CS70

Public Key Cryptography (RSA)

Kelvin Lee
UC Berkeley

February 25, 2021

Overview

(1) Introduction to RSA
(2) RSA Scheme

Intro to RSA

Intro to RSA

Basic setting:

Intro to RSA

Basic setting:

- Alice and Bob wish to communicate secretly over some (insecure) link, and Eve tries to discover what they are saying.

Intro to RSA

Basic setting:

- Alice and Bob wish to communicate secretly over some (insecure) link, and Eve tries to discover what they are saying.
- Alice transmits a message x (in binary) to Bob by applying her encryption function E to x and send the encrypted message $E(x)$ over the link.

Intro to RSA

Basic setting:

- Alice and Bob wish to communicate secretly over some (insecure) link, and Eve tries to discover what they are saying.
- Alice transmits a message x (in binary) to Bob by applying her encryption function E to x and send the encrypted message $E(x)$ over the link.
- Bob, after receiving $E(x)$, applies his decryption function D to it and recover the original message: i.e., $D(E(x))=x$.

Intro to RSA

Basic setting:

- Alice and Bob wish to communicate secretly over some (insecure) link, and Eve tries to discover what they are saying.
- Alice transmits a message x (in binary) to Bob by applying her encryption function E to x and send the encrypted message $E(x)$ over the link.
- Bob, after receiving $E(x)$, applies his decryption function D to it and recover the original message: i.e., $D(E(x))=x$.
- Since the link is insecure, Eve may know what $E(x)$ is.

Intro to RSA

Intro to RSA

Basic setting (Continued):

Intro to RSA

Basic setting (Continued):

- We would like to have an encryption function E such that only knowing $E(x)$ cannot reveal anything about x.

Intro to RSA

Basic setting (Continued):

- We would like to have an encryption function E such that only knowing $E(x)$ cannot reveal anything about x.
- The idea is that each person has a public key known to the whole world and a private key known only to him- or herself.

Intro to RSA

Basic setting (Continued):

- We would like to have an encryption function E such that only knowing $E(x)$ cannot reveal anything about x.
- The idea is that each person has a public key known to the whole world and a private key known only to him- or herself.
- Alice encodes x using Bob's public key. Bob then decrypts it using his private key, thus retrieving x.

RSA Encryption

RSA Encryption

RSA:

RSA Encryption

RSA:

- Let p and q be two large primes, and let $N=p q$ (p and q are not public).

RSA Encryption

RSA:

- Let p and q be two large primes, and let $N=p q$ (p and q are not public).
- Treat messages to Bob as numbers modulo N, excluding trivial values 0 and 1.

RSA Encryption

RSA:

- Let p and q be two large primes, and let $N=p q$ (p and q are not public).
- Treat messages to Bob as numbers modulo N, excluding trivial values 0 and 1.
- Let e be any number that is relatively prime to $(p-1)(q-1)$
(Typically e is a small value).

RSA Encryption

RSA:

- Let p and q be two large primes, and let $N=p q$ (p and q are not public).
- Treat messages to Bob as numbers modulo N, excluding trivial values 0 and 1.
- Let e be any number that is relatively prime to $(p-1)(q-1)$
(Typically e is a small value).
- Then Bob's public key is the pair of numbers (N, e) and his private key is $d=e^{-1}(\bmod (p-1)(q-1))$.

RSA Encryption

RSA Encryption

RSA(Continued):

RSA Encryption

RSA(Continued):

- Encryption: Alice computes the value $E(x)=x^{e} \bmod N$ and sends this to Bob.

RSA Encryption

RSA(Continued):

- Encryption: Alice computes the value $E(x)=x^{e} \bmod N$ and sends this to Bob.
- Decryption: Upon receiving the value $y=E(x)$, Bob computes $D(y)=y^{d} \bmod N$; this will be equal to the original message x.

RSA Encryption

RSA Encryption

Theorem

RSA Encryption

Theorem
Using the encryption and decryption functions E and D, we have $D(E(x))=x(\bmod N)$ for every possible message $x \in\{0,1, \ldots, N-1\}$.

RSA Encryption

Theorem

Using the encryption and decryption functions E and D, we have $D(E(x))=x(\bmod N)$ for every possible message $x \in\{0,1, \ldots, N-1\}$.

Proof:

This can be proved using Chinese Remainder Theorem or Fermat's Little Theorem. For more details, please refer to notes.

Problem Time!

