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Definition

A finite Markov Chain consists of:
e a finite set of states: X' = {1,2,...,n},
e initial probability distribution 79 on X: mo(i) > 0,>"; mo(i) = 1,
e transition probabilities: P(/, ) for i,j € X such that
P(i,j) > 0,5 P(i,j) = 1.

A Markov Chain defines a sequence of states {X,}n>0 such that

P(Xo=i)=mo(i) i€X
P(Xps1=j | Xoy..., Xp = i) =P(i,j) i,jeX.
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Invariant Distribution

Theorem

Given a transition probability matrix P and initial distribution g, then the
distribution at n-th step is given by
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Invariant Distribution

Theorem

Given a transition probability matrix P and initial distribution g, then the
distribution at n-th step is given by

T, = moP" n> 0.

A distribution 7 is invariant for the transition probability matrix P if it
satisfies the following balance equation:

T =mnP.
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Irreducibility

A Markov Chain is irreducible if it can go from every state i to every other

state j, possibly in multiple steps.
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Irreducibility

A Markov Chain is irreducible if it can go from every state i to every other

state j, possibly in multiple steps.

Theorem
Consider a finite irreducible Markov chain with state space X and transition
probability matrix P. Then, for any initial distribution mq:

n—1
lim = S 1{Xy = i} = n(i),  VieX.
0

n—oo n

m = {n(i),i € X} is an invariant distribution.

Theorem

A finite irreducible Markov chain has an unique invariant distribution.
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A Markov Chain is aperiodic if
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Periodicity

A Markov Chain is aperiodic if
d(i)=gcd{n>0|P(X,=i| Xo=1)} =1,

and is periodic with period d(i) otherwise.

Theorem

Let {X,} be an irreducible and aperiodic Markov Chain with invariant
distribution . Then for all i € X,

nIi_)r’gown(i) = 7(i).
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Problem Time!
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