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Basic Definitions

Definition (Congruence)
x is congruent to y modulo m or x ≡ y(modm) if and only if any one of
the following is true:

(x − y) is divisible by m

x and y have the same remainder w.r.t. m

x = y + km for some integer k

In modulo m, only the numbers {0, 1, 2, . . . , m − 1} exist.
Division is not well-defined.

Definition (Multiplicative Inverse)
Normally we say that the multiplicative inverse of x is y if xy = 1.
In the modular space, the multiplicative inverse of x mod m is y if
xy ≡ 1(modm).
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Theorems

Theorem (Modular operations)
a ≡ c mod m and b ≡ d mod m =⇒ a + b ≡ c + d (modm) and a · b ≡
c · d (modm).

Theorem (Existence of multiplicative inverse)
gcd (x , m) = 1 =⇒ x has a multiplicative inverse modulo m and it is
unique.
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Euclid’s Algorithm

How do we compute gcd of two numbers x and y?
Theorem (Euclid’s Algorithm)
Let x ≥ y > 0. Then

gcd(x , y) = gcd(y , x mod y)

Example
Compute gcd(16,10):

gcd(16, 10) = gcd(10, 6)

= gcd(6, 4)

= gcd(4, 2)

= gcd(2, 0)

= 2.
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Extended Euclid’s algorithm

How to compute the multiplicative inverse?

Need an algorithm that returns integers a and b such that:

gcd(x , y) = ax + by .

Theorem (Bézout’s Identity)
For nonzero integers x and y, let d be the greatest common divisor such
that d = gcd(x , y). Then, there exist integers a and b such that

ax + by = d .

When gcd(x , y) = 1, we can deduce that b is an inverse of y mod x .

This uses back substitutions repetitively so that the final expression is
in terms of x and y .
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Functions

Definition (Function)
Let A and B be nonempty sets. A function f from A to B is an assignment
of exactly one element of B to each element of A. (vertical line test)

To denote such a function, we write f : A→ B (f maps A to B).

A is the domain and B is the co-domain.
Pre-image is a subset of domain, and the image/range is the subset
of co-domain.

I If f (a) = b, where a ∈ A and b ∈ B, then we say that b is the image of
a and a is the pre-image of b.
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Bijection

Definition (One-to-one)
A function f is said to be one-to-one if and only if f (a) = f (a′) implies
that a = a′ for all a, a′ ∈ A. A function is said to be injective if it is
one-to-one.

To show that a function is one-to-one, we show that
a 6= a′ =⇒ f (a) 6= f (a′). (Why?)

Definition (Onto)
A function f is called onto, or a surjection, if and only if for every element
b ∈ B there is an element a ∈ A such that f (a) = b. We also say that f is
surjective if it’s onto.

To show that a function is onto, choose a = f −1(b) and so
f (f −1(b)) = b.
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b ∈ B there is an element a ∈ A such that f (a) = b. We also say that f is
surjective if it’s onto.

To show that a function is onto, choose a = f −1(b) and so
f (f −1(b)) = b.
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Bijection

Definition (Bijection)

A function f is a bijection if and only if it is both one-to-one and onto.
We also say that f is bijective.

If f : A→ B is a bijection, it will have an inverse function (a lemma
from notes), and |A| = |B|.
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Fermat’s Little Theorem

Theorem (Fermat’s Little Theorem)
For any prime p and any a ∈ {1, 2, ..., p − 1}, we have

ap−1 ≡ 1 (modp).

Proof:

Consider S = {1, 2, . . . , p − 1} and
S ′ = {a mod p, 2a mod p, . . . , (p − 1)a mod p}.

They are the same set under mod p (different order).
p−1∏
k=1

k ≡
p−1∏
k=1

ka (modp)

(p − 1)! ≡ ap−1(p − 1)! (modp) =⇒ ap−1 ≡ 1 (modp)

�
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Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem)
Let n1, n2, . . . , nk be positive integers that are coprime to each other. Then,
for any integers ai , the system of simultaneous congruences

x ≡ a1 (mod n1), x ≡ a2 (mod n2), . . . , x ≡ ak (mod nk)

has a unique solution

x =
( k∑

i=1
aibi

)
mod N

where N =
∏k

i=1 ni and bi = N
ni

(
N
ni

)−1

ni
where

(
N
ni

)−1

ni
denotes the

multiplicative inverse (modni ) of the integer N
ni

.
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Chinese Remainder Theorem

Proof:
To see why x is a solution, notice that for each i = 1, 2, . . . , k, we have

x ≡ a1y1z1 + a2y2z2 + · · ·+ akykzk (modni )

≡ aiyizi (modni )

≡ ai (modni ) .

The second line follows since yj ≡ 0 mod ni for each j 6= i .
The third line follows since yizi ≡ 1 mod ni .

Now, to prove uniqueness, suppose there are two solutions x and y .
Then n1 |(x − y), n2| (x − y), . . . , nk | (x − y).
Since n1, n2, . . . , nk are relatively prime, we have that n1n2 · · · nk

divides x − y , or
x ≡ y (modN) .

Thus, the solution is unique modulo N. �
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Chinese Remainder Theorem
General construction:

1 Compute N = n1 × n2 × · · · × nk .
2 For each i = 1, 2, . . . , k, compute

yi = N
ni

= n1n2 · · · ni−1ni+1 · · · nk .

3 For each i = 1, 2, . . . , k, compute zi ≡ y−1
i mod ni (zi exists since

n1, n2, . . . , nk are pairwise coprime).
4 Compute

x =
k∑

i=1
aiyizi

and x mod N is the unique solution modulo N.
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Chinese Remainder Theorem

Intuitive way to solve for CRT:

1 Begin with the congruence with the largest modulus, x ≡ ak (modnk) .

2 Re-write this modulus as an equation, x = jknk + ak , for some positive
integer jk .

3 Substitute the expression for x into the congruence with the next
largest modulus, x ≡ ak (modnk) =⇒ jknk + ak ≡ ak−1 (modnk−1).

4 Solve this congruence for jk .
5 Write the solved congruence as an equation, and then substitute this

expression for jk into the equation for x .
6 Continue substituting and solving congruences until the equation for x

implies the solution to the system of congruences.
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Chinese Remainder Theorem
Example


x ≡ 1 (mod 3)
x ≡ 4 (mod 5)
x ≡ 6 (mod 7)

Solution:
Start with mod 7. Write x = 7k + 6.
Then we have 7k + 6 ≡ 4 (mod 5) =⇒ k ≡ 4 (mod 5).
Then solving for k gives 5j + 4.
Now we have x = 7k + 6 = 7(5j + 4) + 6 = 35j + 34.
Then 35j + 34 ≡ 1 (mod 3) =⇒ j ≡ 0 (mod 3) =⇒ j = 3t.
Finally, we have x = 35(3t) + 34 = 105t + 34 =⇒ x ≡ 34
(mod 105).
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Problem Time!
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