CS70

Continuous Probability

Kelvin Lee

UC Berkeley
June 22, 2021

Overview

(1) Probability Density Function
(2) Cumulative Distribution Function
(3) Continuous Joint Distribution

4 Expectation and Variance
(5) Uniform Distribution
(6) Exponential Distribution

Probability Density Function

Probability Density Function

A probability density function, or PDF, for a random variable X is a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying:

Probability Density Function

A probability density function, or PDF, for a random variable X is a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying:

- Non-negativity:

Probability Density Function

A probability density function, or PDF, for a random variable X is a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying:

- Non-negativity: $f(x) \geq 0$ for all $x \in \mathbb{R}$.

Probability Density Function

A probability density function, or PDF, for a random variable X is a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying:

- Non-negativity: $f(x) \geq 0$ for all $x \in \mathbb{R}$.
- Normalization:

Probability Density Function

A probability density function, or PDF, for a random variable X is a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying:

- Non-negativity: $f(x) \geq 0$ for all $x \in \mathbb{R}$.
- Normalization:

$$
\int_{-\infty}^{\infty} f(x) d x=1
$$

Probability Density Function

A probability density function, or PDF, for a random variable X is a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying:

- Non-negativity: $f(x) \geq 0$ for all $x \in \mathbb{R}$.
- Normalization:

$$
\int_{-\infty}^{\infty} f(x) d x=1
$$

The distribution of a continuous random variable X is given by:

Probability Density Function

A probability density function, or PDF, for a random variable X is a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying:

- Non-negativity: $f(x) \geq 0$ for all $x \in \mathbb{R}$.
- Normalization:

$$
\int_{-\infty}^{\infty} f(x) d x=1
$$

The distribution of a continuous random variable X is given by:

$$
\mathbb{P}(a \leq X \leq b)=\int_{a}^{b} f(x) d x \quad \text { for all } a<b
$$

Probability Density Function

A probability density function, or PDF, for a random variable X is a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying:

- Non-negativity: $f(x) \geq 0$ for all $x \in \mathbb{R}$.
- Normalization:

$$
\int_{-\infty}^{\infty} f(x) d x=1
$$

The distribution of a continuous random variable X is given by:

$$
\mathbb{P}(a \leq X \leq b)=\int_{a}^{b} f(x) d x \quad \text { for all } a<b
$$

For an interval $[x, x+d x]$ with very small length $d x$, we have

Probability Density Function

A probability density function, or PDF, for a random variable X is a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying:

- Non-negativity: $f(x) \geq 0$ for all $x \in \mathbb{R}$.
- Normalization:

$$
\int_{-\infty}^{\infty} f(x) d x=1
$$

The distribution of a continuous random variable X is given by:

$$
\mathbb{P}(a \leq X \leq b)=\int_{a}^{b} f(x) d x \quad \text { for all } a<b
$$

For an interval $[x, x+d x]$ with very small length $d x$, we have

$$
\mathbb{P}(x \leq X \leq x+d x)=\int_{x}^{x+d x} f(t) d t \approx f(x) d x
$$

Probability Density Function

A probability density function, or PDF, for a random variable X is a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying:

- Non-negativity: $f(x) \geq 0$ for all $x \in \mathbb{R}$.
- Normalization:

$$
\int_{-\infty}^{\infty} f(x) d x=1
$$

The distribution of a continuous random variable X is given by:

$$
\mathbb{P}(a \leq X \leq b)=\int_{a}^{b} f(x) d x \quad \text { for all } a<b
$$

For an interval $[x, x+d x]$ with very small length $d x$, we have

$$
\mathbb{P}(x \leq X \leq x+d x)=\int_{x}^{x+d x} f(t) d t \approx f(x) d x
$$

Remark:

Probability Density Function

A probability density function, or PDF, for a random variable X is a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying:

- Non-negativity: $f(x) \geq 0$ for all $x \in \mathbb{R}$.
- Normalization:

$$
\int_{-\infty}^{\infty} f(x) d x=1
$$

The distribution of a continuous random variable X is given by:

$$
\mathbb{P}(a \leq X \leq b)=\int_{a}^{b} f(x) d x \quad \text { for all } a<b
$$

For an interval $[x, x+d x]$ with very small length $d x$, we have

$$
\mathbb{P}(x \leq X \leq x+d x)=\int_{x}^{x+d x} f(t) d t \approx f(x) d x
$$

Remark: $f(x)$ is not probability of anything and does not have to be bounded by 1 !

