CS70

Concentration Inequalities, WLLN

Kelvin Lee

UC Berkeley
April 13, 2021

Overview

(1) Covariance
(2) Correlation
(3) Markov's Inequality
(4) Chebyshev's Inequality
(5) Law of Large Numbers

Covariance

Covariance

The covariance of X and Y is

Covariance

The covariance of X and Y is

$$
\operatorname{Cov}(X, Y):=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]
$$

Covariance

The covariance of X and Y is

$$
\operatorname{Cov}(X, Y):=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]
$$

which can be simplified to

Covariance

The covariance of X and Y is

$$
\operatorname{Cov}(X, Y):=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]
$$

which can be simplified to

$$
\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]
$$

Covariance

The covariance of X and Y is

$$
\operatorname{Cov}(X, Y):=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]
$$

which can be simplified to

$$
\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]
$$

If X and Y are independent, then

Covariance

The covariance of X and Y is

$$
\operatorname{Cov}(X, Y):=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]
$$

which can be simplified to

$$
\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]
$$

If X and Y are independent, then

$$
\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y] \Longrightarrow \operatorname{Cov}(X, Y)=0
$$

Correlation

Correlation

Suppose X, Y are random variables with $\sigma_{X}, \sigma_{Y}>0$. Then the correlation ρ of X and Y is

Correlation

Suppose X, Y are random variables with $\sigma_{X}, \sigma_{Y}>0$. Then the correlation ρ of X and Y is

$$
\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

Correlation

Suppose X, Y are random variables with $\sigma_{X}, \sigma_{Y}>0$. Then the correlation ρ of X and Y is

$$
\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

$$
\text { and }-1 \leq \rho(X, Y) \leq 1
$$

Properties of Covariance

Properties of Covariance

Here are some important facts about covariance:

Properties of Covariance

Here are some important facts about covariance:

- $\operatorname{Var}(X)=\operatorname{Cov}(X, X)$.

Properties of Covariance

Here are some important facts about covariance:

- $\operatorname{Var}(X)=\operatorname{Cov}(X, X)$.
- X, Y independent $\Longrightarrow \operatorname{Cov}(X, Y)=0$.

Properties of Covariance

Here are some important facts about covariance:

- $\operatorname{Var}(X)=\operatorname{Cov}(X, X)$.
- X, Y independent $\Longrightarrow \operatorname{Cov}(X, Y)=0$.
- $\operatorname{Cov}(a+X, b+Y)=\operatorname{Cov}(X, Y)$.

Properties of Covariance

Here are some important facts about covariance:

- $\operatorname{Var}(X)=\operatorname{Cov}(X, X)$.
- X, Y independent $\Longrightarrow \operatorname{Cov}(X, Y)=0$.
- $\operatorname{Cov}(a+X, b+Y)=\operatorname{Cov}(X, Y)$.
- Bilinearity:

Properties of Covariance

Here are some important facts about covariance:

- $\operatorname{Var}(X)=\operatorname{Cov}(X, X)$.
- X, Y independent $\Longrightarrow \operatorname{Cov}(X, Y)=0$.
- $\operatorname{Cov}(a+X, b+Y)=\operatorname{Cov}(X, Y)$.
- Bilinearity:

$$
\operatorname{Cov}\left(\sum_{i=1}^{n} a_{i} X_{i}, \sum_{j=1}^{m} b_{j} Y_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} b_{j} \operatorname{Cov}\left(X_{i}, Y_{j}\right)
$$

Markov's Inequality

Markov's Inequality

Theorem (Markov's Inequality)

Markov's Inequality

Theorem (Markov's Inequality)
For a non-negative random variable X with finite mean and any positive constant c,

Markov's Inequality

Theorem (Markov's Inequality)
For a non-negative random variable X with finite mean and any positive constant c ,

$$
\mathbb{P}(X \geq c) \leq \frac{\mathbb{E}[X]}{c} .
$$

Markov's Inequality

Theorem (Markov's Inequality)
For a non-negative random variable X with finite mean and any positive constant c,

$$
\mathbb{P}(X \geq c) \leq \frac{\mathbb{E}[X]}{c} .
$$

Proof:

Markov's Inequality

Theorem (Markov's Inequality)
For a non-negative random variable X with finite mean and any positive constant c,

$$
\mathbb{P}(X \geq c) \leq \frac{\mathbb{E}[X]}{c} .
$$

Proof:

$$
\mathbb{E}[X]=\sum_{x \in \mathcal{X}} x \cdot \mathbb{P}(X=x)
$$

Markov's Inequality

Theorem (Markov's Inequality)
For a non-negative random variable X with finite mean and any positive constant c,

$$
\mathbb{P}(X \geq c) \leq \frac{\mathbb{E}[X]}{c} .
$$

Proof:

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{x \in \mathcal{X}} x \cdot \mathbb{P}(X=x) \\
& \geq \sum_{x \geq c} x \cdot \mathbb{P}(X=x)
\end{aligned}
$$

Markov's Inequality

Theorem (Markov's Inequality)
For a non-negative random variable X with finite mean and any positive constant c,

$$
\mathbb{P}(X \geq c) \leq \frac{\mathbb{E}[X]}{c} .
$$

Proof:

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{x \in \mathcal{X}} x \cdot \mathbb{P}(X=x) \\
& \geq \sum_{x \geq c} x \cdot \mathbb{P}(X=x) \\
& \geq \sum_{x \geq c} c \cdot \mathbb{P}(X=x)
\end{aligned}
$$

Markov's Inequality

Theorem (Markov's Inequality)
For a non-negative random variable X with finite mean and any positive constant c,

$$
\mathbb{P}(X \geq c) \leq \frac{\mathbb{E}[X]}{c} .
$$

Proof:

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{x \in \mathcal{X}} x \cdot \mathbb{P}(X=x) \\
& \geq \sum_{x \geq c} x \cdot \mathbb{P}(X=x) \\
& \geq \sum_{x \geq c} c \cdot \mathbb{P}(X=x) \\
& =c \sum_{x \geq c} \mathbb{P}(X=x)
\end{aligned}
$$

Markov's Inequality

Theorem (Markov's Inequality)
For a non-negative random variable X with finite mean and any positive constant c,

$$
\mathbb{P}(X \geq c) \leq \frac{\mathbb{E}[X]}{c} .
$$

Proof:

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{x \in \mathcal{X}} x \cdot \mathbb{P}(X=x) \\
& \geq \sum_{x \geq c} x \cdot \mathbb{P}(X=x) \\
& \geq \sum_{x \geq c} c \cdot \mathbb{P}(X=x) \\
& =c \sum_{x \geq c} \mathbb{P}(X=x) \\
& =c \mathbb{P}[X \geq c] .
\end{aligned}
$$

Markov's Inequality

Markov's Inequality

Here's a smarter way to prove this inequality.

Markov's Inequality

Here's a smarter way to prove this inequality. Proof:

Markov's Inequality

Here's a smarter way to prove this inequality.
Proof:
Since X is a non-negative and $c>0$, then for all $\omega \in \Omega$

Markov's Inequality

Here's a smarter way to prove this inequality.

Proof:

Since X is a non-negative and $c>0$, then for all $\omega \in \Omega$

$$
X(\omega) \geq \mathbb{I}\{X(\omega) \geq c\}
$$

Markov's Inequality

Here's a smarter way to prove this inequality.
Proof:
Since X is a non-negative and $c>0$, then for all $\omega \in \Omega$

$$
X(\omega) \geq \mathbb{I}\{X(\omega) \geq c\}
$$

The RHS is 0 if $X(\omega)<c$ and is c if $X(\omega) \geq c$ implied by the indicator function. Taking expectations of both sides gives

Markov's Inequality

Here's a smarter way to prove this inequality.
Proof:
Since X is a non-negative and $c>0$, then for all $\omega \in \Omega$

$$
X(\omega) \geq \mathbb{I}\{X(\omega) \geq c\}
$$

The RHS is 0 if $X(\omega)<c$ and is c if $X(\omega) \geq c$ implied by the indicator function. Taking expectations of both sides gives

$$
\mathbb{E}[X] \geq c \mathbb{E}[\mathbb{I}\{X \geq c\}]=c \mathbb{P}(X \geq c)
$$

Generalized Markov's Inequality

Generalized Markov's Inequality

What if X is negative?

Generalized Markov's Inequality

What if X is negative?
Theorem (Generalized Markov's Inequality)

Generalized Markov's Inequality

What if X is negative?
Theorem (Generalized Markov's Inequality)
Let X be an arbitrary random variable with finite mean. Then, for any positive constants c and r,

Generalized Markov's Inequality

What if X is negative?
Theorem (Generalized Markov's Inequality)
Let X be an arbitrary random variable with finite mean. Then, for any positive constants c and r,

$$
\mathbb{P}(|X| \geq c) \leq \frac{\mathbb{E}\left(|X|^{r}\right)}{c^{r}}
$$

Generalized Markov's Inequality

What if X is negative?
Theorem (Generalized Markov's Inequality)
Let X be an arbitrary random variable with finite mean. Then, for any positive constants c and r,

$$
\mathbb{P}(|X| \geq c) \leq \frac{\mathbb{E}\left(|X|^{r}\right)}{c^{r}}
$$

Proof:

Generalized Markov's Inequality

What if X is negative?
Theorem (Generalized Markov's Inequality)
Let X be an arbitrary random variable with finite mean. Then, for any positive constants c and r,

$$
\mathbb{P}(|X| \geq c) \leq \frac{\mathbb{E}\left(|X|^{r}\right)}{c^{r}}
$$

Proof:

