CS70 Polynomials

Kelvin Lee

UC Berkeley

February 25, 2021

Overview

(1) Polynomials
(2) Lagrange Interpolation

(3) Finite Fields

4 Secret Sharing

Polynomials

Polynomials

Properies of polynomials:

Polynomials

Properies of polynomials:

- Property 1:

Polynomials

Properies of polynomials:

- Property 1: A non-zero polynomial of degree d has at most d roots.

Polynomials

Properies of polynomials:

- Property 1: A non-zero polynomial of degree d has at most d roots.
- Property 2:

Polynomials

Properies of polynomials:

- Property 1: A non-zero polynomial of degree d has at most d roots.
- Property 2: A polynomial of degree d is uniquely determined by
$d+1$ distinct points.

Polynomial Interpolation

Polynomial Interpolation

Given $d+1$ distinct points, how do we determine the polynomial?

Polynomial Interpolation

Given $d+1$ distinct points, how do we determine the polynomial?

- We use a method called Lagrange Interpolation, which works similarly to the Chinese Remainder Theorem.

Polynomial Interpolation

Given $d+1$ distinct points, how do we determine the polynomial?

- We use a method called Lagrange Interpolation, which works similarly to the Chinese Remainder Theorem.
- Suppose the given points are $\left(x_{1}, y_{1}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)$. We want to find a polynomial $p(x)$ such that $p\left(x_{i}\right)=y_{i}$ for $i=1, \ldots, d+1$.

Polynomial Interpolation

Given $d+1$ distinct points, how do we determine the polynomial?

- We use a method called Lagrange Interpolation, which works similarly to the Chinese Remainder Theorem.
- Suppose the given points are $\left(x_{1}, y_{1}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)$. We want to find a polynomial $p(x)$ such that $p\left(x_{i}\right)=y_{i}$ for $i=1, \ldots, d+1$.
- In other words, we want to find polynomials $p_{1}(x), \ldots, p_{d+1}(x)$ such that

Polynomial Interpolation

Given $d+1$ distinct points, how do we determine the polynomial?

- We use a method called Lagrange Interpolation, which works similarly to the Chinese Remainder Theorem.
- Suppose the given points are $\left(x_{1}, y_{1}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)$. We want to find a polynomial $p(x)$ such that $p\left(x_{i}\right)=y_{i}$ for $i=1, \ldots, d+1$.
- In other words, we want to find polynomials $p_{1}(x), \ldots, p_{d+1}(x)$ such that

$$
p_{1}(x)=1 \text { at } x_{1} \text { and } p_{1}(x)=0 \text { at } x_{2}, \ldots, x_{d+1}
$$

Polynomial Interpolation

Given $d+1$ distinct points, how do we determine the polynomial?

- We use a method called Lagrange Interpolation, which works similarly to the Chinese Remainder Theorem.
- Suppose the given points are $\left(x_{1}, y_{1}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)$. We want to find a polynomial $p(x)$ such that $p\left(x_{i}\right)=y_{i}$ for $i=1, \ldots, d+1$.
- In other words, we want to find polynomials $p_{1}(x), \ldots, p_{d+1}(x)$ such that

$$
\begin{aligned}
& p_{1}(x)=1 \text { at } x_{1} \text { and } p_{1}(x)=0 \text { at } x_{2}, \ldots, x_{d+1} \\
& p_{2}(x)=1 \text { at } x_{2} \text { and } p_{2}(x)=0 \text { at } x_{1}, x_{3} \ldots, x_{d+1}
\end{aligned}
$$

Polynomial Interpolation

Given $d+1$ distinct points, how do we determine the polynomial?

- We use a method called Lagrange Interpolation, which works similarly to the Chinese Remainder Theorem.
- Suppose the given points are $\left(x_{1}, y_{1}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)$. We want to find a polynomial $p(x)$ such that $p\left(x_{i}\right)=y_{i}$ for $i=1, \ldots, d+1$.
- In other words, we want to find polynomials $p_{1}(x), \ldots, p_{d+1}(x)$ such that

$$
\begin{aligned}
& p_{1}(x)=1 \text { at } x_{1} \text { and } p_{1}(x)=0 \text { at } x_{2}, \ldots, x_{d+1} \\
& p_{2}(x)=1 \text { at } x_{2} \text { and } p_{2}(x)=0 \text { at } x_{1}, x_{3} \ldots, x_{d+1} \\
& p_{3}(x)=1 \text { at } x_{3} \text { and } p_{3}(x)=0 \text { at } x_{1}, x_{2}, x_{4}, \ldots, x_{d+1} \text { and so on... }
\end{aligned}
$$

Lagrange Interpolation

Lagrange Interpolation

Continued:

Lagrange Interpolation

Continued:

- Let's start by finding $p_{1}(x)$.

