CS70 Geometric and Poisson Distributions

Kelvin Lee
UC Berkeley

June 22, 2021

Overview

(1) Geometric Distribution
(2) Memoryless Property
(3) Poisson Distribution

4 Sum of Independent Poisson Random Variables

Geometric Distribution

Geometric Distribution

- $X \sim$ Geo (p).

Geometric Distribution

- $X \sim$ Geo (p).
- PMF:

Geometric Distribution

- $X \sim$ Geo (p).
- PMF:

$$
P(X=k)=(1-p)^{k-1} p, \quad \text { for } i=1,2,3, \ldots
$$

Geometric Distribution

- $X \sim$ Geo (p).
- PMF:

$$
P(X=k)=(1-p)^{k-1} p, \quad \text { for } i=1,2,3, \ldots
$$

- Expectation:

Geometric Distribution

- $X \sim$ Geo (p).
- PMF:

$$
P(X=k)=(1-p)^{k-1} p, \quad \text { for } i=1,2,3, \ldots
$$

- Expectation:

$$
\mathbb{E}[X]=\frac{1}{p}
$$

Geometric Distribution

- $X \sim$ Geo (p).
- PMF:

$$
P(X=k)=(1-p)^{k-1} p, \quad \text { for } i=1,2,3, \ldots
$$

- Expectation:

$$
\mathbb{E}[X]=\frac{1}{p}
$$

- Variance:

Geometric Distribution

- $X \sim$ Geo (p).
- PMF:

$$
P(X=k)=(1-p)^{k-1} p, \quad \text { for } i=1,2,3, \ldots
$$

- Expectation:

$$
\mathbb{E}[X]=\frac{1}{p}
$$

- Variance:

$$
\operatorname{Var}(X)=\frac{1-p}{p^{2}}
$$

Geometric Distribution: Memoryless Property

Geometric Distribution: Memoryless Property

(Memoryless Property).

Geometric Distribution: Memoryless Property

(Memoryless Property). For $X \sim \operatorname{Geo}(p)$,

Geometric Distribution: Memoryless Property

(Memoryless Property). For $X \sim \operatorname{Geo}(p)$,

$$
\mathbb{P}(X>n+m \mid X>n)=\mathbb{P}(X>m)
$$

Geometric Distribution: Memoryless Property

(Memoryless Property). For $X \sim \operatorname{Geo}(p)$,

$$
\mathbb{P}(X>n+m \mid X>n)=\mathbb{P}(X>m)
$$

Proof:

Geometric Distribution: Memoryless Property

(Memoryless Property). For $X \sim \operatorname{Geo}(p)$,

$$
\mathbb{P}(X>n+m \mid X>n)=\mathbb{P}(X>m)
$$

Proof:

$$
\mathbb{P}(X>n+m \mid X>n)=\frac{\mathbb{P}(X>n+m \text { and } X>n)}{\mathbb{P}(X>n)}
$$

Geometric Distribution: Memoryless Property

(Memoryless Property). For $X \sim \operatorname{Geo}(p)$,

$$
\mathbb{P}(X>n+m \mid X>n)=\mathbb{P}(X>m)
$$

Proof:

$$
\begin{aligned}
\mathbb{P}(X>n+m \mid X>n) & =\frac{\mathbb{P}(X>n+m \text { and } X>n)}{\mathbb{P}(X>n)} \\
& =\frac{\mathbb{P}(X>n+m)}{\mathbb{P}(X>n)}
\end{aligned}
$$

Geometric Distribution: Memoryless Property

(Memoryless Property). For $X \sim \operatorname{Geo}(p)$,

$$
\mathbb{P}(X>n+m \mid X>n)=\mathbb{P}(X>m)
$$

Proof:

$$
\begin{aligned}
\mathbb{P}(X>n+m \mid X>n) & =\frac{\mathbb{P}(X>n+m \text { and } X>n)}{\mathbb{P}(X>n)} \\
& =\frac{\mathbb{P}(X>n+m)}{\mathbb{P}(X>n)} \\
& =\frac{(1-p)^{n+m}}{(1-p)^{n}}
\end{aligned}
$$

