CS70 Continuous Probability II

Kelvin Lee

kelvinlee@berkeley.edu

December 2, 2020

Kelvin Lee (UC Berkeley)

Discrete Math and Probability Theory

December 2, 2020 1 /

1 Normal Distribution

2 Normal Random Variables Standardization

3 Sum of Independent Normal Random Variables

4 Central Limit Theorem

Normal Distribution

э.

(日)

æ

Kelvin Lee (UC Berkeley)

Normal Distribution

A normal random variable X is denoted by $\mathcal{N}(\mu, \sigma^2)$ where μ is the mean and σ^2 is the variance and has a PDF of the form

$$f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-(x-\mu)^2/2\sigma^2}.$$

Kelvin Lee (UC Berkeley)

A normal random variable X is denoted by $\mathcal{N}(\mu, \sigma^2)$ where μ is the mean and σ^2 is the variance and has a PDF of the form

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2}.$$

A standard normal random variable is a normal random variable with mean 0 and variance 1, denoted as $\mathcal{N}(0,1)$ and has a PDF of the form

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2}.$$

A **standard normal** random variable is a normal random variable with mean 0 and variance 1, denoted as $\mathcal{N}(0,1)$ and has a PDF of the form $f(u) = \frac{1}{1-e^{-x^2/2}}$

$$f(x)=\frac{1}{\sqrt{2\pi}}e^{-x^2/2}.$$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2}.$$

A standard normal random variable is a normal random variable with mean 0 and variance 1, denoted as $\mathcal{N}(0,1)$ and has a PDF of the form

$$f(x)=\frac{1}{\sqrt{2\pi}}e^{-x^2/2}.$$

Since its CDF cannot be expressed in elementary functions, the CDF is denoted by Φ :

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2}.$$

A standard normal random variable is a normal random variable with mean 0 and variance 1, denoted as $\mathcal{N}(0,1)$ and has a PDF of the form

$$f(x)=\frac{1}{\sqrt{2\pi}}e^{-x^2/2}.$$

Since its CDF cannot be expressed in elementary functions, the CDF is denoted by Φ :

$$\Phi(x) = \mathbb{P}(X \leq x) = \mathbb{P}(X < x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt.$$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2}.$$

A standard normal random variable is a normal random variable with mean 0 and variance 1, denoted as $\mathcal{N}(0,1)$ and has a PDF of the form

$$f(x)=\frac{1}{\sqrt{2\pi}}e^{-x^2/2}.$$

Since its CDF cannot be expressed in elementary functions, the CDF is denoted by Φ :

$$\Phi(x) = \mathbb{P}(X \leq x) = \mathbb{P}(X < x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt.$$

Remark:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2}.$$

A standard normal random variable is a normal random variable with mean 0 and variance 1, denoted as $\mathcal{N}(0,1)$ and has a PDF of the form

$$f(x)=\frac{1}{\sqrt{2\pi}}e^{-x^2/2}.$$

Since its CDF cannot be expressed in elementary functions, the CDF is denoted by Φ :

$$\Phi(x) = \mathbb{P}(X \le x) = \mathbb{P}(X < x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt.$$

Remark: The CDF of a normal random variable is symmetrical, so

$$\Phi(-x)=1-\Phi(x).$$

Standardizing Normal Random Variables

Standardizing Normal Random Variables

Theorem.

If
$$X \sim N(\mu, \sigma^2)$$
, then $Y = \frac{X-\mu}{\sigma} \sim \mathcal{N}(0, 1)$. Equivalently, if $Y \sim \mathcal{N}(0, 1)$,
then $X = \sigma Y + \mu \sim \mathcal{N}(\mu, \sigma^2)$.