For $c>0$ and $r>0$, we have

Generalized Markov's Inequality

What if X is negative?
Theorem (Generalized Markov's Inequality)
Let X be an arbitrary random variable with finite mean. Then, for any positive constants c and r,

$$
\mathbb{P}(|X| \geq c) \leq \frac{\mathbb{E}\left(|X|^{r}\right)}{c^{r}}
$$

Proof:

For $c>0$ and $r>0$, we have

$$
|X|^{r} \geq|X|^{r} \cdot \mathbb{I}\{|X| \geq c\} \geq c^{r} \mathbb{I}\{|X| \geq c\} .
$$

Generalized Markov's Inequality

What if X is negative?
Theorem (Generalized Markov's Inequality)
Let X be an arbitrary random variable with finite mean. Then, for any positive constants c and r,

$$
\mathbb{P}(|X| \geq c) \leq \frac{\mathbb{E}\left(|X|^{r}\right)}{c^{r}} .
$$

Proof:

For $c>0$ and $r>0$, we have

$$
|X|^{r} \geq|X|^{r} \cdot \mathbb{I}\{|X| \geq c\} \geq c^{r} \mathbb{I}\{|X| \geq c\} .
$$

(Note that the last inequality would not hold if r were negative.) Taking expectations of both sides gives

Generalized Markov's Inequality

What if X is negative?
Theorem (Generalized Markov's Inequality)
Let X be an arbitrary random variable with finite mean. Then, for any positive constants c and r,

$$
\mathbb{P}(|X| \geq c) \leq \frac{\mathbb{E}\left(|X|^{r}\right)}{c^{r}} .
$$

Proof:

For $c>0$ and $r>0$, we have

$$
|X|^{r} \geq|X|^{r} \cdot \mathbb{I}\{|X| \geq c\} \geq c^{r} \mathbb{I}\{|X| \geq c\} .
$$

(Note that the last inequality would not hold if r were negative.) Taking expectations of both sides gives

$$
\mathbb{E}\left[|X|^{r}\right] \geq c^{r} \cdot \mathbb{E}[\mathbb{I}\{|X| \geq c\}]=c^{r} \mathbb{P}(|X| \geq c) .
$$

Chebyshev's Inequality

Chebyshev's Inequality

Theorem (Chebyshev's Inequality)

Chebyshev's Inequality

Theorem (Chebyshev's Inequality)
For a random variable X with finite expectation $\mathbb{E}[X]=\mu$ and any positive constant c,

Chebyshev's Inequality

Theorem (Chebyshev's Inequality)
For a random variable X with finite expectation $\mathbb{E}[X]=\mu$ and any positive constant c,

$$
\mathbb{P}(|X-\mu| \geq c) \leq \frac{\operatorname{Var}(X)}{c^{2}}
$$

Chebyshev's Inequality

Theorem (Chebyshev's Inequality)
For a random variable X with finite expectation $\mathbb{E}[X]=\mu$ and any positive constant c,

$$
\mathbb{P}(|X-\mu| \geq c) \leq \frac{\operatorname{Var}(X)}{c^{2}}
$$

Proof:

Chebyshev's Inequality

Theorem (Chebyshev's Inequality)
For a random variable X with finite expectation $\mathbb{E}[X]=\mu$ and any positive constant c,

$$
\mathbb{P}(|X-\mu| \geq c) \leq \frac{\operatorname{Var}(X)}{c^{2}}
$$

Proof:

Define $Y=(X-\mu)^{2}$ and so $\mathbb{E}[Y]=\mathbb{E}\left[(X-\mu)^{2}\right]=\operatorname{Var}(X)$.

Chebyshev's Inequality

Theorem (Chebyshev's Inequality)

For a random variable X with finite expectation $\mathbb{E}[X]=\mu$ and any positive constant c,

$$
\mathbb{P}(|X-\mu| \geq c) \leq \frac{\operatorname{Var}(X)}{c^{2}} .
$$

Proof:

Define $Y=(X-\mu)^{2}$ and so $\mathbb{E}[Y]=\mathbb{E}\left[(X-\mu)^{2}\right]=\operatorname{Var}(X)$.We are interested in $|X-\mu| \geq c$, which is equivalent to $Y=(X-\mu)^{2} \geq c^{2}$.

Chebyshev's Inequality

Theorem (Chebyshev's Inequality)

For a random variable X with finite expectation $\mathbb{E}[X]=\mu$ and any positive constant c,

$$
\mathbb{P}(|X-\mu| \geq c) \leq \frac{\operatorname{Var}(X)}{c^{2}} .
$$

Proof:

Define $Y=(X-\mu)^{2}$ and so $\mathbb{E}[Y]=\mathbb{E}\left[(X-\mu)^{2}\right]=\operatorname{Var}(X)$.We are interested in $|X-\mu| \geq c$, which is equivalent to $Y=(X-\mu)^{2} \geq c^{2}$. Therefore, $\mathbb{P}(|X-\mu| \geq c)=\mathbb{P}\left(Y \geq c^{2}\right)$.

