CS70 Concentration Inequalities, WLLN

Kelvin Lee

UC Berkeley

April 13, 2021

Kelvin Lee (UC Berkeley)

Discrete Math and Probability Theory

э April 13, 2021 1/11

∃ →

< /□ > < Ξ

Overview

Correlation

- 3 Markov's Inequality
- Chebyshev's Inequality 4
- **5** Law of Large Numbers

- ∢ ⊒ →

Kelvin Lee (UC Berkeley)

< ロ > < 回 > < 回 > < 回 > < 回 >

The **covariance** of X and Y is

A D N A B N A B N A B N

The **covariance** of X and Y is

$$\mathsf{Cov}(X,Y) := \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])],$$

A D N A B N A B N A B N

The **covariance** of X and Y is

$$Cov(X, Y) := \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])],$$

which can be simplified to

< □ > < 同 > < 回 > < 回 > < 回 >

The **covariance** of X and Y is

$$Cov(X, Y) := \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])],$$

which can be simplified to

$$Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y].$$

< □ > < 同 > < 回 > < 回 > < 回 >

The **covariance** of X and Y is

$$Cov(X, Y) := \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])],$$

which can be simplified to

$$Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y].$$

If X and Y are **independent**, then

The **covariance** of X and Y is

$$Cov(X, Y) := \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])],$$

which can be simplified to

$$Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y].$$

If X and Y are **independent**, then

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y] \implies \mathsf{Cov}(X,Y) = 0.$$

・ロト ・四ト ・ヨト ・ヨト

Suppose X, Y are random variables with $\sigma_X, \sigma_Y > 0$. Then the correlation ρ of X and Y is

< □ > < 同 > < 回 > < 回 > < 回 >

Suppose X, Y are random variables with $\sigma_X, \sigma_Y > 0$. Then the correlation ρ of X and Y is

$$\rho(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}} = \frac{\operatorname{Cov}(X, Y)}{\sigma_X \sigma_Y}$$

< □ > < 同 > < 回 > < 回 > < 回 >

Suppose X, Y are random variables with $\sigma_X, \sigma_Y > 0$. Then the correlation ρ of X and Y is

$$\rho(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}} = \frac{\operatorname{Cov}(X, Y)}{\sigma_X \sigma_Y}$$

and $-1 \le \rho(X, Y) \le 1$.

< □ > < □ > < □ > < □ > < □ > < □ >

Kelvin Lee (UC Berkeley)

Discrete Math and Probability Theory

 Image: boot of the second s

< □ > < 同 > < 回 > < 回 > < 回 >

Here are some important facts about covariance:

Here are some important facts about covariance:

•
$$Var(X) = Cov(X, X).$$

Here are some important facts about covariance:

- Var(X) = Cov(X, X).
- X, Y independent \implies Cov(X, Y) = 0.

→ < Ξ →</p>

Here are some important facts about covariance:

- Var(X) = Cov(X, X).
- X, Y independent \implies Cov(X, Y) = 0.

•
$$\operatorname{Cov}(a + X, b + Y) = \operatorname{Cov}(X, Y).$$

→ < Ξ →</p>

Here are some important facts about covariance:

- Var(X) = Cov(X, X).
- X, Y independent \implies Cov(X, Y) = 0.

•
$$\operatorname{Cov}(a + X, b + Y) = \operatorname{Cov}(X, Y).$$

• Bilinearity:

• • = • • = •

Here are some important facts about covariance:

- Var(X) = Cov(X, X).
- X, Y independent \implies Cov(X, Y) = 0.

•
$$\operatorname{Cov}(a + X, b + Y) = \operatorname{Cov}(X, Y).$$

• Bilinearity:

$$\operatorname{Cov}\left(\sum_{i=1}^{n}a_{i}X_{i},\sum_{j=1}^{m}b_{j}Y_{j}\right)=\sum_{i=1}^{n}\sum_{j=1}^{m}a_{i}b_{j}\operatorname{Cov}(X_{i},Y_{j}).$$

• • = • • = •

Kelvin Lee (UC Berkeley)

Discrete Math and Probability Theory

 April 13, 2021
 6 / 11

< □ > < □ > < □ > < □ > < □ >

Kelvin Lee (UC Berkeley)

Theorem (Markov's Inequality)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Markov's Inequality)

For a **non-negative** random variable X with finite mean and any positive constant *c*.

