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Covariance

The covariance of X and Y is

Cov(X ,Y ) := E[(X − E[X ])(Y − E[Y ])],

which can be simplified to

Cov(X ,Y ) = E[XY ]− E[X ]E[Y ].

If X and Y are independent, then

E[XY ] = E[X ]E[Y ] =⇒ Cov(X ,Y ) = 0.
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Correlation

Suppose X ,Y are random variables with σX , σY > 0. Then the correlation
ρ of X and Y is

ρ(X ,Y ) = Cov(X ,Y )√
Var(X ) Var(Y )

= Cov(X ,Y )
σXσY

and −1 ≤ ρ(X ,Y ) ≤ 1.
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Properties of Covariance

Here are some important facts about covariance:

Var(X ) = Cov(X ,X ).

X ,Y independent =⇒ Cov(X ,Y ) = 0.

Cov(a + X , b + Y ) = Cov(X ,Y ).

Bilinearity:

Cov

 n∑
i=1

ai Xi ,
m∑

j=1
bjYj

 =
n∑

i=1

m∑
j=1

ai bj Cov(Xi ,Yj).
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Markov’s Inequality

Theorem (Markov’s Inequality)
For a non-negative random variable X with finite mean and any positive
constant c, P(X ≥ c) ≤ E[X ]

c .

Proof: E[X ] =
∑
x∈X

x · P(X = x)

≥
∑
x≥c

x · P(X = x)

≥
∑
x≥c

c · P(X = x)

= c
∑
x≥c

P(X = x)

= c P[X ≥ c].

�
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Markov’s Inequality

Here’s a smarter way to prove this inequality.
Proof:
Since X is a non-negative and c > 0, then for all ω ∈ Ω

X (ω) ≥ I{X (ω) ≥ c}.

The RHS is 0 if X (ω) < c and is c if X (ω) ≥ c implied by the indicator
function. Taking expectations of both sides gives

E[X ] ≥ c E[I{X ≥ c}] = c P(X ≥ c).

�
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Generalized Markov’s Inequality

What if X is negative?

Theorem (Generalized Markov’s Inequality)
Let X be an arbitrary random variable with finite mean. Then, for any
positive constants c and r ,

P(|X | ≥ c) ≤ E (|X |r )
c r .

Proof:
For c > 0 and r > 0, we have

|X |r ≥ |X |r · I{|X | ≥ c} ≥ c r I{|X | ≥ c}.

(Note that the last inequality would not hold if r were negative.) Taking
expectations of both sides gives

E [|X |r ] ≥ c r · E[I{|X | ≥ c}] = c rP(|X | ≥ c).

�
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Chebyshev’s Inequality

Theorem (Chebyshev’s Inequality)
For a random variable X with finite expectation E[X ] = µ and any positive
constant c,

P(|X − µ| ≥ c) ≤ Var(X )
c2 .

Proof:
Define Y = (X − µ)2 and so E[Y ] = E

[
(X − µ)2] = Var(X ).We are

interested in |X − µ| ≥ c, which is equivalent to Y = (X − µ)2 ≥ c2.

Therefore, P(|X − µ| ≥ c) = P
(
Y ≥ c2) . Moreover, Y is obviously

non-negative, so we can apply Markov’s inequality. �
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Weak Law of Large Numbers

Theorem (Weak Law of Large Numbers)
Let X1,X2, . . . ,Xn be i.i.d random variables with the same distribution and
mean µ. Then, for all ε > 0,

P
(∣∣∣∣X1 + · · ·+ Xn

n − µ
∣∣∣∣ ≥ ε)→ 0, as n→∞

Proof:
Let Yn = X1+···+Xn

n . Then

P (|Yn − µ| ≥ ε) ≤ Var (Yn)
ε2 = Var (X1 + · · ·+ Xn)

n2ε2

= n Var (X1)
n2ε2 = Var (X1)

nε2 → 0, as n→∞

�
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Problem Time!
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