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Probability Density Function

A probability density function, or PDF, for a random variable X is a
function f : R→ R satisfying:

Non-negativity: f (x) ≥ 0 for all x ∈ R.

Normalization: ∫ ∞
−∞

f (x)dx = 1.

The distribution of a continuous random variable X is given by:

P(a ≤ X ≤ b) =
∫ b

a
f (x)dx for all a < b.

For an interval [x , x + dx ] with very small length dx , we have

P(x ≤ X ≤ x + dx) =
∫ x+dx

x
f (t)dt ≈ f (x)dx .

Remark: f (x) is not probability of anything and does not have to be
bounded by 1! One example is U[0, 1

2 ] where f (x) = 2 > 1. f (x) actually
represents the density, or probability per unit length vicinity of x !
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Cumulative Distribution Function

For a continuous random variable X , the cumulative distribution
function, or CDF, is the function as follows:

F (x) = P(X ≤ x) =
∫ x

−∞
f (z)dz .

It is closely related to the PDF for X :

f (x) = dF (x)
dx .
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Continuous Joint Distribution

A joint density function for two random variable X and Y is a function
f : R2 → R satisfying:

f is non-negative: f (x , y) ≥ 0 for all x , y ∈ R.

The total integral of f is equal to 1 :
∫∞
−∞

∫∞
−∞ f (x , y)dxdy = 1.

The joint distribution of X and Y is given by:

P(a ≤ X ≤ b, c ≤ Y ≤ d) =
∫ d

c

∫ b

a
f (x , y)dxdy .

We connect the joint density f (x , y) with probabilities by looking at a very
small square [x , x + dx ]× [y , y + dy ] close to (x , y); then we have

P(x ≤ X ≤ x + dx , y ≤ Y ≤ y + dy) ≈ f (x , y)dxdy .

We interpret f (x , y) as the probability per unit area in the vicinity of
(x , y).
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Expectation and Variance

The expectation of a continuous random variable X with PDF f is

E[X ] =
∫ ∞
−∞

xf (x)dx .

The variance of a continuous random variable X with PDF f is

Var(X ) = E[X 2]− E[X ]2 =
∫ ∞
−∞

x2f (x)dx −
(∫ ∞
−∞

xf (x)dx
)2
.
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Uniform Random Variable

X ∼ U[a, b].

PDF:
f (x) = 1

b − a .

Expectation:
E[X ] =

∫ b

a
x · 1

b − adx = a + b
2 .

Variance:
Var(X ) = E[X 2]− E[X ]2

=
∫ b

a
x2 · 1

b − adx −
∫ b

a
x · 1

b − adx

= (b − a)2

12 .
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Exponential Random Variable

X ∼ Exp(λ).
Continuous analogue of discrete geometric distribution. (Memoryless
property also holds) ∫ ∞

0
λe−λtdt = 1.

PDF:

f (x) =

 λe−λx , if x ≥ 0
0, otherwise

Expectation:
E[X ] = 1

λ
.

Variance:
Var(X ) = 1

λ2 .
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Problem Time!
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