→ < ∃ →</p>

Theorem (Markov's Inequality)

For a **non-negative** random variable X with finite mean and any positive

constant c,

$$\mathbb{P}(X \ge c) \le rac{\mathbb{E}[X]}{c}.$$

→ < Ξ →</p>

Theorem (Markov's Inequality)

For a **non-negative** random variable X with finite mean and any positive

constant c,

$$\mathbb{P}(X \ge c) \le \frac{\mathbb{E}[X]}{c}.$$

Proof:

▲ 同 ▶ → 三 ▶

Theorem (Markov's Inequality)

For a **non-negative** random variable X with finite mean and any positive

constant c, $\mathbb{P}(X \ge c) \le \frac{\mathbb{E}[X]}{c}.$

Proof:

$$\mathbb{E}[X] = \sum_{x \in \mathcal{X}} x \cdot \mathbb{P}(X = x)$$

< (回) < (三) < (三) < (二) < (二) < (二) < (二) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-)

Theorem (Markov's Inequality)

For a **non-negative** random variable X with finite mean and any positive

constant c, $\mathbb{P}(X \ge c) \le \frac{\mathbb{E}[X]}{c}.$

Proof:

$$\mathbb{E}[X] = \sum_{x \in \mathcal{X}} x \cdot \mathbb{P}(X = x)$$

 $\geq \sum_{x \geq c} x \cdot \mathbb{P}(X = x)$

A (10) < A (10) < A (10)</p>

Theorem (Markov's Inequality)

For a **non-negative** random variable X with finite mean and any positive

constant c, $\mathbb{P}(X \ge c) \le \frac{\mathbb{E}[X]}{c}.$

Proof:

$$\mathbb{E}[X] = \sum_{x \in \mathcal{X}} x \cdot \mathbb{P}(X = x)$$

 $\geq \sum_{x \geq c} x \cdot \mathbb{P}(X = x)$
 $\geq \sum_{x \geq c} c \cdot \mathbb{P}(X = x)$

A (10) < A (10) < A (10)</p>

Theorem (Markov's Inequality)

For a **non-negative** random variable X with finite mean and any positive

constant c, $\mathbb{P}(X \ge c) \le \frac{\mathbb{E}[X]}{c}.$

Proof:

$$\mathbb{E}[X] = \sum_{x \in \mathcal{X}} x \cdot \mathbb{P}(X = x)$$
$$\geq \sum_{x \geq c} x \cdot \mathbb{P}(X = x)$$
$$\geq \sum_{x \geq c} c \cdot \mathbb{P}(X = x)$$
$$= c \sum_{x \geq c} \mathbb{P}(X = x)$$

→ < ∃ →</p>

Theorem (Markov's Inequality)

For a **non-negative** random variable X with finite mean and any positive

constant c, $\mathbb{P}(X \ge c) \le \frac{\mathbb{E}[X]}{c}.$

Proof:

$$\mathbb{E}[X] = \sum_{x \in \mathcal{X}} x \cdot \mathbb{P}(X = x)$$

$$\geq \sum_{x \geq c} x \cdot \mathbb{P}(X = x)$$

$$\geq \sum_{x \geq c} c \cdot \mathbb{P}(X = x)$$

$$= c \sum_{x \geq c} \mathbb{P}(X = x)$$

$$= c \mathbb{P}[X \geq c].$$

→ < Ξ →</p>

Kelvin Lee (UC Berkeley)

Discrete Math and Probability Theory

 April 13, 2021
 7 / 11

< □ > < □ > < □ > < □ > < □ >

Here's a smarter way to prove this inequality.

Image: A match a ma

Here's a smarter way to prove this inequality.

Proof:

< □ > < 同 > < 回 > < 回 > < 回 >

Here's a smarter way to prove this inequality.

