse)

Kelvin Lee (UC Berkeley) Discrete Math and Probability Theory



Theorems

Theorem (Modular operations)

a=cmodmandb=dmodm = a+b=c+d(modm)anda-b=
c-d (modm).

Theorem (Existence of multiplicative inverse)

ged (x,m) =1 = x has a multiplicative inverse modulo m and it is
unique.
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Let x >y > 0. Then
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Euclid’s Algorithm

How do we compute gcd of two numbers x and y?

Theorem (Euclid’s Algorithm)
Let x >y > 0. Then

gcd(x,y) = ged(y,x mod y)

Example
Compute gecd(16,10):

gcd(16,10) = ged(10, 6)

v
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Theorem (Euclid’s Algorithm)
Let x >y > 0. Then

gcd(x,y) = ged(y,x mod y)

Example
Compute gecd(16,10):
gcd(16,10) = ged(10, 6)
= gcd(6,4)

v
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Euclid’s Algorithm

How do we compute gcd of two numbers x and y?

Theorem (Euclid’s Algorithm)
Let x >y > 0. Then

gcd(x,y) = ged(y,x mod y)

Example
Compute gecd(16,10):
gcd(16,10) = ged(10, 6)
= gcd(6,4)
= gcd(4,2)
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Euclid’s Algorithm

How do we compute gcd of two numbers x and y?

Theorem (Euclid’s Algorithm)
Let x >y > 0. Then

gcd(x,y) = ged(y,x mod y)

Example
Compute gecd(16,10):
gcd(16,10) = ged(10, 6)
= gcd(6,4)
= gcd(4,2)
= gcd(2,0)
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Euclid’s Algorithm
How do we compute gcd of two numbers x and y?

Theorem (Euclid’s Algorithm)
Let x >y > 0. Then

gcd(x,y) = ged(y,x mod y)

Example
Compute gcd(16,10):
ged(16,10) = ged(10, 6)
= gcd(6,4)
= gcd(4,2)
= gcd(2,0)
=2
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Extended Euclid's algorithm
How to compute the multiplicative inverse?
@ Need an algorithm that returns integers a and b such that:

ged(x,y) = ax + by.

Theorem (Bézout's Identity)

For nonzero integers x and y, let d be the greatest common divisor such

that d = gcd(x,y). Then, there exist integers a and b such that

ax + by =d.

@ When gcd(x, y) = 1, we can deduce that b is an inverse of y mod x.

@ This uses back substitutions repetitively so that the final expression is
in terms of x and y.
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Definition (Function)

Let A and B be nonempty sets. A function f from A to B is an assignment

of exactly one element of B to each element of A. (vertical line test)
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@ To denote such a function, we write f : A— B (f maps A to B).
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Functions

Definition (Function)

Let A and B be nonempty sets. A function f from A to B is an assignment

of exactly one element of B to each element of A. (vertical line test)

@ To denote such a function, we write f : A— B (f maps A to B).

@ A is the domain and B is the co-domain.

@ Pre-image is a subset of domain, and the image/range is the subset
of co-domain.

» If f(a) = b, where a € A and b € B, then we say that b is the image of
a and a is the pre-image of b.
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Bijection
Definition (One-to-one)

A function f is said to be one-to-one if and only if f(a) = f(a’) implies

that a = & for all a,a’ € A. A function is said to be injective if it is
one-to-one.
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Bijection
Definition (One-to-one)
A function f is said to be one-to-one if and only if f(a) = f(a’) implies

that a = & for all a,a’ € A. A function is said to be injective if it is
one-to-one.

@ To show that a function is one-to-one, we show that
a#ad = f(a)#f(a). (Why?)
Definition (Onto)
A function f is called onto, or a surjection, if and only if for every element
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Bijection
Definition (One-to-one)
A function f is said to be one-to-one if and only if f(a) = f(a’) implies

that a = & for all a,a’ € A. A function is said to be injective if it is
one-to-one.

