CS70
 Counting

Kelvin Lee

UC Berkeley

March 4, 2021

Overview

(1) Rules of Counting
(2) Stars and Bars
(3) Binomial Theorem
(4) Combinatorial Proofs
(5) Principle of Inclusion-Exclusion
(6) Problems
(7) Summary/Tips

First Rule of Counting

First Rule of Counting

First Rule of Counting(Product Rule):

First Rule of Counting

First Rule of Counting(Product Rule):

If there are n ways of doing something, and m ways of doing another thing after that, then there are $n \times m$ ways to perform both of these actions.

First Rule of Counting

First Rule of Counting(Product Rule):

If there are n ways of doing something, and m ways of doing another thing after that, then there are $n \times m$ ways to perform both of these actions.

- Order matters (permutations).

First Rule of Counting

First Rule of Counting(Product Rule):

If there are n ways of doing something, and m ways of doing another thing after that, then there are $n \times m$ ways to perform both of these actions.

- Order matters (permutations).
- Sampling k elements from n items:

First Rule of Counting

First Rule of Counting(Product Rule):

If there are n ways of doing something, and m ways of doing another thing after that, then there are $n \times m$ ways to perform both of these actions.

- Order matters (permutations).
- Sampling k elements from n items:
- With replacement:

First Rule of Counting

First Rule of Counting(Product Rule):

If there are n ways of doing something, and m ways of doing another thing after that, then there are $n \times m$ ways to perform both of these actions.

- Order matters (permutations).
- Sampling k elements from n items:
- With replacement: n^{k}.

First Rule of Counting

First Rule of Counting(Product Rule):

If there are n ways of doing something, and m ways of doing another thing after that, then there are $n \times m$ ways to perform both of these actions.

- Order matters (permutations).
- Sampling k elements from n items:
- With replacement: n^{k}.
- Without replacement:

First Rule of Counting

First Rule of Counting(Product Rule):

If there are n ways of doing something, and m ways of doing another thing after that, then there are $n \times m$ ways to perform both of these actions.

- Order matters (permutations).
- Sampling k elements from n items:
- With replacement: n^{k}.
- Without replacement: $\frac{n!}{(n-k)!}$

Second Rule of Counting

Second Rule of Counting

Second Rule of Counting:

Second Rule of Counting

Second Rule of Counting:

If order doesn't matter count ordered objects and then divide by number of orderings.

Second Rule of Counting

Second Rule of Counting:

If order doesn't matter count ordered objects and then divide by number of orderings.

- Without replacement and ordering doesn't matter (combinations).

Second Rule of Counting

Second Rule of Counting:

If order doesn't matter count ordered objects and then divide by number of orderings.

- Without replacement and ordering doesn't matter (combinations).
- Number of ways of choosing k-element subsets out of a set of size n :

Second Rule of Counting

Second Rule of Counting:

If order doesn't matter count ordered objects and then divide by number of orderings.

- Without replacement and ordering doesn't matter (combinations).
- Number of ways of choosing k-element subsets out of a set of size n :

$$
\binom{n}{k}=\frac{n!}{(n-k)!k!} .
$$

Starts and Bars

Starts and Bars

Problem: Consider the equation $a+b+c+d=12$ where a, b, c, d are non-negative integers. How many solutions are there to this equation?

Starts and Bars

Problem: Consider the equation $a+b+c+d=12$ where a, b, c, d are non-negative integers. How many solutions are there to this equation?

- Let's simplify this problem a little bit. Suppose we have 12 stars and 3 bars.

Starts and Bars

Problem: Consider the equation $a+b+c+d=12$ where a, b, c, d are non-negative integers. How many solutions are there to this equation?

- Let's simplify this problem a little bit. Suppose we have 12 stars and 3 bars.

$$
\star \star|\star \star| \star \star \star \mid \star \star \star \star \star
$$

Starts and Bars

Problem: Consider the equation $a+b+c+d=12$ where a, b, c, d are non-negative integers. How many solutions are there to this equation?

- Let's simplify this problem a little bit. Suppose we have 12 stars and 3 bars.

$$
\star \star|\star \star| \star \star \star \mid \star \star \star \star \star
$$

- How many ways can we arrange them?

Starts and Bars

Problem: Consider the equation $a+b+c+d=12$ where a, b, c, d are non-negative integers. How many solutions are there to this equation?

- Let's simplify this problem a little bit. Suppose we have 12 stars and 3 bars.

$$
\star \star|\star \star| \star \star \star \mid \star \star \star \star \star
$$

- How many ways can we arrange them? $\binom{12+3}{3}$

Starts and Bars

Problem: Consider the equation $a+b+c+d=12$ where a, b, c, d are non-negative integers. How many solutions are there to this equation?

