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Intro to Error Correcting Codes

Goal: Transmit messages across an unreliable communication
channel.

The channel may cause packets(parts of the message) to be lost, or
even corrupted.

Error correcting code is an encoding scheme to protect messages
against these errors by introducing redundancy.
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Erasure Errors

Erasure errors refer to some packets being lost during transmission.

Suppose that the message consists of n packets and at most k packets

are lost during transmission.

To prevent this error, we encode the initial message into a redundant

encoding consisting of n + k packets such that the receiver can

reconstruct the message from any n received packets using Lagrange

interpolation.
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General Errors

Now suppose the packets are corrupted during transmission due to
channel noise. Such error is called general errors.

Suppose that k out of n characters are corrupted and we have no idea
which k these are.

To guard against k general errors, we must transmit n + 2k characters.

To reconstruct the polynomial, we need to find a polynomial P(x) of
degree n − 1 such that P(i) = ri for at least n + k values of i .
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Error-locator Polynomial

To efficiently find the polynomial P(x), we need the locations of the k
errors.

Let e1, ..., ek be the k locations at which errors occurred. We don’t
know where these errors are.

Guessing where the errors are will take exponential time, which is
inefficient, so we use the error-locator polynomial:

E (x) = (x − e1)(x − e2) . . . (x − ek).

Then we have the following:

P(i)E (i) = riE (i) for 1 ≤ i ≤ n + 2k.

This is known as the Berlekamp–Welch algorithm.
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Berlekamp–Welch algorithm

Define Q(x) = P(x)E (x). We have n + 2k equations with n + 2k
unknown coefficients:

Q(i) = riE (i) for 1 ≤ i ≤ n + 2k.

We can solve the systems of linear equations and get E (x) and Q(x).
Finally we compute Q(x)

E(x) to obtain P(x).
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Problem Time!
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