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Geometric Distribution

X ∼ Geo (p).

PMF:
P(X = k) = (1− p)k−1p, for i = 1, 2, 3, . . . .

Expectation:
E[X ] = 1

p .

Variance:
Var(X ) = 1− p

p2 .
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Geometric Distribution: Memoryless Property

(Memoryless Property). For X ∼ Geo(p),

P(X > n + m | X > n) = P(X > m).

Proof:
P(X > n + m | X > n) = P(X > n + m and X > n)

P(X > n)

= P(X > n + m)
P(X > n)

= (1− p)n+m

(1− p)n

= (1− p)m.

�
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Poisson Distribution

X ∼ Poisson(λ).
Models rare events, such as number of arrivals of a bus in an hour.
Defined in terms of a rate λ, which specifies the average number of
times an event occurs in a time interval.
PMF:

P(X = k) = λke−λ

k! , for i = 0, 1, 2, . . . .

∞∑
i=0

P(X = i) =
∞∑

i=0

λke−λ

k! = e−λ
∞∑

i=0

λk

k! = e−λ · eλ = 1.

Recall the Taylor series expansion from calculus:

ex =
∞∑

i=1

x i

i! .

Kelvin Lee (UC Berkeley) Discrete Math and Probability Theory June 22, 2021 5 / 8



Poisson Distribution
X ∼ Poisson(λ).

Models rare events, such as number of arrivals of a bus in an hour.
Defined in terms of a rate λ, which specifies the average number of
times an event occurs in a time interval.
PMF:

P(X = k) = λke−λ

k! , for i = 0, 1, 2, . . . .

∞∑
i=0

P(X = i) =
∞∑

i=0

λke−λ

k! = e−λ
∞∑

i=0

λk

k! = e−λ · eλ = 1.

Recall the Taylor series expansion from calculus:

ex =
∞∑

i=1

x i

i! .

Kelvin Lee (UC Berkeley) Discrete Math and Probability Theory June 22, 2021 5 / 8



Poisson Distribution
X ∼ Poisson(λ).
Models rare events, such as number of arrivals of a bus in an hour.

Defined in terms of a rate λ, which specifies the average number of
times an event occurs in a time interval.
PMF:

P(X = k) = λke−λ

k! , for i = 0, 1, 2, . . . .

∞∑
i=0

P(X = i) =
∞∑

i=0

λke−λ

k! = e−λ
∞∑

i=0

λk

k! = e−λ · eλ = 1.

Recall the Taylor series expansion from calculus:

ex =
∞∑

i=1

x i

i! .

Kelvin Lee (UC Berkeley) Discrete Math and Probability Theory June 22, 2021 5 / 8



Poisson Distribution
X ∼ Poisson(λ).
Models rare events, such as number of arrivals of a bus in an hour.
Defined in terms of a rate λ, which specifies the average number of
times an event occurs in a time interval.

PMF:
P(X = k) = λke−λ

k! , for i = 0, 1, 2, . . . .

∞∑
i=0

P(X = i) =
∞∑

i=0

λke−λ

k! = e−λ
∞∑

i=0

λk

k! = e−λ · eλ = 1.

Recall the Taylor series expansion from calculus:

ex =
∞∑

i=1

x i

i! .

Kelvin Lee (UC Berkeley) Discrete Math and Probability Theory June 22, 2021 5 / 8



Poisson Distribution
X ∼ Poisson(λ).
Models rare events, such as number of arrivals of a bus in an hour.
Defined in terms of a rate λ, which specifies the average number of
times an event occurs in a time interval.
PMF:

P(X = k) = λke−λ

k! , for i = 0, 1, 2, . . . .

∞∑
i=0

P(X = i) =
∞∑

i=0

λke−λ

k! = e−λ
∞∑

i=0

λk

k! = e−λ · eλ = 1.

Recall the Taylor series expansion from calculus:

ex =
∞∑

i=1

x i

i! .

