CS70
 Error Correcting Codes

Kelvin Lee

UC Berkeley
March 2, 2021

Overview

(1) Intro to Error Correcting Codes

(2) Erasure Errors
(3) General Errors

4 Error-locator Polynomial
(5) Berlekamp-Welch algorithm

Intro to Error Correcting Codes

Intro to Error Correcting Codes

- Goal: Transmit messages across an unreliable communication channel.

Intro to Error Correcting Codes

- Goal: Transmit messages across an unreliable communication channel.
- The channel may cause packets(parts of the message) to be lost, or even corrupted.

Intro to Error Correcting Codes

- Goal: Transmit messages across an unreliable communication channel.
- The channel may cause packets(parts of the message) to be lost, or even corrupted.
- Error correcting code is an encoding scheme to protect messages against these errors by introducing redundancy.

Erasure Errors

Erasure Errors

- Erasure errors refer to some packets being lost during transmission.

Erasure Errors

- Erasure errors refer to some packets being lost during transmission.
- Suppose that the message consists of n packets and at most k packets are lost during transmission.

Erasure Errors

- Erasure errors refer to some packets being lost during transmission.
- Suppose that the message consists of n packets and at most k packets are lost during transmission.
- To prevent this error, we encode the initial message into a redundant encoding consisting of $n+k$ packets such that the receiver can reconstruct the message from any n received packets using Lagrange interpolation.

General Errors

General Errors

- Now suppose the packets are corrupted during transmission due to channel noise. Such error is called general errors.

General Errors

- Now suppose the packets are corrupted during transmission due to channel noise. Such error is called general errors.
- Suppose that k out of n characters are corrupted and we have no idea which k these are.

General Errors

- Now suppose the packets are corrupted during transmission due to channel noise. Such error is called general errors.
- Suppose that k out of n characters are corrupted and we have no idea which k these are.
- To guard against k general errors, we must transmit $n+2 k$ characters.

General Errors

- Now suppose the packets are corrupted during transmission due to channel noise. Such error is called general errors.
- Suppose that k out of n characters are corrupted and we have no idea which k these are.
- To guard against k general errors, we must transmit $n+2 k$ characters.
- To reconstruct the polynomial, we need to find a polynomial $P(x)$ of degree $n-1$ such that $P(i)=r_{i}$ for at least $n+k$ values of i.

Error-locator Polynomial

Error-locator Polynomial

- To efficiently find the polynomial $P(x)$, we need the locations of the k errors.

Error-locator Polynomial

- To efficiently find the polynomial $P(x)$, we need the locations of the k errors.
- Let e_{1}, \ldots, e_{k} be the k locations at which errors occurred. We don't know where these errors are.

Error-locator Polynomial

- To efficiently find the polynomial $P(x)$, we need the locations of the k errors.
- Let e_{1}, \ldots, e_{k} be the k locations at which errors occurred. We don't know where these errors are.
- Guessing where the errors are will take exponential time, which is inefficient, so we use the error-locator polynomial:

$$
E(x)=\left(x-e_{1}\right)\left(x-e_{2}\right) \ldots\left(x-e_{k}\right) .
$$

Error-locator Polynomial

- To efficiently find the polynomial $P(x)$, we need the locations of the k errors.
- Let e_{1}, \ldots, e_{k} be the k locations at which errors occurred. We don't know where these errors are.
- Guessing where the errors are will take exponential time, which is inefficient, so we use the error-locator polynomial:

$$
E(x)=\left(x-e_{1}\right)\left(x-e_{2}\right) \ldots\left(x-e_{k}\right) .
$$

- Then we have the following:

Error-locator Polynomial

- To efficiently find the polynomial $P(x)$, we need the locations of the k errors.
- Let e_{1}, \ldots, e_{k} be the k locations at which errors occurred. We don't know where these errors are.
- Guessing where the errors are will take exponential time, which is inefficient, so we use the error-locator polynomial:

$$
E(x)=\left(x-e_{1}\right)\left(x-e_{2}\right) \ldots\left(x-e_{k}\right) .
$$

- Then we have the following:

$$
P(i) E(i)=r_{i} E(i) \quad \text { for } 1 \leq i \leq n+2 k .
$$

Error-locator Polynomial

- To efficiently find the polynomial $P(x)$, we need the locations of the k errors.
- Let e_{1}, \ldots, e_{k} be the k locations at which errors occurred. We don't know where these errors are.
- Guessing where the errors are will take exponential time, which is inefficient, so we use the error-locator polynomial:

$$
E(x)=\left(x-e_{1}\right)\left(x-e_{2}\right) \ldots\left(x-e_{k}\right) .
$$

- Then we have the following:

$$
P(i) E(i)=r_{i} E(i) \quad \text { for } 1 \leq i \leq n+2 k .
$$

This is known as the Berlekamp-Welch algorithm.

Berlekamp-Welch algorithm

Berlekamp-Welch algorithm

- Define $Q(x)=P(x) E(x)$. We have $n+2 k$ equations with $n+2 k$ unknown coefficients:

Berlekamp-Welch algorithm

- Define $Q(x)=P(x) E(x)$. We have $n+2 k$ equations with $n+2 k$ unknown coefficients:

$$
Q(i)=r_{i} E(i) \quad \text { for } 1 \leq i \leq n+2 k .
$$

Berlekamp-Welch algorithm

- Define $Q(x)=P(x) E(x)$. We have $n+2 k$ equations with $n+2 k$ unknown coefficients:

$$
Q(i)=r_{i} E(i) \quad \text { for } 1 \leq i \leq n+2 k .
$$

- We can solve the systems of linear equations and get $E(x)$ and $Q(x)$.

Berlekamp-Welch algorithm

- Define $Q(x)=P(x) E(x)$. We have $n+2 k$ equations with $n+2 k$ unknown coefficients:

$$
Q(i)=r_{i} E(i) \quad \text { for } 1 \leq i \leq n+2 k .
$$

- We can solve the systems of linear equations and get $E(x)$ and $Q(x)$.
- Finally we compute $\frac{Q(x)}{E(x)}$ to obtain $P(x)$.

Problem Time!