Chebyshev's Inequality

Theorem (Chebyshev's Inequality)

For a random variable X with finite expectation $\mathbb{E}[X]=\mu$ and any positive constant c,

$$
\mathbb{P}(|X-\mu| \geq c) \leq \frac{\operatorname{Var}(X)}{c^{2}} .
$$

Proof:

Define $Y=(X-\mu)^{2}$ and so $\mathbb{E}[Y]=\mathbb{E}\left[(X-\mu)^{2}\right]=\operatorname{Var}(X)$.We are interested in $|X-\mu| \geq c$, which is equivalent to $Y=(X-\mu)^{2} \geq c^{2}$. Therefore, $\mathbb{P}(|X-\mu| \geq c)=\mathbb{P}\left(Y \geq c^{2}\right)$. Moreover, Y is obviously non-negative, so we can apply Markov's inequality.

Weak Law of Large Numbers

Weak Law of Large Numbers

Theorem (Weak Law of Large Numbers)

Weak Law of Large Numbers

Theorem (Weak Law of Large Numbers)
Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d random variables with the same distribution and mean μ. Then, for all $\varepsilon>0$,

Weak Law of Large Numbers

Theorem (Weak Law of Large Numbers)
Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d random variables with the same distribution and mean μ. Then, for all $\varepsilon>0$,

$$
\mathbb{P}\left(\left|\frac{X_{1}+\cdots+X_{n}}{n}-\mu\right| \geq \varepsilon\right) \rightarrow 0, \text { as } n \rightarrow \infty
$$

Weak Law of Large Numbers

Theorem (Weak Law of Large Numbers)
Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d random variables with the same distribution and mean μ. Then, for all $\varepsilon>0$,

$$
\mathbb{P}\left(\left|\frac{X_{1}+\cdots+X_{n}}{n}-\mu\right| \geq \varepsilon\right) \rightarrow 0, \text { as } n \rightarrow \infty
$$

Proof:

Weak Law of Large Numbers

Theorem (Weak Law of Large Numbers)
Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d random variables with the same distribution and mean μ. Then, for all $\varepsilon>0$,

$$
\mathbb{P}\left(\left|\frac{X_{1}+\cdots+X_{n}}{n}-\mu\right| \geq \varepsilon\right) \rightarrow 0, \text { as } n \rightarrow \infty
$$

Proof:

Let $Y_{n}=\frac{X_{1}+\cdots+X_{n}}{n}$. Then

Weak Law of Large Numbers

Theorem (Weak Law of Large Numbers)
Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d random variables with the same distribution and mean μ. Then, for all $\varepsilon>0$,

$$
\mathbb{P}\left(\left|\frac{X_{1}+\cdots+X_{n}}{n}-\mu\right| \geq \varepsilon\right) \rightarrow 0, \text { as } n \rightarrow \infty
$$

Proof:

Let $Y_{n}=\frac{X_{1}+\cdots+X_{n}}{n}$. Then

$$
\mathbb{P}\left(\left|Y_{n}-\mu\right| \geq \varepsilon\right) \leq \frac{\operatorname{Var}\left(Y_{n}\right)}{\varepsilon^{2}}=\frac{\operatorname{Var}\left(X_{1}+\cdots+X_{n}\right)}{n^{2} \varepsilon^{2}}
$$

Weak Law of Large Numbers

Theorem (Weak Law of Large Numbers)
Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d random variables with the same distribution and mean μ. Then, for all $\varepsilon>0$,

$$
\mathbb{P}\left(\left|\frac{X_{1}+\cdots+X_{n}}{n}-\mu\right| \geq \varepsilon\right) \rightarrow 0, \text { as } n \rightarrow \infty
$$

Proof:

Let $Y_{n}=\frac{X_{1}+\cdots+X_{n}}{n}$. Then

$$
\begin{aligned}
\mathbb{P}\left(\left|Y_{n}-\mu\right| \geq \varepsilon\right) & \leq \frac{\operatorname{Var}\left(Y_{n}\right)}{\varepsilon^{2}}=\frac{\operatorname{Var}\left(X_{1}+\cdots+X_{n}\right)}{n^{2} \varepsilon^{2}} \\
& =\frac{n \operatorname{Var}\left(X_{1}\right)}{n^{2} \varepsilon^{2}}=\frac{\operatorname{Var}\left(X_{1}\right)}{n \varepsilon^{2}} \rightarrow 0, \text { as } n \rightarrow \infty
\end{aligned}
$$

Problem Time!