@ To show that a function is one-to-one, we show that
a#ad = f(a)#f(a). (Why?)
Definition (Onto)
A function f is called onto, or a surjection, if and only if for every element

b € B there is an element a € A such that f(a) = b. We also say that f is

surjective if it's onto.

e To show that a function is onto, choose a = f~1(b) and so
f(F~1(b)) = b.
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Definition (Bijection)
A function f is a bijection if and only if it is both one-to-one and onto.

We also say that f is bijective.
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Bijection

Definition (Bijection)
A function f is a bijection if and only if it is both one-to-one and onto.

We also say that f is bijective.

e If f: A— Bis a bijection, it will have an inverse function (a lemma
from notes), and |A| = |B|.
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Theorem (Fermat's Little Theorem)

For any prime p and any a € {1,2,...,p — 1}, we have

a1 =1 (modp).
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Fermat's Little Theorem

Theorem (Fermat's Little Theorem)
For any prime p and any a € {1,2,...,p — 1}, we have

a1 =1 (modp).

Proof:
e Consider S ={1,2,...,p—1} and
S§'={amod p,2amod p,...,(p —1)amod p}.

Kelvin Lee (UC Berkeley) Discrete Math and Probability Theory February 22, 2021

10/16



Fermat's Little Theorem

Theorem (Fermat's Little Theorem)
For any prime p and any a € {1,2,...,p — 1}, we have

a1 =1 (modp).

Proof:
e Consider S ={1,2,...,p—1} and
S§'={amod p,2amod p,...,(p —1)amod p}.

@ They are the same set under mod p (different order).

Kelvin Lee (UC Berkeley) Discrete Math and Probability Theory February 22, 2021

10/16



Fermat's Little Theorem

Theorem (Fermat's Little Theorem)
For any prime p and any a € {1,2,...,p — 1}, we have

a1 =1 (modp).

Proof:
e Consider S ={1,2,...,p—1} and
S§'={amod p,2amod p,...,(p —1)amod p}.
@ They are the same set under mod p (different order).

p—1 p—1
H k = H ka (modp)
k=1

k=1
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Theorem (Fermat's Little Theorem)
For any prime p and any a € {1,2,...,p — 1}, we have

a1 =1 (modp).

Proof:
e Consider S ={1,2,...,p—1} and
S§'={amod p,2amod p,...,(p —1)amod p}.
@ They are the same set under mod p (different order).
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Fermat's Little Theorem

Theorem (Fermat's Little Theorem)
For any prime p and any a € {1,2,...,p — 1}, we have

a1 =1 (modp).

Proof:
e Consider S ={1,2,...,p—1} and
S§'={amod p,2amod p,...,(p —1)amod p}.
@ They are the same set under mod p (different order).
p—1 p—1
H k = H ka (modp)
k=1 k=1
(p—1)!'=a"(p—1)! (modp) = aP ! =1 (modp)
(d
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Let n1,no, ..., ng be positive integers that are coprime to each other. Then,
for any integers a;, the system of simultaneous congruences
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Theorem (Chinese Remainder Theorem)

Let n1,no, ..., ng be positive integers that are coprime to each other. Then,
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Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem)

Let n1,no, ..., ng be positive integers that are coprime to each other. Then,

for any integers a;, the system of simultaneous congruences

x=a (modn),x=a (modny), ... ,x=ax (mod ng)

has a unique solution

k
X = (Z a,-b,-) mod N
i=1

-1 -1
where N = T[¥_; n; and b; = N (N) where (nﬂ) denotes the
n;j !

ni \ ni n;

multiplicative inverse (modn;) of the integer nﬂ
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Chinese Remainder Theorem
Proof:

To see why x is a solution, notice that for each i = 1,2,..., k, we have

X = a1y1z21 + ayezo + -+ + akykzk  (modn;)
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Chinese Remainder Theorem
Proof:

To see why x is a solution, notice that for each i = 1,2,..., k, we have
X = a1y1z21 + ayezo + -+ + akykzk  (modn;)
= ajyYiZi (mod n,-)

= aj (modn;) .

@ The second line follows since y; = 0 mod n; for each j # i.
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Chinese Remainder Theorem

Proof:
To see why x is a solution, notice that for each i = 1,2,..., k, we have

X = a1y121 + ayezo + - - + akykzxk  (modn;)
= ajyYiZi (mod n,-)
= aj (mod n,-) .

