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Polynomials

Properies of polynomials:

Property 1: A non-zero polynomial of degree d has at most d roots.

Property 2: A polynomial of degree d is uniquely determined by

d + 1 distinct points.
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Polynomial Interpolation

Given d + 1 distinct points, how do we determine the polynomial?
We use a method called Lagrange Interpolation, which works
similarly to the Chinese Remainder Theorem.
Suppose the given points are (x1, y1), . . . , (xd+1, yd+1). We want to
find a polynomial p(x) such that p (xi ) = yi for i = 1, . . . , d + 1.
In other words, we want to find polynomials p1(x), . . . , pd+1(x) such
that

p1(x) = 1 at x1 and p1(x) = 0 at x2, . . . , xd+1;

p2(x) = 1 at x2 and p2(x) = 0 at x1, x3 . . . , xd+1;

p3(x) = 1 at x3 and p3(x) = 0 at x1, x2, x4, . . . , xd+1 and so on...
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Lagrange Interpolation

Continued:

Let’s start by finding p1(x).

Since p1(x) = 0 at x2, . . . , xd+1, p1(x) must be a multiple of

q1(x) = (x − x2)(x − x3) . . . (x − xd+1).

We also need p1(x) = 1 at x1. Notice that

q1(x1) = (x1 − x2)(x1 − x3) . . . (x − xd+1).

Then p1(x) = q1(x)
q1(x1) is the polynomial we are looking for.

Similarly for pi (x), we have pi (x) = qi (x)
qi (xi ) .
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Lagrange Interpolation

After finding p1(x), . . . , pd+1(x), we can construct p(x) by scaling up
each bit by corresponding yi :

p(x) =
d+1∑
i=1

yipi (x)

Does this remind you of CRT?
Now let us define ∆i (x) in the following way (think of them as a basis):

∆i (x) =
∏

i 6=j(x − xj)∏
i 6=j(xi − xj)

.

Then we have an unique polynomial

p(x) =
d+1∑
i=1

yi ∆i (x).
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Finite Fields

The properties of a polynomial would not hold if the values are
restricted to being natural numbers or integers because dividing two
integers does not generally result in an integer.

However, if we work with numbers modulo m where m is a prime
number, then we can add, subtract, multiply and divide.

Then Property 1 and Property 2 hold if the coefficients and the
variable x are restricted to take on values modulo m. When we work
with numbers modulo m, we are working over a finite field, denoted
by GF (m) (Galois Field).
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Secret Sharing

Basic Setting:

Suppose there are n people. Let s be the secret number and q be a
prime number greater than n and s. We will work over GF (q).

Pick a random polynomial P(x) of degree k − 1 such that P(0) = s.

Distribute P(1), . . . P(n) to each person so that each one receives one
value.

Then in order to know what s is, at least k of the n people must work
together so that they can perform Lagrange interpolation and find P.

If there are less than k people, they will learn nothing about s!
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Problem Time!
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