- Let's simplify this problem a little bit. Suppose we have 12 stars and 3 bars.

$$
\star \star|\star \star| \star \star \star \mid \star \star \star \star \star
$$

- How many ways can we arrange them? $\binom{12+3}{3}=\binom{15}{3}$

Starts and Bars

Problem: Consider the equation $a+b+c+d=12$ where a, b, c, d are non-negative integers. How many solutions are there to this equation?

- Let's simplify this problem a little bit. Suppose we have 12 stars and 3 bars.

$$
\star \star|\star \star| \star \star \star \mid \star \star \star \star \star
$$

- How many ways can we arrange them? $\binom{12+3}{3}=\binom{15}{3}$
- This is the answer to our original problem! Do you see the bijection between the two problems?

Starts and Bars

Problem: Consider the equation $a+b+c+d=12$ where a, b, c, d are non-negative integers. How many solutions are there to this equation?

- Let's simplify this problem a little bit. Suppose we have 12 stars and 3 bars.

$$
\star \star|\star \star| \star \star \star \mid \star \star \star \star \star
$$

- How many ways can we arrange them? $\binom{12+3}{3}=\binom{15}{3}$
- This is the answer to our original problem! Do you see the bijection between the two problems?

Zeroth Rule of Counting:

Starts and Bars

Problem: Consider the equation $a+b+c+d=12$ where a, b, c, d are non-negative integers. How many solutions are there to this equation?

- Let's simplify this problem a little bit. Suppose we have 12 stars and 3 bars.

$$
\star \star|\star \star| \star \star \star \mid \star \star \star \star \star
$$

- How many ways can we arrange them? $\binom{12+3}{3}=\binom{15}{3}$
- This is the answer to our original problem! Do you see the bijection between the two problems?

Zeroth Rule of Counting:
If a set A has a bijection relationship with a set B, then $|A|=|B|$.

Starts and Bars

Starts and Bars

Stars and Bars:

Starts and Bars

Stars and Bars:

How many ways can one distribute n indistinguishable objects into k distinguishable bins?

Starts and Bars

Stars and Bars:

How many ways can one distribute n indistinguishable objects into k distinguishable bins?

$$
\binom{n+k-1}{k-1}
$$

Starts and Bars

Stars and Bars:

How many ways can one distribute n indistinguishable objects into k distinguishable bins?

$$
\binom{n+k-1}{k-1}
$$

- Useful for with replacement but order doesn't matter type of problems.

Binomial Theorem

Binomial Theorem

Binomial Theorem:

Binomial Theorem

Binomial Theorem:

For all $n \in \mathbb{N}$,

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}
$$

Binomial Theorem

Binomial Theorem:

For all $n \in \mathbb{N}$,

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}
$$

Proof:

Binomial Theorem

Binomial Theorem:

For all $n \in \mathbb{N}$,

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k} .
$$

Proof:

See notes.

Binomial Theorem

Binomial Theorem:

For all $n \in \mathbb{N}$,

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}
$$

Proof:

See notes.
Corollary:

Binomial Theorem

Binomial Theorem:

For all $n \in \mathbb{N}$,

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}
$$

Proof:

See notes.
Corollary:

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0 .
$$

Binomial Theorem

Binomial Theorem:

For all $n \in \mathbb{N}$,

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}
$$

Proof:

See notes.
Corollary:

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0 .
$$

Proof:

Binomial Theorem

Binomial Theorem:

For all $n \in \mathbb{N}$,

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}
$$

Proof:
See notes.
Corollary:

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0 .
$$

Proof:

Plug in $a=-1$ and $b=1$ for the binomial theorem.

Binomial Theorem

Binomial Theorem:

For all $n \in \mathbb{N}$,

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}
$$

Proof:
See notes.
Corollary:

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0 .
$$

Proof:

Plug in $a=-1$ and $b=1$ for the binomial theorem.

Combinatorial Proofs

Combinatorial Proofs

- Intuitive counting arguments. No tedious algebraic manipulation.

Combinatorial Proofs

- Intuitive counting arguments. No tedious algebraic manipulation.
- Proofs by stories: same story from multiple perspectives.

Combinatorial Proofs

- Intuitive counting arguments. No tedious algebraic manipulation.
- Proofs by stories: same story from multiple perspectives.
- Proving an identity by counting the same thing in two different ways.