Proof:

Since X is a non-negative and c > 0, then for all $\omega \in \Omega$

< /□ > < Ξ

Here's a smarter way to prove this inequality.

Proof:

Since X is a non-negative and c > 0, then for all $\omega \in \Omega$

 $X(\omega) \geq \mathbb{I}\{X(\omega) \geq c\}.$

▲ 同 ▶ → 三 ▶

Here's a smarter way to prove this inequality.

Proof:

Since X is a non-negative and c > 0, then for all $\omega \in \Omega$

 $X(\omega) \geq \mathbb{I}\{X(\omega) \geq c\}.$

The RHS is 0 if $X(\omega) < c$ and is c if $X(\omega) \ge c$ implied by the indicator function. Taking expectations of both sides gives

Markov's Inequality

Here's a smarter way to prove this inequality.

Proof:

Since X is a non-negative and c > 0, then for all $\omega \in \Omega$

 $X(\omega) \geq \mathbb{I}\{X(\omega) \geq c\}.$

The RHS is 0 if $X(\omega) < c$ and is c if $X(\omega) \ge c$ implied by the indicator function. Taking expectations of both sides gives

$$\mathbb{E}[X] \ge c \mathbb{E}[\mathbb{I}\{X \ge c\}] = c \mathbb{P}(X \ge c).$$

Kelvin Lee (UC Berkeley)

Discrete Math and Probability Theory

Image: A mathematical states and a mathem

What if X is negative?

Kelvin Lee (UC Berkeley)

э.

Image: A mathematical states and a mathem

What if X is negative?

Theorem (Generalized Markov's Inequality)

What if X is negative?

Theorem (Generalized Markov's Inequality)

Let X be an arbitrary random variable with finite mean. Then, for any positive constants c and r,

What if X is negative?

Theorem (Generalized Markov's Inequality)

Let X be an arbitrary random variable with finite mean. Then, for any positive constants c and r,

$$\mathbb{P}(|X| \geq c) \leq rac{\mathbb{E}\left(|X|^r
ight)}{c^r}.$$

What if X is negative?

Theorem (Generalized Markov's Inequality)

Let X be an arbitrary random variable with finite mean. Then, for any positive constants c and r,

$$\mathbb{P}(|X| \geq c) \leq rac{\mathbb{E}\left(|X|^r
ight)}{c^r}.$$

Proof:

- **→** ∃ →

What if X is negative?

Theorem (Generalized Markov's Inequality)

Let X be an arbitrary random variable with finite mean. Then, for any positive constants c and r,

$$\mathbb{P}(|X| \geq c) \leq rac{\mathbb{E}\left(|X|^r
ight)}{c^r}.$$

Proof:

For c > 0 and r > 0, we have

What if X is negative?

Theorem (Generalized Markov's Inequality)

Let X be an arbitrary random variable with finite mean. Then, for any positive constants c and r,

$$\mathbb{P}(|X| \geq c) \leq rac{\mathbb{E}\left(|X|^r
ight)}{c^r}.$$

Proof:

For c > 0 and r > 0, we have $|X|^r \ge |X|^r \cdot \mathbb{I}\{|X| \ge c\} \ge c^r \mathbb{I}\{|X| \ge c\}.$

What if X is negative?

Theorem (Generalized Markov's Inequality)

Let X be an arbitrary random variable with finite mean. Then, for any positive constants c and r,

$$\mathbb{P}(|X| \geq c) \leq rac{\mathbb{E}\left(|X|^r
ight)}{c^r}.$$

Proof:

For c > 0 and r > 0, we have

$$|X|^r \ge |X|^r \cdot \mathbb{I}\{|X| \ge c\} \ge c^r \mathbb{I}\{|X| \ge c\}.$$

(Note that the last inequality would not hold if r were negative.) Taking expectations of both sides gives

- * E > * E

What if X is negative?