Probability Density Function

A probability density function, or PDF, for a random variable X is a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying:

- Non-negativity: $f(x) \geq 0$ for all $x \in \mathbb{R}$.
- Normalization:

$$
\int_{-\infty}^{\infty} f(x) d x=1
$$

The distribution of a continuous random variable X is given by:

$$
\mathbb{P}(a \leq X \leq b)=\int_{a}^{b} f(x) d x \quad \text { for all } a<b
$$

For an interval $[x, x+d x]$ with very small length $d x$, we have

$$
\mathbb{P}(x \leq X \leq x+d x)=\int_{x}^{x+d x} f(t) d t \approx f(x) d x
$$

Remark: $f(x)$ is not probability of anything and does not have to be bounded by 1 ! One example is $U\left[0, \frac{1}{2}\right]$ where $f(x)=2>1 . f(x)$ actually represents the density, or probability per unit length vicinity of x !

Cumulative Distribution Function

Cumulative Distribution Function

For a continuous random variable X, the cumulative distribution function, or CDF, is the function as follows:

Cumulative Distribution Function

For a continuous random variable X, the cumulative distribution function, or CDF, is the function as follows:

$$
F(x)=\mathbb{P}(X \leq x)=\int_{-\infty}^{x} f(z) d z
$$

Cumulative Distribution Function

For a continuous random variable X, the cumulative distribution function, or CDF, is the function as follows:

$$
F(x)=\mathbb{P}(X \leq x)=\int_{-\infty}^{x} f(z) d z
$$

It is closely related to the PDF for X :

Cumulative Distribution Function

For a continuous random variable X, the cumulative distribution function, or CDF, is the function as follows:

$$
F(x)=\mathbb{P}(X \leq x)=\int_{-\infty}^{x} f(z) d z
$$

It is closely related to the PDF for X :

$$
f(x)=\frac{d F(x)}{d x}
$$

Continuous Joint Distribution

Continuous Joint Distribution

A joint density function for two random variable X and Y is a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfying:

Continuous Joint Distribution

A joint density function for two random variable X and Y is a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfying:

- f is non-negative: $f(x, y) \geq 0$ for all $x, y \in \mathbb{R}$.

Continuous Joint Distribution

A joint density function for two random variable X and Y is a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfying:

- f is non-negative: $f(x, y) \geq 0$ for all $x, y \in \mathbb{R}$.
- The total integral of f is equal to $1: \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1$.

Continuous Joint Distribution

A joint density function for two random variable X and Y is a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfying:

- f is non-negative: $f(x, y) \geq 0$ for all $x, y \in \mathbb{R}$.
- The total integral of f is equal to $1: \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1$.

The joint distribution of X and Y is given by:

Continuous Joint Distribution

A joint density function for two random variable X and Y is a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfying:

- f is non-negative: $f(x, y) \geq 0$ for all $x, y \in \mathbb{R}$.
- The total integral of f is equal to $1: \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1$.

The joint distribution of X and Y is given by:

$$
\mathbb{P}(a \leq X \leq b, c \leq Y \leq d)=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
$$

Continuous Joint Distribution

A joint density function for two random variable X and Y is a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfying:

- f is non-negative: $f(x, y) \geq 0$ for all $x, y \in \mathbb{R}$.
- The total integral of f is equal to $1: \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1$.

The joint distribution of X and Y is given by:

$$
\mathbb{P}(a \leq X \leq b, c \leq Y \leq d)=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
$$

We connect the joint density $f(x, y)$ with probabilities by looking at a very small square $[x, x+d x] \times[y, y+d y]$ close to (x, y); then we have

Continuous Joint Distribution

A joint density function for two random variable X and Y is a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfying:

- f is non-negative: $f(x, y) \geq 0$ for all $x, y \in \mathbb{R}$.
- The total integral of f is equal to $1: \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1$.