Geometric Distribution: Memoryless Property

(Memoryless Property). For $X \sim \operatorname{Geo}(p)$,

$$
\mathbb{P}(X>n+m \mid X>n)=\mathbb{P}(X>m)
$$

Proof:

$$
\begin{aligned}
\mathbb{P}(X>n+m \mid X>n) & =\frac{\mathbb{P}(X>n+m \text { and } X>n)}{\mathbb{P}(X>n)} \\
& =\frac{\mathbb{P}(X>n+m)}{\mathbb{P}(X>n)} \\
& =\frac{(1-p)^{n+m}}{(1-p)^{n}} \\
& =(1-p)^{m} .
\end{aligned}
$$

Geometric Distribution: Memoryless Property

(Memoryless Property). For $X \sim \operatorname{Geo}(p)$,

$$
\mathbb{P}(X>n+m \mid X>n)=\mathbb{P}(X>m)
$$

Proof:

$$
\begin{aligned}
\mathbb{P}(X>n+m \mid X>n) & =\frac{\mathbb{P}(X>n+m \text { and } X>n)}{\mathbb{P}(X>n)} \\
& =\frac{\mathbb{P}(X>n+m)}{\mathbb{P}(X>n)} \\
& =\frac{(1-p)^{n+m}}{(1-p)^{n}} \\
& =(1-p)^{m} .
\end{aligned}
$$

Poisson Distribution

Poisson Distribution

- $X \sim \operatorname{Poisson}(\lambda)$.

Poisson Distribution

- $X \sim \operatorname{Poisson}(\lambda)$.
- Models rare events, such as number of arrivals of a bus in an hour.

Poisson Distribution

- $X \sim \operatorname{Poisson}(\lambda)$.
- Models rare events, such as number of arrivals of a bus in an hour.
- Defined in terms of a rate λ, which specifies the average number of times an event occurs in a time interval.

Poisson Distribution

- $X \sim \operatorname{Poisson}(\lambda)$.
- Models rare events, such as number of arrivals of a bus in an hour.
- Defined in terms of a rate λ, which specifies the average number of times an event occurs in a time interval.
- PMF:

Poisson Distribution

- $X \sim \operatorname{Poisson}(\lambda)$.
- Models rare events, such as number of arrivals of a bus in an hour.
- Defined in terms of a rate λ, which specifies the average number of times an event occurs in a time interval.
- PMF:

$$
P(X=k)=\frac{\lambda^{k} e^{-\lambda}}{k!}, \quad \text { for } i=0,1,2, \ldots
$$

Poisson Distribution

- $X \sim \operatorname{Poisson}(\lambda)$.
- Models rare events, such as number of arrivals of a bus in an hour.
- Defined in terms of a rate λ, which specifies the average number of times an event occurs in a time interval.
- PMF:

$$
P(X=k)=\frac{\lambda^{k} e^{-\lambda}}{k!}, \quad \text { for } i=0,1,2, \ldots
$$

$$
\sum_{i=0}^{\infty} P(X=i)=\sum_{i=0}^{\infty} \frac{\lambda^{k} e^{-\lambda}}{k!}=e^{-\lambda} \sum_{i=0}^{\infty} \frac{\lambda^{k}}{k!}=e^{-\lambda} \cdot e^{\lambda}=1
$$

Poisson Distribution

- $X \sim \operatorname{Poisson}(\lambda)$.
- Models rare events, such as number of arrivals of a bus in an hour.
- Defined in terms of a rate λ, which specifies the average number of times an event occurs in a time interval.
- PMF:

$$
P(X=k)=\frac{\lambda^{k} e^{-\lambda}}{k!}, \quad \text { for } i=0,1,2, \ldots
$$

$$
\sum_{i=0}^{\infty} P(X=i)=\sum_{i=0}^{\infty} \frac{\lambda^{k} e^{-\lambda}}{k!}=e^{-\lambda} \sum_{i=0}^{\infty} \frac{\lambda^{k}}{k!}=e^{-\lambda} \cdot e^{\lambda}=1
$$

Recall the Taylor series expansion from calculus:

Poisson Distribution

- $X \sim \operatorname{Poisson}(\lambda)$.
- Models rare events, such as number of arrivals of a bus in an hour.
- Defined in terms of a rate λ, which specifies the average number of times an event occurs in a time interval.
- PMF:

$$
P(X=k)=\frac{\lambda^{k} e^{-\lambda}}{k!}, \quad \text { for } i=0,1,2, \ldots
$$

$$
\sum_{i=0}^{\infty} P(X=i)=\sum_{i=0}^{\infty} \frac{\lambda^{k} e^{-\lambda}}{k!}=e^{-\lambda} \sum_{i=0}^{\infty} \frac{\lambda^{k}}{k!}=e^{-\lambda} \cdot e^{\lambda}=1
$$

Recall the Taylor series expansion from calculus:

$$
e^{x}=\sum_{i=1}^{\infty} \frac{x^{i}}{i!}
$$

Poisson Distribution

Poisson Distribution

- Expectation:

Poisson Distribution

- Expectation:

$$
\mathbb{E}[X]=\sum_{i=0}^{\infty} i \cdot P(X=i)
$$

Poisson Distribution

- Expectation:

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{i=0}^{\infty} i \cdot P(X=i) \\
& =\sum_{i=1}^{\infty} \frac{\lambda^{i} e^{-\lambda}}{i!}
\end{aligned}
$$

Poisson Distribution

- Expectation:

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{i=0}^{\infty} i \cdot P(X=i) \\
& =\sum_{i=1}^{\infty} \frac{\lambda^{i} e^{-\lambda}}{i!} \\
& =\lambda e^{-\lambda} \sum_{i=1}^{\infty} \frac{\lambda^{i-1}}{(i-1)!}
\end{aligned}
$$

Poisson Distribution

- Expectation:

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{i=0}^{\infty} i \cdot P(X=i) \\
& =\sum_{i=1}^{\infty} \frac{\lambda^{i} e^{-\lambda}}{i!} \\
& =\lambda e^{-\lambda} \sum_{i=1}^{\infty} \frac{\lambda^{i-1}}{(i-1)!} \\
& =\lambda e^{-\lambda} e^{\lambda}
\end{aligned}
$$

$$
\left(e^{\lambda}=\sum_{j=1}^{\infty} \frac{\lambda^{j}}{j!} \text { with } j=i-1\right)
$$

Poisson Distribution

- Expectation:

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{i=0}^{\infty} i \cdot P(X=i) \\
& =\sum_{i=1}^{\infty} \frac{\lambda^{i} e^{-\lambda}}{i!} \\
& =\lambda e^{-\lambda} \sum_{i=1}^{\infty} \frac{\lambda^{i-1}}{(i-1)!} \\
& =\lambda e^{-\lambda} e^{\lambda} \quad\left(e^{\lambda}=\sum_{j=1}^{\infty} \frac{\lambda^{j}}{j!} \text { with } j=i-1\right) \\
& =\lambda
\end{aligned}
$$

Poisson Distribution

- Expectation:

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{i=0}^{\infty} i \cdot P(X=i) \\
& =\sum_{i=1}^{\infty} \frac{\lambda^{i} e^{-\lambda}}{i!} \\
& =\lambda e^{-\lambda} \sum_{i=1}^{\infty} \frac{\lambda^{i-1}}{(i-1)!} \\
& =\lambda e^{-\lambda} e^{\lambda} \quad\left(e^{\lambda}=\sum_{j=1}^{\infty} \frac{\lambda^{j}}{j!} \text { with } j=i-1\right) \\
& =\lambda
\end{aligned}
$$

- Variance:

Poisson Distribution

- Expectation:

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{i=0}^{\infty} i \cdot P(X=i) \\
& =\sum_{i=1}^{\infty} \frac{\lambda^{i} e^{-\lambda}}{i!} \\
& =\lambda e^{-\lambda} \sum_{i=1}^{\infty} \frac{\lambda^{i-1}}{(i-1)!} \\
& =\lambda e^{-\lambda} e^{\lambda} \quad\left(e^{\lambda}=\sum_{j=1}^{\infty} \frac{\lambda^{j}}{j!} \text { with } j=i-1\right) \\
& =\lambda
\end{aligned}
$$

- Variance:

$$
\operatorname{Var}(X)=\lambda
$$

Sum of Independent Poisson Random Variables

Sum of Independent Poisson Random Variables

Theorem.