Theorem (Generalized Markov's Inequality)

Let X be an arbitrary random variable with finite mean. Then, for any positive constants c and r,

$$\mathbb{P}(|X| \geq c) \leq rac{\mathbb{E}\left(|X|^r
ight)}{c^r}.$$

Proof:

For c > 0 and r > 0, we have

$$|X|^r \ge |X|^r \cdot \mathbb{I}\{|X| \ge c\} \ge c^r \mathbb{I}\{|X| \ge c\}.$$

(Note that the last inequality would not hold if r were negative.) Taking expectations of both sides gives

$$\mathbb{E}\left[|X|^{r}\right] \geq c^{r} \cdot \mathbb{E}[\mathbb{I}\{|X| \geq c\}] = c^{r} \mathbb{P}(|X| \geq c).$$

- * E > * E

Kelvin Lee (UC Berkeley)

Discrete Math and Probability Theory

▲ ▲ 볼 ▶ 볼 ∽ ९.여 April 13, 2021 9/11

イロト イヨト イヨト イヨト

Theorem (Chebyshev's Inequality)

-

Image: A match a ma

Theorem (Chebyshev's Inequality)

For a random variable X with finite expectation $\mathbb{E}[X] = \mu$ and any positive constant *c*,

→ < Ξ →</p>

Theorem (Chebyshev's Inequality)

For a random variable X with finite expectation $\mathbb{E}[X] = \mu$ and any positive constant c, $\mathbb{P}(|X - \mu| \ge c) \le \frac{\operatorname{Var}(X)}{c^2}.$

< (日) × (日) × (4)

Theorem (Chebyshev's Inequality)

For a random variable X with finite expectation $\mathbb{E}[X] = \mu$ and any positive constant c, $\mathbb{P}(|X - \mu| \ge c) \le \frac{\operatorname{Var}(X)}{c^2}.$

Proof:

▲ □ ▶ ▲ □ ▶ ▲ □

Theorem (Chebyshev's Inequality)

For a random variable X with finite expectation $\mathbb{E}[X] = \mu$ and any positive constant c, $\mathbb{P}(|X - \mu| \ge c) \le \frac{\operatorname{Var}(X)}{c^2}.$

Proof:

Define
$$Y = (X - \mu)^2$$
 and so $\mathbb{E}[Y] = \mathbb{E}\left[(X - \mu)^2\right] = Var(X)$.

▲ □ ▶ ▲ □ ▶ ▲ □

Theorem (Chebyshev's Inequality)

For a random variable X with finite expectation $\mathbb{E}[X] = \mu$ and any positive constant c, $\mathbb{P}(|X - \mu| \ge c) \le \frac{\operatorname{Var}(X)}{c^2}.$

Proof:

Define $Y = (X - \mu)^2$ and so $\mathbb{E}[Y] = \mathbb{E}[(X - \mu)^2] = \text{Var}(X)$. We are interested in $|X - \mu| \ge c$, which is equivalent to $Y = (X - \mu)^2 \ge c^2$.

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Chebyshev's Inequality)

For a random variable X with finite expectation $\mathbb{E}[X] = \mu$ and any positive constant c, $\mathbb{P}(|X - \mu| \ge c) \le \frac{\operatorname{Var}(X)}{c^2}.$

Proof:

Define $Y = (X - \mu)^2$ and so $\mathbb{E}[Y] = \mathbb{E}[(X - \mu)^2] = Var(X)$.We are interested in $|X - \mu| \ge c$, which is equivalent to $Y = (X - \mu)^2 \ge c^2$. Therefore, $\mathbb{P}(|X - \mu| \ge c) = \mathbb{P}(Y \ge c^2)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Chebyshev's Inequality)

For a random variable X with finite expectation $\mathbb{E}[X] = \mu$ and any positive constant c, $\mathbb{P}(|X - \mu| \ge c) \le \frac{\operatorname{Var}(X)}{c^2}.$

Proof:

Define $Y = (X - \mu)^2$ and so $\mathbb{E}[Y] = \mathbb{E}[(X - \mu)^2] = \text{Var}(X)$. We are interested in $|X - \mu| \ge c$, which is equivalent to $Y = (X - \mu)^2 \ge c^2$. Therefore, $\mathbb{P}(|X - \mu| \ge c) = \mathbb{P}(Y \ge c^2)$. Moreover, Y is obviously non-negative, so we can apply Markov's inequality.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Kelvin Lee (UC Berkeley)