The joint distribution of X and Y is given by:

$$
\mathbb{P}(a \leq X \leq b, c \leq Y \leq d)=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
$$

We connect the joint density $f(x, y)$ with probabilities by looking at a very small square $[x, x+d x] \times[y, y+d y]$ close to (x, y); then we have

$$
\mathbb{P}(x \leq X \leq x+d x, y \leq Y \leq y+d y) \approx f(x, y) d x d y
$$

Continuous Joint Distribution

A joint density function for two random variable X and Y is a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfying:

- f is non-negative: $f(x, y) \geq 0$ for all $x, y \in \mathbb{R}$.
- The total integral of f is equal to $1: \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1$.

The joint distribution of X and Y is given by:

$$
\mathbb{P}(a \leq X \leq b, c \leq Y \leq d)=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
$$

We connect the joint density $f(x, y)$ with probabilities by looking at a very small square $[x, x+d x] \times[y, y+d y]$ close to (x, y); then we have

$$
\mathbb{P}(x \leq X \leq x+d x, y \leq Y \leq y+d y) \approx f(x, y) d x d y
$$

We interpret $f(x, y)$ as the probability per unit area in the vicinity of (x, y).

Expectation and Variance

Expectation and Variance

The expectation of a continuous random variable X with PDF f is

Expectation and Variance

The expectation of a continuous random variable X with PDF f is

$$
\mathbb{E}[X]=\int_{-\infty}^{\infty} x f(x) d x
$$

Expectation and Variance

The expectation of a continuous random variable X with PDF f is

$$
\mathbb{E}[X]=\int_{-\infty}^{\infty} x f(x) d x
$$

The variance of a continuous random variable X with PDF f is

Expectation and Variance

The expectation of a continuous random variable X with PDF f is

$$
\mathbb{E}[X]=\int_{-\infty}^{\infty} x f(x) d x
$$

The variance of a continuous random variable X with PDF f is

$$
\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\int_{-\infty}^{\infty} x^{2} f(x) d x-\left(\int_{-\infty}^{\infty} x f(x) d x\right)^{2}
$$

Uniform Random Variable

Uniform Random Variable

- $X \sim U[a, b]$.

Uniform Random Variable

- $X \sim U[a, b]$.
- PDF:

Uniform Random Variable

- $X \sim U[a, b]$.
- PDF:

$$
f(x)=\frac{1}{b-a}
$$

Uniform Random Variable

- $X \sim U[a, b]$.
- PDF:

$$
f(x)=\frac{1}{b-a}
$$

- Expectation:

Uniform Random Variable

- $X \sim U[a, b]$.
- PDF:

$$
f(x)=\frac{1}{b-a}
$$

- Expectation:

$$
\mathbb{E}[X]=\int_{a}^{b} x \cdot \frac{1}{b-a} d x=\frac{a+b}{2}
$$

Uniform Random Variable

- $X \sim U[a, b]$.
- PDF:

$$
f(x)=\frac{1}{b-a}
$$

- Expectation:

$$
\mathbb{E}[X]=\int_{a}^{b} x \cdot \frac{1}{b-a} d x=\frac{a+b}{2}
$$

- Variance:

Uniform Random Variable

- $X \sim U[a, b]$.
- PDF:

$$
f(x)=\frac{1}{b-a}
$$

- Expectation:

$$
\mathbb{E}[X]=\int_{a}^{b} x \cdot \frac{1}{b-a} d x=\frac{a+b}{2}
$$

- Variance:

$$
\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}
$$

Uniform Random Variable

- $X \sim U[a, b]$.
- PDF:

$$
f(x)=\frac{1}{b-a}
$$

- Expectation:

$$
\mathbb{E}[X]=\int_{a}^{b} x \cdot \frac{1}{b-a} d x=\frac{a+b}{2}
$$

- Variance:

$$
\begin{aligned}
\operatorname{Var}(X) & =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2} \\
& =\int_{a}^{b} x^{2} \cdot \frac{1}{b-a} d x-\int_{a}^{b} x \cdot \frac{1}{b-a} d x
\end{aligned}
$$