@ The second line follows since y; = 0 mod n; for each j # i.

@ The third line follows since y;z; = 1 mod n;.
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Chinese Remainder Theorem

Proof:
To see why x is a solution, notice that for each i = 1,2,..., k, we have

X = a1y121 + ayezo + - - + akykzxk  (modn;)
= ajyYiZi (mod n,-)

= aj (modn;) .

@ The second line follows since y; = 0 mod n; for each j # i.

@ The third line follows since y;z; = 1 mod n;.

Now, to prove uniqueness, suppose there are two solutions x and y.
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Chinese Remainder Theorem

Proof:
To see why x is a solution, notice that for each i = 1,2,..., k, we have

X = a1y121 + ayezo + - - + akykzxk  (modn;)
= a;y;z (modn;)

=2 (modn;) .

@ The second line follows since y; = 0 mod n; for each j # i.

@ The third line follows since y;z; = 1 mod n;.

Now, to prove uniqueness, suppose there are two solutions x and y.

@ Then n|(x —y),m|(x—y),...,nk | (x = y).
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Chinese Remainder Theorem

Proof:

To see why x is a solution, notice that for each i = 1,2,..., k, we have

X = a1y121 + ayezo + - - + akykzxk  (modn;)
= a;y;z (modn;)

=2 (modn;) .

@ The second line follows since y; = 0 mod n; for each j # i.
@ The third line follows since y;z; = 1 mod n;.
Now, to prove uniqueness, suppose there are two solutions x and y.
@ Then n|(x —y),m|(x—y),...,nk | (x = y).
@ Since ny, ny, ..., nk are relatively prime, we have that nins - - - ng

divides x — y, or
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Chinese Remainder Theorem
Proof:
To see why x is a solution, notice that for each i = 1,2,..., k, we have
X = a1y1z1 + axy2z2 + -+ akykzk - (modn;)
= aiyizi (modn;)

=2 (modn;) .

@ The second line follows since y; = 0 mod n; for each j # i.
@ The third line follows since y;z; = 1 mod n;.
Now, to prove uniqueness, suppose there are two solutions x and y.
@ Then n|(x —y),m|(x—y),...,nk | (x = y).
@ Since ny, ny, ..., nk are relatively prime, we have that nins - - - ng
divides x — y, or
x=y (modN).
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Chinese Remainder Theorem
Proof:
To see why x is a solution, notice that for each i = 1,2,..., k, we have
X = a1y1z1 + axy2z2 + -+ akykzk - (modn;)
= aiyizi (modn;)

=2 (modn;) .

@ The second line follows since y; = 0 mod n; for each j # i.
@ The third line follows since y;z; = 1 mod n;.
Now, to prove uniqueness, suppose there are two solutions x and y.
@ Then n|(x —y),m|(x—y),...,nk | (x = y).
@ Since ny, ny, ..., nk are relatively prime, we have that nins - - - ng
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Chinese Remainder Theorem
General construction:
@ Compute N =ny X np X -+ X n.

© Foreachi=1,2,...,k, compute

Yi= —=mn2---Ni_1Nj41- - Ng.
nj
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Chinese Remainder Theorem
General construction:
@ Compute N =ny X np X -+ X n.

© Foreachi=1,2,...,k, compute

N
Yi = P ning---nNj—1Niy1 -« Nk.
1

© Foreach i=1,2,... k, compute z; = y,-_1 mod n; (z; exists since

ni, N, ..., Nk are pairwise coprime).
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Chinese Remainder Theorem
General construction:
@ Compute N =ny X np X -+ X n.

© Foreachi=1,2,...,k, compute

N
Yi= — =mn2---Ni—1Nj41- - Nk.
nj
© Foreach i=1,2,... k, compute z; = y,-_1 mod n; (z; exists since
ni, N, ..., Nk are pairwise coprime).

@ Compute
k
X = Z aiYiZi
i=1

and x mod N is the unique solution modulo N.
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Chinese Remainder Theorem

Intuitive way to solve for CRT:

@ Begin with the congruence with the largest modulus, x = ax (modny) .
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Intuitive way to solve for CRT:
@ Begin with the congruence with the largest modulus, x = ax (modny) .

