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Normal Distribution

A normal random variable X is denoted by N (µ, σ2) where µ is the mean
and σ2 is the variance and has a PDF of the form

f (x) = 1√
2πσ

e−(x−µ)2/2σ2
.

A standard normal random variable is a normal random variable with
mean 0 and variance 1, denoted as N (0, 1) and has a PDF of the form

f (x) = 1√
2π

e−x2/2.

Since its CDF cannot be expressed in elementary functions, the CDF is
denoted by Φ:

Φ(x) = P(X ≤ x) = P(X < x) = 1√
2π

∫ x

−∞
e−t2/2dt.

Remark: The CDF of a normal random variable is symmetrical, so

Φ(−x) = 1− Φ(x).
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Standardizing Normal Random Variables

Theorem.
If X ∼ N

(
µ, σ2) , then Y = X−µ

σ ∼ N (0, 1). Equivalently, if Y ∼ N (0, 1),
then X = σY + µ ∼ N (µ, σ2).
Proof:
Given that X ∼ N

(
µ, σ2), we can calculate the distribution of Y = X−µ

σ

as:

P(a ≤ Y ≤ b) = P(σa+µ ≤ X ≤ σb+µ) = 1√
2πσ2

∫ σb+µ

σa+µ
e−(x−µ)2/(2σ2)dx = 1√

2π

∫ b

a
e−y2/2dy .

by a simple change of variable x = σy + µ in the integral. Hence Y is
standard normal, which is obtained from X by shifting the origin to µ and
scaling by σ. �
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Sum of Independent Normal RVs

Theorem.
Let X ∼ N (0, 1) and Y ∼ N (0, 1) be independent standard normal random
variables, and suppose a, b ∈ R are constants. Then

Z = aX + bY ∼ N
(

0, a2 + b2
)
.

Theorem.
Let X ∼ N

(
µX , σ

2
X
)

and Y ∼ N
(
µY , σ

2
Y
)

be independent normal random
variables. Then for any constants a, b ∈ R,

Z = aX + bY ∼ N (aµX + bµY , a2σ2
X + b2σ2

Y ).
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Central Limit Theorem

Central Limit Theorem.
Let X1,X2, . . . ,Xn be a sequence of i.i.d. random variables with common
finite expectation E [Xi ] = µ and finite variance Var (Xi ) = σ2.Let
Sn =

∑n
i=1 Xi . Then, the distribution of Sn−nµ

σ
√

n converges to N (0, 1) as
n→∞.In other words, for any constant c ∈ R

P
(Sn − nµ

σ
√

n ≤ c
)
→ 1√

2π

∫ c

−∞
e−x2/2dx as n→∞.

Recall that the WLLN implies that as the number of samples increases,
the sample mean converges in probability to the expected value.
CLT is stronger; it states that the distribution of the sample mean
converges to normal distribution (this works for any sampling
distribution)!
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Problem Time!
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