Combinatorial Proofs

- Intuitive counting arguments. No tedious algebraic manipulation.
- Proofs by stories: same story from multiple perspectives.
- Proving an identity by counting the same thing in two different ways.
- Useful identity:

Combinatorial Proofs

- Intuitive counting arguments. No tedious algebraic manipulation.
- Proofs by stories: same story from multiple perspectives.
- Proving an identity by counting the same thing in two different ways.
- Useful identity:

$$
\binom{n}{k}=\binom{n}{n-k} .
$$

Combinatorial Proofs

- Intuitive counting arguments. No tedious algebraic manipulation.
- Proofs by stories: same story from multiple perspectives.
- Proving an identity by counting the same thing in two different ways.
- Useful identity:

$$
\binom{n}{k}=\binom{n}{n-k} .
$$

- Choosing k objects to include is equivalent to choosing $n-k$ objects to exclude.

Example

Example

Combinatorial Identity:

Example

Combinatorial Identity:

$$
\sum_{i=0}^{n}\binom{n}{i}=2^{n} .
$$

Example

Combinatorial Identity:

$$
\sum_{i=0}^{n}\binom{n}{i}=2^{n} .
$$

Proof:

Example

Combinatorial Identity:

$$
\sum_{i=0}^{n}\binom{n}{i}=2^{n} .
$$

Proof:

Although we can use binomial theorem by letting $a=b=1$, we use combinatorial argument to prove this.

Example

Combinatorial Identity:

$$
\sum_{i=0}^{n}\binom{n}{i}=2^{n} .
$$

Proof:
Although we can use binomial theorem by letting $a=b=1$, we use combinatorial argument to prove this.
RHS:

Example

Combinatorial Identity:

$$
\sum_{i=0}^{n}\binom{n}{i}=2^{n} .
$$

Proof:

Although we can use binomial theorem by letting $a=b=1$, we use combinatorial argument to prove this.
RHS: Total number of subsets of a set of size n.

Example

Combinatorial Identity:

$$
\sum_{i=0}^{n}\binom{n}{i}=2^{n} .
$$

Proof:
Although we can use binomial theorem by letting $a=b=1$, we use combinatorial argument to prove this.
RHS: Total number of subsets of a set of size n.
LHS:

Example

Combinatorial Identity:

$$
\sum_{i=0}^{n}\binom{n}{i}=2^{n} .
$$

Proof:

Although we can use binomial theorem by letting $a=b=1$, we use combinatorial argument to prove this.
RHS: Total number of subsets of a set of size n.
LHS: The number of ways to choose a subset of size i is $\binom{n}{i}$. To find the total number of subsets, we simply add all the cases when $i=0,1,2, \ldots, n$.

Principle of Inclusion-Exclusion

Principle of Inclusion-Exclusion

Principle of Inclusion-Exclusion(General):

Principle of Inclusion-Exclusion

Principle of Inclusion-Exclusion(General):

Let A_{1}, \ldots, A_{n} be arbitrary subsets of the same finite set A. Then,

$$
\left|A_{1} \cup \cdots \cup A_{n}\right|=\sum_{k=1}^{n}(-1)^{k-1} \sum_{S \subseteq\{1, \ldots, n\}:|S|=k}\left|\cap_{i \in S} A_{i}\right| .
$$

Principle of Inclusion-Exclusion

Principle of Inclusion-Exclusion(General):

Let A_{1}, \ldots, A_{n} be arbitrary subsets of the same finite set A. Then,

$$
\left|A_{1} \cup \cdots \cup A_{n}\right|=\sum_{k=1}^{n}(-1)^{k-1} \sum_{S \subseteq\{1, \ldots, n\}:|S|=k}\left|\cap_{i \in S} A_{i}\right| .
$$

Proof:

Principle of Inclusion-Exclusion

Principle of Inclusion-Exclusion(General):

Let A_{1}, \ldots, A_{n} be arbitrary subsets of the same finite set A. Then,

$$
\left|A_{1} \cup \cdots \cup A_{n}\right|=\sum_{k=1}^{n}(-1)^{k-1} \sum_{S \subseteq\{1, \ldots, n\}:|S|=k}\left|\cap_{i \in S} A_{i}\right| .
$$

Proof:

See notes.