If
$$X \sim N(\mu, \sigma^2)$$
, then $Y = \frac{X-\mu}{\sigma} \sim \mathcal{N}(0, 1)$. Equivalently, if $Y \sim \mathcal{N}(0, 1)$,
then $X = \sigma Y + \mu \sim \mathcal{N}(\mu, \sigma^2)$.
Proof:

If
$$X \sim N(\mu, \sigma^2)$$
, then $Y = \frac{X-\mu}{\sigma} \sim \mathcal{N}(0, 1)$. Equivalently, if $Y \sim \mathcal{N}(0, 1)$,
then $X = \sigma Y + \mu \sim \mathcal{N}(\mu, \sigma^2)$.

Proof:

Kelvin Lee (UC Berkeley)

Given that $X \sim \mathcal{N}(\mu, \sigma^2)$, we can calculate the distribution of $Y = \frac{X-\mu}{\sigma}$ as:

If
$$X \sim N(\mu, \sigma^2)$$
, then $Y = \frac{X-\mu}{\sigma} \sim \mathcal{N}(0, 1)$. Equivalently, if $Y \sim \mathcal{N}(0, 1)$,
then $X = \sigma Y + \mu \sim \mathcal{N}(\mu, \sigma^2)$.

Proof:

Given that $X \sim \mathcal{N}(\mu, \sigma^2)$, we can calculate the distribution of $Y = \frac{X-\mu}{\sigma}$ as:

 $\mathbf{P}(a \leq Y \leq b) =$

If
$$X \sim N(\mu, \sigma^2)$$
, then $Y = \frac{X-\mu}{\sigma} \sim \mathcal{N}(0, 1)$. Equivalently, if $Y \sim \mathcal{N}(0, 1)$,
then $X = \sigma Y + \mu \sim \mathcal{N}(\mu, \sigma^2)$.

Proof:

Given that $X \sim \mathcal{N}(\mu, \sigma^2)$, we can calculate the distribution of $Y = \frac{X-\mu}{\sigma}$ as:

$$\mathbf{P}(a \leq Y \leq b) = \mathbf{P}(\sigma a + \mu \leq X \leq \sigma b + \mu) = 0$$

If
$$X \sim N(\mu, \sigma^2)$$
, then $Y = \frac{X-\mu}{\sigma} \sim \mathcal{N}(0, 1)$. Equivalently, if $Y \sim \mathcal{N}(0, 1)$,
then $X = \sigma Y + \mu \sim \mathcal{N}(\mu, \sigma^2)$.

Proof:

Given that $X \sim \mathcal{N}(\mu, \sigma^2)$, we can calculate the distribution of $Y = \frac{X-\mu}{\sigma}$ as:

$$\mathbf{P}(a \leq Y \leq b) = \mathbf{P}(\sigma a + \mu \leq X \leq \sigma b + \mu) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{\sigma a + \mu}^{\sigma b + \mu} e^{-(x - \mu)^2/(2\sigma^2)} dx$$

If
$$X \sim N(\mu, \sigma^2)$$
, then $Y = \frac{X-\mu}{\sigma} \sim \mathcal{N}(0, 1)$. Equivalently, if $Y \sim \mathcal{N}(0, 1)$,
then $X = \sigma Y + \mu \sim \mathcal{N}(\mu, \sigma^2)$.

Proof:

Given that $X \sim \mathcal{N}(\mu, \sigma^2)$, we can calculate the distribution of $Y = \frac{X-\mu}{\sigma}$ as:

$$\mathsf{P}(\mathsf{a} \leq Y \leq \mathsf{b}) = \mathsf{P}(\sigma\mathsf{a} + \mu \leq X \leq \sigma\mathsf{b} + \mu) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{\sigma\mathsf{a} + \mu}^{\sigma\mathsf{b} + \mu} e^{-(x-\mu)^2/(2\sigma^2)} dx$$

by a simple change of variable $x = \sigma y + \mu$ in the integral.