Uniform Random Variable

- $X \sim U[a, b]$.
- PDF:

$$
f(x)=\frac{1}{b-a}
$$

- Expectation:

$$
\mathbb{E}[X]=\int_{a}^{b} x \cdot \frac{1}{b-a} d x=\frac{a+b}{2}
$$

- Variance:

$$
\begin{aligned}
\operatorname{Var}(X) & =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2} \\
& =\int_{a}^{b} x^{2} \cdot \frac{1}{b-a} d x-\int_{a}^{b} x \cdot \frac{1}{b-a} d x \\
& =\frac{(b-a)^{2}}{12}
\end{aligned}
$$

Exponential Random Variable

Exponential Random Variable

- $X \sim \operatorname{Exp}(\lambda)$.

Exponential Random Variable

- $X \sim \operatorname{Exp}(\lambda)$.
- Continuous analogue of discrete geometric distribution. (Memoryless property also holds)

Exponential Random Variable

- $X \sim \operatorname{Exp}(\lambda)$.
- Continuous analogue of discrete geometric distribution. (Memoryless property also holds)

$$
\int_{0}^{\infty} \lambda e^{-\lambda t} d t=1
$$

Exponential Random Variable

- $X \sim \operatorname{Exp}(\lambda)$.
- Continuous analogue of discrete geometric distribution. (Memoryless property also holds)

$$
\int_{0}^{\infty} \lambda e^{-\lambda t} d t=1
$$

- PDF:

Exponential Random Variable

- $X \sim \operatorname{Exp}(\lambda)$.
- Continuous analogue of discrete geometric distribution. (Memoryless property also holds)

$$
\int_{0}^{\infty} \lambda e^{-\lambda t} d t=1
$$

- PDF:

$$
f(x)= \begin{cases}\lambda e^{-\lambda x}, & \text { if } x \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

Exponential Random Variable

- $X \sim \operatorname{Exp}(\lambda)$.
- Continuous analogue of discrete geometric distribution. (Memoryless property also holds)
-

$$
\int_{0}^{\infty} \lambda e^{-\lambda t} d t=1
$$

- PDF:

$$
f(x)= \begin{cases}\lambda e^{-\lambda x}, & \text { if } x \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

- Expectation:

Exponential Random Variable

- $X \sim \operatorname{Exp}(\lambda)$.
- Continuous analogue of discrete geometric distribution. (Memoryless property also holds)
-

$$
\int_{0}^{\infty} \lambda e^{-\lambda t} d t=1
$$

- PDF:

$$
f(x)= \begin{cases}\lambda e^{-\lambda x}, & \text { if } x \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

- Expectation:

$$
\mathbb{E}[X]=\frac{1}{\lambda}
$$

Exponential Random Variable

- $X \sim \operatorname{Exp}(\lambda)$.
- Continuous analogue of discrete geometric distribution. (Memoryless property also holds)
-

$$
\int_{0}^{\infty} \lambda e^{-\lambda t} d t=1
$$

- PDF:

$$
f(x)= \begin{cases}\lambda e^{-\lambda x}, & \text { if } x \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

- Expectation:

$$
\mathbb{E}[X]=\frac{1}{\lambda}
$$

- Variance:

Exponential Random Variable

- $X \sim \operatorname{Exp}(\lambda)$.
- Continuous analogue of discrete geometric distribution. (Memoryless property also holds)

$$
\int_{0}^{\infty} \lambda e^{-\lambda t} d t=1
$$

- PDF:

$$
f(x)= \begin{cases}\lambda e^{-\lambda x}, & \text { if } x \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

- Expectation:

$$
\mathbb{E}[X]=\frac{1}{\lambda}
$$

- Variance:

$$
\operatorname{Var}(X)=\frac{1}{\lambda^{2}}
$$

Problem Time!