Lagrange Interpolation

Continued:

- Let's start by finding $p_{1}(x)$.
- Since $p_{1}(x)=0$ at $x_{2}, \ldots, x_{d+1}, p_{1}(x)$ must be a multiple of

$$
q_{1}(x)=\left(x-x_{2}\right)\left(x-x_{3}\right) \ldots\left(x-x_{d+1}\right) .
$$

Lagrange Interpolation

Continued:

- Let's start by finding $p_{1}(x)$.
- Since $p_{1}(x)=0$ at $x_{2}, \ldots, x_{d+1}, p_{1}(x)$ must be a multiple of

$$
q_{1}(x)=\left(x-x_{2}\right)\left(x-x_{3}\right) \ldots\left(x-x_{d+1}\right) .
$$

- We also need $p_{1}(x)=1$ at x_{1}. Notice that

$$
q_{1}\left(x_{1}\right)=\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right) \ldots\left(x-x_{d+1}\right) .
$$

Lagrange Interpolation

Continued:

- Let's start by finding $p_{1}(x)$.
- Since $p_{1}(x)=0$ at $x_{2}, \ldots, x_{d+1}, p_{1}(x)$ must be a multiple of

$$
q_{1}(x)=\left(x-x_{2}\right)\left(x-x_{3}\right) \ldots\left(x-x_{d+1}\right) .
$$

- We also need $p_{1}(x)=1$ at x_{1}. Notice that

$$
q_{1}\left(x_{1}\right)=\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right) \ldots\left(x-x_{d+1}\right) .
$$

- Then $p_{1}(x)=\frac{q_{1}(x)}{q_{1}\left(x_{1}\right)}$ is the polynomial we are looking for.

Lagrange Interpolation

Continued:

- Let's start by finding $p_{1}(x)$.
- Since $p_{1}(x)=0$ at $x_{2}, \ldots, x_{d+1}, p_{1}(x)$ must be a multiple of

$$
q_{1}(x)=\left(x-x_{2}\right)\left(x-x_{3}\right) \ldots\left(x-x_{d+1}\right) .
$$

- We also need $p_{1}(x)=1$ at x_{1}. Notice that

$$
q_{1}\left(x_{1}\right)=\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right) \ldots\left(x-x_{d+1}\right) .
$$

- Then $p_{1}(x)=\frac{q_{1}(x)}{q_{1}\left(x_{1}\right)}$ is the polynomial we are looking for.
- Similarly for $p_{i}(x)$, we have $p_{i}(x)=\frac{q_{i}(x)}{q_{i}\left(x_{i}\right)}$.

Lagrange Interpolation

Lagrange Interpolation

- After finding $p_{1}(x), \ldots, p_{d+1}(x)$, we can construct $p(x)$ by scaling up each bit by corresponding y_{i} :

Lagrange Interpolation

- After finding $p_{1}(x), \ldots, p_{d+1}(x)$, we can construct $p(x)$ by scaling up each bit by corresponding y_{i} :

$$
p(x)=\sum_{i=1}^{d+1} y_{i} p_{i}(x)
$$

Lagrange Interpolation

- After finding $p_{1}(x), \ldots, p_{d+1}(x)$, we can construct $p(x)$ by scaling up each bit by corresponding y_{i} :

$$
p(x)=\sum_{i=1}^{d+1} y_{i} p_{i}(x)
$$

Does this remind you of CRT?

Lagrange Interpolation

- After finding $p_{1}(x), \ldots, p_{d+1}(x)$, we can construct $p(x)$ by scaling up each bit by corresponding y_{i} :

$$
p(x)=\sum_{i=1}^{d+1} y_{i} p_{i}(x)
$$

Does this remind you of CRT?

- Now let us define $\Delta_{i}(x)$ in the following way (think of them as a basis):

Lagrange Interpolation

- After finding $p_{1}(x), \ldots, p_{d+1}(x)$, we can construct $p(x)$ by scaling up each bit by corresponding y_{i} :

$$
p(x)=\sum_{i=1}^{d+1} y_{i} p_{i}(x)
$$

Does this remind you of CRT?