@ Re-write this modulus as an equation, x = jinx + ax, for some positive

integer j.
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Chinese Remainder Theorem

Intuitive way to solve for CRT:
© Begin with the congruence with the largest modulus, x = ax (modny) .
@ Re-write this modulus as an equation, x = jinx + ax, for some positive
integer ji.
© Substitute the expression for x into the congruence with the next

largest modulus, x = ax (modnk) = jknk + ax = ak—1 (modng_1).
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Chinese Remainder Theorem

Intuitive way to solve for CRT:
© Begin with the congruence with the largest modulus, x = ax (modny) .
@ Re-write this modulus as an equation, x = jinx + ax, for some positive
integer ji.
© Substitute the expression for x into the congruence with the next
largest modulus, x = ax (modnk) = jknk + ax = ak—1 (modng_1).

@ Solve this congruence for ji.
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Chinese Remainder Theorem

Intuitive way to solve for CRT:
© Begin with the congruence with the largest modulus, x = ax (modny) .
@ Re-write this modulus as an equation, x = jinx + ax, for some positive
integer ji.
© Substitute the expression for x into the congruence with the next

largest modulus, x = ax (modnk) = jknk + ax = ak—1 (modng_1).

©

Solve this congruence for j.

Werite the solved congruence as an equation, and then substitute this

©

expression for ji into the equation for x.
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Chinese Remainder Theorem

Intuitive way to solve for CRT:
© Begin with the congruence with the largest modulus, x = ax (modny) .
@ Re-write this modulus as an equation, x = jinx + ax, for some positive
integer j.
© Substitute the expression for x into the congruence with the next

largest modulus, x = ax (modnk) = jknk + ax = ak—1 (modng_1).

©

Solve this congruence for j.

Werite the solved congruence as an equation, and then substitute this

©

expression for ji into the equation for x.

O Continue substituting and solving congruences until the equation for x

implies the solution to the system of congruences.
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Chinese Remainder Theorem

Example
x=1  (mod 3)
x=4  (mod 5)
x=6  (mod7)
Solution:

@ Start with mod 7. Write x = 7k + 6.
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Solution:

@ Start with mod 7. Write x = 7k + 6.
@ Then we have 7Tk +6 =4 (mod 5) = k=4 (mod 5).
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x=6  (mod7)
Solution:

@ Start with mod 7. Write x = 7k + 6.
@ Then we have 7Tk +6 =4 (mod 5) = k=4 (mod 5).
@ Then solving for k gives 5j + 4.
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Example
x=1  (mod 3)
x=4  (mod 5)
x=6  (mod7)
Solution:

@ Start with mod 7. Write x = 7k + 6.

@ Then we have 7Tk +6 =4 (mod 5) = k=4 (mod 5).
@ Then solving for k gives 5j + 4.

e Now we have x =7k + 6 = 7(5j + 4) + 6 = 35/ + 34.
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Example
x=1  (mod 3)
x=4  (mod 5)
x=6  (mod7)
Solution:

@ Start with mod 7. Write x = 7k + 6.

@ Then we have 7Tk +6 =4 (mod 5) = k=4 (mod 5).

@ Then solving for k gives 5j + 4.

e Now we have x =7k + 6 = 7(5j + 4) + 6 = 35/ + 34.

@ Then 35j+34=1 (mod 3) = j =0 (mod 3) = j = 3t.
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Chinese Remainder Theorem

Example
x=1  (mod 3)
x=4  (mod 5)
x=6  (mod7)
Solution:

@ Start with mod 7. Write x = 7k + 6.

@ Then we have 7Tk +6 =4 (mod 5) = k=4 (mod 5).

@ Then solving for k gives 5j + 4.

e Now we have x =7k + 6 = 7(5j + 4) + 6 = 35/ + 34.

Then 35/ +34=1 (mod 3) = j =0 (mod 3) = j = 3t.
Finally, we have x = 35(3t) + 34 = 105t + 34 — x =
(mod 105).

Kelvin Lee (UC Berkeley) Discrete Math and Probability Theory February 22, 2021

15/16



Problem Time!
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