Sum of Independent Poisson Random Variables

Theorem. Let $X \sim$ Poisson (λ) and $Y \sim$ Poisson (μ) be independent Poisson random variables. Then, $X+Y \sim$ Poisson $(\lambda+\mu)$.

Sum of Independent Poisson Random Variables

Theorem. Let $X \sim$ Poisson (λ) and $Y \sim$ Poisson (μ) be independent Poisson random variables. Then, $X+Y \sim$ Poisson $(\lambda+\mu)$. Proof:

Sum of Independent Poisson Random Variables

Theorem. Let $X \sim$ Poisson (λ) and $Y \sim$ Poisson (μ) be independent Poisson random variables. Then, $X+Y \sim$ Poisson $(\lambda+\mu)$.
Proof:

$$
\mathbb{P}(X+Y=k)=\sum_{j=0}^{k} \mathbb{P}(X=j, Y=k-j)
$$

Sum of Independent Poisson Random Variables

Theorem. Let $X \sim$ Poisson (λ) and $Y \sim$ Poisson (μ) be independent Poisson random variables. Then, $X+Y \sim$ Poisson $(\lambda+\mu)$.
Proof:

$$
\begin{aligned}
\mathbb{P}(X+Y=k) & =\sum_{j=0}^{k} \mathbb{P}(X=j, Y=k-j) \\
& =\sum_{j=0}^{k} \mathbb{P}(X=j) \mathbb{P}(Y=k-j)
\end{aligned}
$$

Sum of Independent Poisson Random Variables

Theorem. Let $X \sim$ Poisson (λ) and $Y \sim$ Poisson (μ) be independent Poisson random variables. Then, $X+Y \sim$ Poisson $(\lambda+\mu)$.
Proof:

$$
\begin{aligned}
\mathbb{P}(X+Y=k) & =\sum_{j=0}^{k} \mathbb{P}(X=j, Y=k-j) \\
& =\sum_{j=0}^{k} \mathbb{P}(X=j) \mathbb{P}(Y=k-j) \\
& =\sum_{j=0}^{k} \frac{\lambda^{j}}{j!} e^{-\lambda} \frac{\mu^{k-j}}{(k-j)!} e^{-\mu}
\end{aligned}
$$

Sum of Independent Poisson Random Variables

Theorem. Let $X \sim$ Poisson (λ) and $Y \sim$ Poisson (μ) be independent Poisson random variables. Then, $X+Y \sim$ Poisson $(\lambda+\mu)$.

Proof:

$$
\begin{aligned}
\mathbb{P}(X+Y=k) & =\sum_{j=0}^{k} \mathbb{P}(X=j, Y=k-j) \\
& =\sum_{j=0}^{k} \mathbb{P}(X=j) \mathbb{P}(Y=k-j) \\
& =\sum_{j=0}^{k} \frac{\lambda^{j}}{j!} e^{-\lambda} \frac{\mu^{k-j}}{(k-j)!} e^{-\mu} \\
& =e^{-(\lambda+\mu)} \frac{1}{k!} \sum_{j=0}^{k} \frac{k!}{j!(k-j)!} \lambda^{j} \mu^{k-j}
\end{aligned}
$$

Sum of Independent Poisson Random Variables

Theorem. Let $X \sim$ Poisson (λ) and $Y \sim$ Poisson (μ) be independent Poisson random variables. Then, $X+Y \sim$ Poisson $(\lambda+\mu)$.

Proof:

$$
\begin{aligned}
\mathbb{P}(X+Y=k) & =\sum_{j=0}^{k} \mathbb{P}(X=j, Y=k-j) \\
& =\sum_{j=0}^{k} \mathbb{P}(X=j) \mathbb{P}(Y=k-j) \\
& =\sum_{j=0}^{k} \frac{\lambda^{j}}{j!} e^{-\lambda} \frac{\mu^{k-j}}{(k-j)!} e^{-\mu} \\
& =e^{-(\lambda+\mu)} \frac{1}{k!} \sum_{j=0}^{k} \frac{k!}{j!(k-j)!} \lambda^{j} \mu^{k-j} \\
& =e^{-(\lambda+\mu)} \frac{(\lambda+\mu)^{k}}{k!} .
\end{aligned}
$$

Problem Time!