Kelvin Lee (UC Berkeley) Discrete Math and Probability Theory June 22, 2021 5 / 8



Poisson Distribution
X ∼ Poisson(λ).
Models rare events, such as number of arrivals of a bus in an hour.
Defined in terms of a rate λ, which specifies the average number of
times an event occurs in a time interval.
PMF:

P(X = k) = λke−λ

k! , for i = 0, 1, 2, . . . .

∞∑
i=0

P(X = i) =
∞∑

i=0

λke−λ

k! = e−λ
∞∑

i=0

λk

k! = e−λ · eλ = 1.

Recall the Taylor series expansion from calculus:

ex =
∞∑

i=1

x i

i! .

Kelvin Lee (UC Berkeley) Discrete Math and Probability Theory June 22, 2021 5 / 8



Poisson Distribution
X ∼ Poisson(λ).
Models rare events, such as number of arrivals of a bus in an hour.
Defined in terms of a rate λ, which specifies the average number of
times an event occurs in a time interval.
PMF:

P(X = k) = λke−λ

k! , for i = 0, 1, 2, . . . .

∞∑
i=0

P(X = i) =
∞∑

i=0

λke−λ

k! = e−λ
∞∑

i=0

λk

k! = e−λ · eλ = 1.

Recall the Taylor series expansion from calculus:

ex =
∞∑

i=1

x i

i! .

Kelvin Lee (UC Berkeley) Discrete Math and Probability Theory June 22, 2021 5 / 8



Poisson Distribution
X ∼ Poisson(λ).
Models rare events, such as number of arrivals of a bus in an hour.
Defined in terms of a rate λ, which specifies the average number of
times an event occurs in a time interval.
PMF:

P(X = k) = λke−λ

k! , for i = 0, 1, 2, . . . .

∞∑
i=0

P(X = i) =
∞∑

i=0

λke−λ

k! = e−λ
∞∑

i=0

λk

k! = e−λ · eλ = 1.

Recall the Taylor series expansion from calculus:

ex =
∞∑

i=1

x i

i! .

Kelvin Lee (UC Berkeley) Discrete Math and Probability Theory June 22, 2021 5 / 8



Poisson Distribution
X ∼ Poisson(λ).
Models rare events, such as number of arrivals of a bus in an hour.
Defined in terms of a rate λ, which specifies the average number of
times an event occurs in a time interval.
PMF:

P(X = k) = λke−λ

k! , for i = 0, 1, 2, . . . .

∞∑
i=0

P(X = i) =
∞∑

i=0

λke−λ

k! = e−λ
∞∑

i=0

λk

k! = e−λ · eλ = 1.

Recall the Taylor series expansion from calculus:

ex =
∞∑

i=1

x i

i! .

Kelvin Lee (UC Berkeley) Discrete Math and Probability Theory June 22, 2021 5 / 8



Poisson Distribution

Expectation:

E[X ] =
∞∑

i=0
i · P(X = i)

=
∞∑

i=1

λie−λ

i!

= λe−λ
∞∑

i=1

λi−1

(i − 1)!

= λe−λeλ (eλ =
∞∑

j=1

λj

j! with j = i − 1)

= λ.

Variance:
Var(X ) = λ.
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Sum of Independent Poisson Random Variables

Theorem. Let X ∼ Poisson (λ) and Y ∼ Poisson (µ) be independent
Poisson random variables. Then, X + Y ∼ Poisson (λ+ µ).
Proof:

P(X + Y = k) =
k∑

j=0
P(X = j ,Y = k − j)

=
k∑

j=0
P(X = j)P(Y = k − j)

=
k∑

j=0

λj

j! e−λ µk−j

(k − j)!e−µ

= e−(λ+µ) 1
k!

k∑
j=0

k!
j!(k − j)!λ

jµk−j

= e−(λ+µ) (λ+ µ)k

k! .

�
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Problem Time!
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