Discrete Math and Probability Theory

April 13, 2021 10 / 11

- ∢ ⊒ →

Image: A mathematical states and a mathem

э

Theorem (Weak Law of Large Numbers)

Kelvin Lee (UC Berkeley)

Discrete Math and Probability Theory

April 13, 2021 10 / 11

э

< E

Image: A match a ma

Theorem (Weak Law of Large Numbers)

Let $X_1, X_2, ..., X_n$ be i.i.d random variables with the same distribution and mean μ . Then, for all $\varepsilon > 0$,

Theorem (Weak Law of Large Numbers)

Let $X_1, X_2, ..., X_n$ be i.i.d random variables with the same distribution and mean μ . Then, for all $\varepsilon > 0$,

$$\mathbb{P}\left(\left|rac{X_1+\dots+X_n}{n}-\mu
ight|\geq arepsilon
ight)
ightarrow 0, \,\, ext{as}\,\, n
ightarrow\infty$$

Theorem (Weak Law of Large Numbers)

Let $X_1, X_2, ..., X_n$ be i.i.d random variables with the same distribution and mean μ . Then, for all $\varepsilon > 0$,

$$\mathbb{P}\left(\left|rac{X_1+\dots+X_n}{n}-\mu
ight|\geq arepsilon
ight)
ightarrow 0, \,\, extsf{as } n
ightarrow \infty$$

Proof:

3

Image: A Image: A

Theorem (Weak Law of Large Numbers)

Let $X_1, X_2, ..., X_n$ be i.i.d random variables with the same distribution and mean μ . Then, for all $\varepsilon > 0$,

$$\mathbb{P}\left(\left|rac{X_1+\dots+X_n}{n}-\mu
ight|\geq arepsilon
ight)
ightarrow 0, \,\, ext{as}\,\, n
ightarrow\infty$$

Proof:

Let $Y_n = \frac{X_1 + \dots + X_n}{n}$. Then

3

• • = • • = •

Theorem (Weak Law of Large Numbers)

Let $X_1, X_2, ..., X_n$ be i.i.d random variables with the same distribution and mean μ . Then, for all $\varepsilon > 0$,

$$\mathbb{P}\left(\left|rac{X_1+\dots+X_n}{n}-\mu
ight|\geq arepsilon
ight)
ightarrow 0, \,\, ext{as}\,\, n
ightarrow\infty$$

Proof:

Let
$$Y_n = \frac{X_1 + \dots + X_n}{n}$$
. Then
 $\mathbb{P}(|Y_n - \mu| \ge \varepsilon) \le \frac{\operatorname{Var}(Y_n)}{\varepsilon^2} = \frac{\operatorname{Var}(X_1 + \dots + X_n)}{n^2 \varepsilon^2}$

.

3

Theorem (Weak Law of Large Numbers)

Let $X_1, X_2, ..., X_n$ be i.i.d random variables with the same distribution and mean μ . Then, for all $\varepsilon > 0$,

$$\mathbb{P}\left(\left|rac{X_1+\dots+X_n}{n}-\mu\right|\geq arepsilon
ight)
ightarrow 0, \,\, ext{as}\,\, n
ightarrow\infty$$

Proof:

Let
$$Y_n = \frac{X_1 + \dots + X_n}{n}$$
. Then

$$\mathbb{P}(|Y_n - \mu| \ge \varepsilon) \le \frac{\operatorname{Var}(Y_n)}{\varepsilon^2} = \frac{\operatorname{Var}(X_1 + \dots + X_n)}{n^2 \varepsilon^2}$$

$$= \frac{n \operatorname{Var}(X_1)}{n^2 \varepsilon^2} = \frac{\operatorname{Var}(X_1)}{n \varepsilon^2} \to 0, \text{ as } n \to \infty$$

Problem Time!

Kelvin Lee (UC Berkeley)

Discrete Math and Probability Theory

April 13, 2021 11 / 11

э

A D N A B N A B N A B N