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Overview

@ Geometric Distribution
© Memoryless Property
© Poisson Distribution

@ Sum of Independent Poisson Random Variables
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Geometric Distribution

e X ~ Geo (p).
o PMF:

P(X = k) = (1-p)p,
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Geometric Distribution

e X ~ Geo (p).

e PMF:
P(X =k)= (1—p)k_1p, fori=1,2,3,....

o Expectation:
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Geometric Distribution

e X ~ Geo (p).
o PMF:

P(X:k):(l—p)k_lp, fori=1,2,3,....

o Expectation:

1
E[X] = -.
pP
e Variance:
]_ —
Var(X) = — P
p
Kelvin Lee (UC Berkeley) Discrete Math and Probability Theory

June 22, 2021

3/8



Geometric Distribution: Memoryless Property

Kelvin Lee (UC Berkeley)

Discrete Math and Probability Theory



Geometric Distribution: Memoryless Property
(Memoryless Property).

Kelvin Lee (UC Berkeley)

Discrete Math and Probability Theory



Geometric Distribution: Memoryless Property

(Memoryless Property). For X ~ Geo(p),

Kelvin Lee (UC Berkeley)

Discrete Math and Probability Theory



Geometric Distribution: Memoryless Property
(Memoryless Property). For X ~ Geo(p),

P(X>n+m|X>n)=P(X >m).

Kelvin Lee (UC Berkeley) Discrete Math and Probability Theory

June 22, 2021

4/8



Geometric Distribution: Memoryless Property
(Memoryless Property). For X ~ Geo(p),
P(X>n+m|X>n)=P(X >m).
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Geometric Distribution: Memoryless Property
(Memoryless Property). For X ~ Geo(p),

P(X>n+m|X>n)=P(X >m).

Proof:
P(X > n+ mand X > n)
P(X > X >n)=
( n+m| n) F(X > n)
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Geometric Distribution: Memoryless Property
(Memoryless Property). For X ~ Geo(p),

P(X>n+m|X>n)=P(X >m).

Proof:
P(X > n+ mand X > n)
P(X X =
(X>n+m|X>n) FX > )
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Geometric Distribution: Memoryless Property
(Memoryless Property). For X ~ Geo(p),
P(X>n+m|X>n)=P(X >m).

Proof:
P(X > n+ mand X > n)

P(X > n)
P(X > n+ m)
P(X > n)
B (1 _ p)n+m
- @-p)r
=(1-p"

P(X>n+m|X>n)=

O
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Poisson Distribution
e X ~ Poisson(A).

@ Models rare events, such as number of arrivals of a bus in an hour.
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Poisson Distribution

e X ~ Poisson(A).

@ Models rare events, such as number of arrivals of a bus in an hour.

@ Defined in terms of a rate A, which specifies the average number of
times an event occurs in a time interval.

o PMF: Aee=A

P(X =k)= PR fori=0,1,2,....
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Poisson Distribution

e X ~ Poisson(A).
@ Models rare events, such as number of arrivals of a bus in an hour.
@ Defined in terms of a rate A, which specifies the average number of
times an event occurs in a time interval.
o PMF: Ake=X
P(X =k)= PR fori=0,1,2,....

(]

o) /\k -

Y P(X = Z et =1

i=0 i=0
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Poisson Distribution

e X ~ Poisson(A).
@ Models rare events, such as number of arrivals of a bus in an hour.
@ Defined in terms of a rate A, which specifies the average number of
times an event occurs in a time interval.
o PMF: Ake—X
P(X =k)= PR fori=0,1,2,....
° o) 00 k ,—A oy k
- Ate” A AL
ZP(X:I): kl = e ZF:e - e :1
i=0 i=0 i=0

Recall the Taylor series expansion from calculus:
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Poisson Distribution

e X ~ Poisson(A).
@ Models rare events, such as number of arrivals of a bus in an hour.
@ Defined in terms of a rate A, which specifies the average number of
times an event occurs in a time interval.
o PMF: Ake—X
P(X =k)= PR fori=0,1,2,....
° k o= k
o0 [e.e] — oo
: Ate A A A
ZP(X:/): P Zﬂ:e et =1.
i=0 i=0 i=0
Recall the Taylor series expansion from calculus:
e = S

_7|.
i=1 I
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Poisson Distribution

o Expectation:

EIX] =7 P(X =)
i=0
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Poisson Distribution

o Expectation:

EIX] =7 P(X =)
i=0

)\ie—)\
B

i
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Poisson Distribution
o Expectation:

E[X]:ii-P(X:

00 yi—A

=2
- 2_—1)1

e
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Poisson Distribution

o Expectation:

E[X]:ii-P(X:

[e.9]

=2

1

e—)\

Z; 1—1)|

[e.9]

pYj

= e et (et = Z il with j =7 —1)

Kelvin Lee (UC Berkeley)

Jj=1

Discrete Math and Probability Theory

June 22, 2021

6/8



Poisson Distribution
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Poisson Distribution

o Expectation:

E[X]:ii-P(X:

[e.9]

=2

1

e—)\

Z; 1—1)|

[e.9]

pYj

= e et (et = Z il with j =7 —1)

=\

@ Variance:
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Poisson Distribution

o Expectation:

E[X]:ii-P(X:
i=0
o0 )\ie—)\
>
- Z; 1—1)|

= e et (et = Z il with j =i —1)
=

=\

@ Variance:
Var(X) = A
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Sum of Independent Poisson Random Variables
Theorem.
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Sum of Independent Poisson Random Variables

Theorem. Let X ~ Poisson (\) and Y ~ Poisson () be independent
Poisson random variables. Then, X + Y ~ Poisson (A + p).
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Sum of Independent Poisson Random Variables

Theorem. Let X ~ Poisson (\) and Y ~ Poisson () be independent

Poisson random variables. Then, X + Y ~ Poisson (A + p).
Proof:

P(X + Y = k) = ZP =j,Y =k—J)

k
=Y PX=))P(Y =k—))
j=0

Kelvin Lee (UC Berkeley) Discrete Math and Probability Theory June 22, 2021

7/8



Sum of Independent Poisson Random Variables

Theorem. Let X ~ Poisson (\) and Y ~ Poisson () be independent

Poisson random variables. Then, X + Y ~ Poisson (A + p).
Proof:

P(X + Y = k) = ZP =j,Y =k—J)

j=0
k
=D P(X=/)P(Y =k—j)
j=0
k k—
N J
j=0 ( _./)
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Sum of Independent Poisson Random Variables

Theorem. Let X ~ Poisson (A) and Y ~ Poisson (i) be independent

Poisson random variables. Then, X + Y ~ Poisson (A + p).
Proof:
P(X + Y = k) ZP =j,Y =k—J)

j=0
k _
= Z ﬁe_)‘ Hk ’ —H
j=0 ! (k _./)I
k
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Sum of Independent Poisson Random Variables

Theorem. Let X ~ Poisson (A) and Y ~ Poisson (i) be independent
Poisson random variables. Then, X + Y ~ Poisson (A + p).
Proof:

P(X + Y = k) ZP =j,Y =k—J)
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Problem Time!
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