Principle of Inclusion-Exclusion

Principle of Inclusion-Exclusion(General):
Let A_{1}, \ldots, A_{n} be arbitrary subsets of the same finite set A. Then,

$$
\left|A_{1} \cup \cdots \cup A_{n}\right|=\sum_{k=1}^{n}(-1)^{k-1} \sum_{S \subseteq\{1, \ldots, n\}:|S|=k}\left|\cap_{i \in S} A_{i}\right| .
$$

Proof:

See notes.
Principle of Inclusion-Exclusion(Simplified):

Principle of Inclusion-Exclusion

Principle of Inclusion-Exclusion(General):
Let A_{1}, \ldots, A_{n} be arbitrary subsets of the same finite set A. Then,

$$
\left|A_{1} \cup \cdots \cup A_{n}\right|=\sum_{k=1}^{n}(-1)^{k-1} \sum_{S \subseteq\{1, \ldots, n\}:|S|=k}\left|\cap_{i \in S} A_{i}\right| .
$$

Proof:

See notes.
Principle of Inclusion-Exclusion(Simplified):

$$
|A \cup B|=|A|+|B|-|A \cap B| .
$$

Problems

Problems

SP19 MT2 6.3

Problems

SP19 MT2 6.3

How many permutations of the numbers 1 through n are there such that 1 comes before 2 and after 3? Assume $n>3$.

Problems

SP19 MT2 6.3

How many permutations of the numbers 1 through n are there such that 1 comes before 2 and after 3? Assume $n>3$.

Hint:

Problems

SP19 MT2 6.3

How many permutations of the numbers 1 through n are there such that 1 comes before 2 and after 3? Assume $n>3$.

Hint: how many ways to choose the positions for the three numbers? What do we do with the remaining numbers?

Problems

SP19 MT2 6.3

How many permutations of the numbers 1 through n are there such that 1 comes before 2 and after 3? Assume $n>3$.

Hint: how many ways to choose the positions for the three numbers? What do we do with the remaining numbers?

Solution:

Problems

SP19 MT2 6.3

How many permutations of the numbers 1 through n are there such that 1 comes before 2 and after 3? Assume $n>3$.
Hint: how many ways to choose the positions for the three numbers? What do we do with the remaining numbers?

Solution:

- There are $\binom{n}{3}$ ways to pick positions for $1,2,3$. For the positions picked, we place the three numbers in a way such that the conditions are met, i.e, we place them in the order of $3,1,2$.

Problems

SP19 MT2 6.3

How many permutations of the numbers 1 through n are there such that 1 comes before 2 and after 3? Assume $n>3$.
Hint: how many ways to choose the positions for the three numbers? What do we do with the remaining numbers?

Solution:

- There are $\binom{n}{3}$ ways to pick positions for $1,2,3$. For the positions picked, we place the three numbers in a way such that the conditions are met, i.e, we place them in the order of $3,1,2$.
- Now for the remaining numbers, there are $(n-3)$! to arrange them.

Problems

SP19 MT2 6.3

How many permutations of the numbers 1 through n are there such that 1 comes before 2 and after 3? Assume $n>3$.
Hint: how many ways to choose the positions for the three numbers? What do we do with the remaining numbers?

Solution:

- There are $\binom{n}{3}$ ways to pick positions for $1,2,3$. For the positions picked, we place the three numbers in a way such that the conditions are met, i.e, we place them in the order of $3,1,2$.
- Now for the remaining numbers, there are $(n-3)$! to arrange them.
- Finally, by the first rule of counting, we have $\frac{n!}{6}$ permutations.

Problems

Problems

SP18 MT2 5

Problems

SP18 MT2 5

We wish to count how many undirected graphs on 6 vertices with equal degrees there are.

Problems

SP18 MT2 5

We wish to count how many undirected graphs on 6 vertices with equal degrees there are.
(a) How many such graphs are there such that all vertices have degree 1 ?

Problems

SP18 MT2 5

We wish to count how many undirected graphs on 6 vertices with equal degrees there are.
(a) How many such graphs are there such that all vertices have degree 1 ?

Hint:

Problems

SP18 MT2 5

We wish to count how many undirected graphs on 6 vertices with equal degrees there are.
(a) How many such graphs are there such that all vertices have degree 1 ?

Hint: how many edges are there? How do we choose them?

Problems

SP18 MT2 5

We wish to count how many undirected graphs on 6 vertices with equal degrees there are.
(a) How many such graphs are there such that all vertices have degree 1 ?

Hint: how many edges are there? How do we choose them?
Solution:

Problems

SP18 MT2 5

We wish to count how many undirected graphs on 6 vertices with equal degrees there are.
(a) How many such graphs are there such that all vertices have degree 1 ?

Hint: how many edges are there? How do we choose them?
Solution:

- If every vertex has degree 1 , then we can only have 3 edges.

Problems

SP18 MT2 5

We wish to count how many undirected graphs on 6 vertices with equal degrees there are.
(a) How many such graphs are there such that all vertices have degree 1 ?