- Now let us define $\Delta_{i}(x)$ in the following way (think of them as a basis):

$$
\Delta_{i}(x)=\frac{\prod_{i \neq j}\left(x-x_{j}\right)}{\prod_{i \neq j}\left(x_{i}-x_{j}\right)} .
$$

Lagrange Interpolation

- After finding $p_{1}(x), \ldots, p_{d+1}(x)$, we can construct $p(x)$ by scaling up each bit by corresponding y_{i} :

$$
p(x)=\sum_{i=1}^{d+1} y_{i} p_{i}(x)
$$

Does this remind you of CRT?

- Now let us define $\Delta_{i}(x)$ in the following way (think of them as a basis):

$$
\Delta_{i}(x)=\frac{\prod_{i \neq j}\left(x-x_{j}\right)}{\prod_{i \neq j}\left(x_{i}-x_{j}\right)} .
$$

- Then we have an unique polynomial

Lagrange Interpolation

- After finding $p_{1}(x), \ldots, p_{d+1}(x)$, we can construct $p(x)$ by scaling up each bit by corresponding y_{i} :

$$
p(x)=\sum_{i=1}^{d+1} y_{i} p_{i}(x)
$$

Does this remind you of CRT?

- Now let us define $\Delta_{i}(x)$ in the following way (think of them as a basis):

$$
\Delta_{i}(x)=\frac{\prod_{i \neq j}\left(x-x_{j}\right)}{\prod_{i \neq j}\left(x_{i}-x_{j}\right)} .
$$

- Then we have an unique polynomial

$$
p(x)=\sum_{i=1}^{d+1} y_{i} \Delta_{i}(x)
$$

Finite Fields

Finite Fields

- The properties of a polynomial would not hold if the values are restricted to being natural numbers or integers because dividing two integers does not generally result in an integer.

Finite Fields

- The properties of a polynomial would not hold if the values are restricted to being natural numbers or integers because dividing two integers does not generally result in an integer.
- However, if we work with numbers modulo m where m is a prime number, then we can add, subtract, multiply and divide.

Finite Fields

- The properties of a polynomial would not hold if the values are restricted to being natural numbers or integers because dividing two integers does not generally result in an integer.
- However, if we work with numbers modulo m where m is a prime number, then we can add, subtract, multiply and divide.
- Then Property 1 and Property 2 hold if the coefficients and the variable x are restricted to take on values modulo m. When we work with numbers modulo m, we are working over a finite field, denoted by $G F(m)$ (Galois Field).

Secret Sharing

Secret Sharing

Basic Setting:

Secret Sharing

Basic Setting:

- Suppose there are n people. Let s be the secret number and q be a prime number greater than n and s. We will work over $G F(q)$.

Secret Sharing

Basic Setting:

- Suppose there are n people. Let s be the secret number and q be a prime number greater than n and s. We will work over $G F(q)$.
- Pick a random polynomial $P(x)$ of degree $k-1$ such that $P(0)=s$.

Secret Sharing

Basic Setting:

- Suppose there are n people. Let s be the secret number and q be a prime number greater than n and s. We will work over $G F(q)$.
- Pick a random polynomial $P(x)$ of degree $k-1$ such that $P(0)=s$.
- Distribute $P(1), \ldots P(n)$ to each person so that each one receives one value.

Secret Sharing

Basic Setting:

- Suppose there are n people. Let s be the secret number and q be a prime number greater than n and s. We will work over $G F(q)$.
- Pick a random polynomial $P(x)$ of degree $k-1$ such that $P(0)=s$.
- Distribute $P(1), \ldots P(n)$ to each person so that each one receives one value.
- Then in order to know what s is, at least k of the n people must work together so that they can perform Lagrange interpolation and find P.

Secret Sharing

Basic Setting:

- Suppose there are n people. Let s be the secret number and q be a prime number greater than n and s. We will work over $G F(q)$.
- Pick a random polynomial $P(x)$ of degree $k-1$ such that $P(0)=s$.
- Distribute $P(1), \ldots P(n)$ to each person so that each one receives one value.
- Then in order to know what s is, at least k of the n people must work together so that they can perform Lagrange interpolation and find P.
- If there are less than k people, they will learn nothing about s !

Problem Time!