If
$$X \sim N(\mu, \sigma^2)$$
, then $Y = \frac{X-\mu}{\sigma} \sim \mathcal{N}(0, 1)$. Equivalently, if $Y \sim \mathcal{N}(0, 1)$,
then $X = \sigma Y + \mu \sim \mathcal{N}(\mu, \sigma^2)$.
Proof:

Given that $X \sim \mathcal{N}(\mu, \sigma^2)$, we can calculate the distribution of $Y = \frac{X-\mu}{\sigma}$ as:

$$\mathsf{P}(\mathsf{a} \leq \mathsf{Y} \leq \mathsf{b}) = \mathsf{P}(\sigma\mathsf{a} + \mu \leq \mathsf{X} \leq \sigma\mathsf{b} + \mu) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{\sigma\mathsf{a} + \mu}^{\sigma\mathsf{b} + \mu} e^{-(\mathsf{x} - \mu)^2/(2\sigma^2)} d\mathsf{x}$$

by a simple change of variable $x = \sigma y + \mu$ in the integral. Hence Y is standard normal, which is obtained from X by shifting the origin to μ and scaling by σ .

Sum of Independent Normal RVs

Kelvin Lee (UC Berkeley)

Discrete Math and Probability Theory

December 2, 2020 5 / 7

Image: A matched by the second sec

Sum of Independent Normal RVs

Theorem.

Kelvin Lee (UC Berkeley)

Image: A matched by the second sec

Let $X \sim \mathcal{N}(0,1)$ and $Y \sim \mathcal{N}(0,1)$ be independent standard normal random variables, and suppose $a, b \in \mathbb{R}$ are constants. Then

Kelvin Lee (UC Berkeley)

Let $X \sim \mathcal{N}(0,1)$ and $Y \sim \mathcal{N}(0,1)$ be independent standard normal random variables, and suppose $a, b \in \mathbb{R}$ are constants. Then

$$Z=aX+bY\sim\mathcal{N}\left(0,a^{2}+b^{2}
ight).$$

Let $X \sim \mathcal{N}(0,1)$ and $Y \sim \mathcal{N}(0,1)$ be independent standard normal random variables, and suppose $a, b \in \mathbb{R}$ are constants. Then

$$Z=aX+bY\sim\mathcal{N}\left(0,a^{2}+b^{2}
ight).$$

Theorem.

Kelvin Lee (UC Berkeley)

Let $X \sim \mathcal{N}(0,1)$ and $Y \sim \mathcal{N}(0,1)$ be independent standard normal random variables, and suppose $a, b \in \mathbb{R}$ are constants. Then

$$Z=aX+bY\sim\mathcal{N}\left(0,a^{2}+b^{2}
ight).$$

Theorem.

Let $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$ be independent normal random variables. Then for any constants $a, b \in \mathbb{R}$,

Let $X \sim \mathcal{N}(0,1)$ and $Y \sim \mathcal{N}(0,1)$ be independent standard normal random variables, and suppose $a, b \in \mathbb{R}$ are constants. Then

$$Z=aX+bY\sim\mathcal{N}\left(0,a^{2}+b^{2}
ight).$$

Theorem.

Let $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$ be independent normal random variables. Then for any constants $a, b \in \mathbb{R}$,

$$Z = aX + bY \sim \mathcal{N}(a\mu_X + b\mu_Y, a^2\sigma_X^2 + b^2\sigma_Y^2).$$

Kelvin Lee (UC Berkeley)

∃ →

Image: A mathematical states and a mathem

æ

Central Limit Theorem.

-

(日)

Let X_1, X_2, \ldots, X_n be a sequence of i.i.d. random variables with common finite expectation $\mathbb{E}[X_i] = \mu$ and finite variance $Var(X_i) = \sigma^2$.

Let $X_1, X_2, ..., X_n$ be a sequence of i.i.d. random variables with common finite expectation $\mathbb{E}[X_i] = \mu$ and finite variance $Var(X_i) = \sigma^2$.Let $S_n = \sum_{i=1}^n X_i$.

