CS70 Public Key Cryptography (RSA)

Kelvin Lee

UC Berkeley

February 25, 2021

Kelvin Lee (UC Berkeley)

Discrete Math and Probability Theory

February 25, 2021 1 / 8

3. 3

▲ 伊 → ▲ 三

Overview

2

A D N A B N A B N A B N

3

イロト イヨト イヨト イヨト

Basic setting:

э

A D N A B N A B N A B N

Basic setting:

• Alice and Bob wish to communicate secretly over some (insecure) link, and Eve tries to discover what they are saying.

Basic setting:

- Alice and Bob wish to communicate secretly over some (insecure) link, and Eve tries to discover what they are saying.
- Alice transmits a message x (in binary) to Bob by applying her
 encryption function E to x and send the encrypted message E(x) over the link.

Basic setting:

- Alice and Bob wish to communicate secretly over some (insecure) link, and Eve tries to discover what they are saying.
- Alice transmits a message x (in binary) to Bob by applying her
 encryption function E to x and send the encrypted message E(x) over the link.
- Bob, after receiving E(x), applies his decryption function D to it and recover the original message: i.e., D(E(x)) = x.

Basic setting:

- Alice and Bob wish to communicate secretly over some (insecure) link, and Eve tries to discover what they are saying.
- Alice transmits a message x (in binary) to Bob by applying her
 encryption function E to x and send the encrypted message E(x) over the link.
- Bob, after receiving E(x), applies his decryption function D to it and recover the original message: i.e., D(E(x)) = x.
- Since the link is insecure, Eve may know what E(x) is.

3

イロト イヨト イヨト イヨト

Basic setting (Continued):

3 N 3

Image: A match a ma

Basic setting (Continued):

• We would like to have an encryption function *E* such that only knowing *E*(*x*) cannot reveal anything about *x*.

Basic setting (Continued):

- We would like to have an encryption function E such that only knowing E(x) cannot reveal anything about x.
- The idea is that each person has a **public key** known to the whole world and a **private key** known only to him- or herself.

Basic setting (Continued):

- We would like to have an encryption function E such that only knowing E(x) cannot reveal anything about x.
- The idea is that each person has a **public key** known to the whole world and a **private key** known only to him- or herself.
- Alice encodes x using Bob's public key. Bob then decrypts it using his private key, thus retrieving x.

3

<ロト <問ト < 目と < 目と

RSA:

3

<ロト <問ト < 目と < 目と

RSA:

• Let p and q be two large primes, and let N = pq (p and q are not public).

э

→ ∃ →

RSA:

- Let p and q be two large primes, and let N = pq (p and q are not public).
- Treat messages to Bob as numbers modulo *N*, excluding trivial values 0 and 1.

RSA:

- Let p and q be two large primes, and let N = pq (p and q are not public).
- Treat messages to Bob as numbers modulo *N*, excluding trivial values 0 and 1.
- Let e be any number that is relatively prime to (p-1)(q-1)(Typically e is a small value).

RSA:

- Let p and q be two large primes, and let N = pq (p and q are not public).
- Treat messages to Bob as numbers modulo *N*, excluding trivial values 0 and 1.
- Let *e* be any number that is relatively prime to (p-1)(q-1) (Typically *e* is a small value).
- Then Bob's public key is the pair of numbers (N, e) and his private key is $d = e^{-1} \pmod{(p-1)(q-1)}$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

3

<ロト <問ト < 目と < 目と

RSA(Continued):

э

A D N A B N A B N A B N

RSA(Continued):

 Encryption: Alice computes the value E(x) = x^e mod N and sends this to Bob.

э

▲ 伊 → ▲ 三

RSA(Continued):

- Encryption: Alice computes the value E(x) = x^e mod N and sends this to Bob.
- **Decryption:** Upon receiving the value y = E(x), Bob computes $D(y) = y^d \mod N$; this will be equal to the original message x.

3

<ロト <問ト < 目と < 目と

Theorem

2

< □ > < □ > < □ > < □ > < □ >

Theorem

Using the encryption and decryption functions E and D, we have $D(E(x)) = x \pmod{N}$ for every possible message $x \in \{0, 1, ..., N - 1\}$.

3

(日) (四) (日) (日) (日)

Theorem

Using the encryption and decryption functions E and D, we have $D(E(x)) = x \pmod{N}$ for every possible message $x \in \{0, 1, ..., N - 1\}$.

Proof:

This can be proved using Chinese Remainder Theorem or Fermat's Little Theorem. For more details, please refer to notes.

Problem Time!

Kelvin Lee (UC Berkeley)

Discrete Math and Probability Theory

February 25, 2021 8 / 8

э

A D N A B N A B N A B N