Let X_1, X_2, \ldots, X_n be a sequence of i.i.d. random variables with common finite expectation $\mathbb{E}[X_i] = \mu$ and finite variance $Var(X_i) = \sigma^2$.Let $S_n = \sum_{i=1}^n X_i$. Then, the distribution of $\frac{S_n - n\mu}{\sigma\sqrt{n}}$ converges to $\mathcal{N}(0, 1)$ as $n \to \infty$.

Let X_1, X_2, \ldots, X_n be a sequence of i.i.d. random variables with common finite expectation $\mathbb{E}[X_i] = \mu$ and finite variance $\operatorname{Var}(X_i) = \sigma^2$.Let $S_n = \sum_{i=1}^n X_i$. Then, the distribution of $\frac{S_n - n\mu}{\sigma\sqrt{n}}$ converges to $\mathcal{N}(0, 1)$ as $n \to \infty$.In other words, for any constant $c \in \mathbb{R}$

Let X_1, X_2, \ldots, X_n be a sequence of i.i.d. random variables with common finite expectation $\mathbb{E}[X_i] = \mu$ and finite variance $\operatorname{Var}(X_i) = \sigma^2$.Let $S_n = \sum_{i=1}^n X_i$. Then, the distribution of $\frac{S_n - n\mu}{\sigma\sqrt{n}}$ converges to $\mathcal{N}(0, 1)$ as $n \to \infty$.In other words, for any constant $c \in \mathbb{R}$

$$\mathbf{P}\left(\frac{S_n-n\mu}{\sigma\sqrt{n}}\leq c\right)\rightarrow \frac{1}{\sqrt{2\pi}}\int_{-\infty}^c e^{-x^2/2}dx \quad \text{ as } n\rightarrow\infty.$$

Let X_1, X_2, \ldots, X_n be a sequence of i.i.d. random variables with common finite expectation $\mathbb{E}[X_i] = \mu$ and finite variance $\operatorname{Var}(X_i) = \sigma^2$.Let $S_n = \sum_{i=1}^n X_i$. Then, the distribution of $\frac{S_n - n\mu}{\sigma\sqrt{n}}$ converges to $\mathcal{N}(0, 1)$ as $n \to \infty$.In other words, for any constant $c \in \mathbb{R}$

$$\mathbf{P}\left(\frac{S_n-n\mu}{\sigma\sqrt{n}}\leq c\right)\rightarrow \frac{1}{\sqrt{2\pi}}\int_{-\infty}^c e^{-x^2/2}dx \quad \text{ as } n\rightarrow\infty.$$

• Recall that the WLLN implies that as the number of samples increases, the sample mean converges in probability to the expected value.

Let X_1, X_2, \ldots, X_n be a sequence of i.i.d. random variables with common finite expectation $\mathbb{E}[X_i] = \mu$ and finite variance $\operatorname{Var}(X_i) = \sigma^2$.Let $S_n = \sum_{i=1}^n X_i$. Then, the distribution of $\frac{S_n - n\mu}{\sigma\sqrt{n}}$ converges to $\mathcal{N}(0, 1)$ as $n \to \infty$.In other words, for any constant $c \in \mathbb{R}$

$$\mathbf{P}\left(\frac{S_n-n\mu}{\sigma\sqrt{n}}\leq c\right)\rightarrow \frac{1}{\sqrt{2\pi}}\int_{-\infty}^c e^{-x^2/2}dx \quad \text{ as } n\rightarrow\infty.$$

- Recall that the WLLN implies that as the number of samples increases, the sample mean converges in probability to the expected value.
- CLT is stronger; it states that the distribution of the sample mean converges to normal distribution (this works for any sampling distribution)!

Kelvin Lee (UC Berkeley)

Problem Time!

Kelvin Lee (UC Berkeley)

Discrete Math and Probability Theory

December 2, 2020 7 / 7

Image: A matrix and a matrix