Hint: how many edges are there? How do we choose them?
Solution:

- If every vertex has degree 1 , then we can only have 3 edges.
- Each edge requires 2 vertices, so $\binom{6}{2}=15$ ways to choose an edge.

Problems

SP18 MT2 5

We wish to count how many undirected graphs on 6 vertices with equal degrees there are.
(a) How many such graphs are there such that all vertices have degree 1 ?

Hint: how many edges are there? How do we choose them?
Solution:

- If every vertex has degree 1 , then we can only have 3 edges.
- Each edge requires 2 vertices, so $\binom{6}{2}=15$ ways to choose an edge.
- After choosing the first edge, we have 4 vertices remaining, so there are $\binom{4}{2}=6$ ways to choose the second edge and similarly $\binom{2}{2}=1$ way to choose the final edge.

Problems

SP18 MT2 5

We wish to count how many undirected graphs on 6 vertices with equal degrees there are.
(a) How many such graphs are there such that all vertices have degree 1 ?

Hint: how many edges are there? How do we choose them?
Solution:

- If every vertex has degree 1 , then we can only have 3 edges.
- Each edge requires 2 vertices, so $\binom{6}{2}=15$ ways to choose an edge.
- After choosing the first edge, we have 4 vertices remaining, so there are $\binom{4}{2}=6$ ways to choose the second edge and similarly $\binom{2}{2}=1$ way to choose the final edge.
- However, since order doesn't matter, by the second rule of counting, we divide by $3!=6$. So our final answer is 15 .

Problems

Problems

SP18 MT2 5

Problems

SP18 MT2 5
 We wish to count how many undirected graphs on 6 vertices with equal degrees there are.

Problems

SP18 MT2 5

We wish to count how many undirected graphs on 6 vertices with equal degrees there are.
(b) How many ways can we form two disjoint cycles of length 3 with 6 vertice?

Problems

SP18 MT2 5

We wish to count how many undirected graphs on 6 vertices with equal degrees there are.
(b) How many ways can we form two disjoint cycles of length 3 with 6 vertice?

Hint:

Problems

SP18 MT2 5

We wish to count how many undirected graphs on 6 vertices with equal degrees there are.
(b) How many ways can we form two disjoint cycles of length 3 with 6 vertice?

Hint: how many ways to pick two groups?

Problems

SP18 MT2 5

We wish to count how many undirected graphs on 6 vertices with equal degrees there are.
(b) How many ways can we form two disjoint cycles of length 3 with 6 vertice?

Hint: how many ways to pick two groups?
Solution:

Problems

SP18 MT2 5

We wish to count how many undirected graphs on 6 vertices with equal degrees there are.
(b) How many ways can we form two disjoint cycles of length 3 with 6 vertice?

Hint: how many ways to pick two groups?

Solution:

- We are choosing two sets of 3 vertices. There are $\binom{6}{3}\binom{3}{3}=20$ ways.

Problems

SP18 MT2 5

We wish to count how many undirected graphs on 6 vertices with equal degrees there are.
(b) How many ways can we form two disjoint cycles of length 3 with 6 vertice?

Hint: how many ways to pick two groups?

Solution:

- We are choosing two sets of 3 vertices. There are $\binom{6}{3}\binom{3}{3}=20$ ways.
- But order doesn't matter here again. So we divide by 2!. Thus, the answer is 10 .

Problems

Problems

SP18 MT2 5

Problems

SP18 MT2 5

We wish to count how many undirected graphs on 6 vertices with equal degrees there are.

Problems

SP18 MT2 5

We wish to count how many undirected graphs on 6 vertices with equal degrees there are.
(c) How many ways can we form a long cycle of length 6?

Problems

SP18 MT2 5

We wish to count how many undirected graphs on 6 vertices with equal degrees there are.
(c) How many ways can we form a long cycle of length 6?

Hint:

Problems

SP18 MT2 5

We wish to count how many undirected graphs on 6 vertices with equal degrees there are.
(c) How many ways can we form a long cycle of length 6?

Hint: how many ways can we permute the vertices?

Problems

SP18 MT2 5

We wish to count how many undirected graphs on 6 vertices with equal degrees there are.
(c) How many ways can we form a long cycle of length 6?

Hint: how many ways can we permute the vertices?
Solution:

Problems

SP18 MT2 5

We wish to count how many undirected graphs on 6 vertices with equal degrees there are.
(c) How many ways can we form a long cycle of length 6?

Hint: how many ways can we permute the vertices?
Solution:

- We think of the cycle as a permutation of the vertices, which has 6 ! possibilities.

Problems

SP18 MT2 5

We wish to count how many undirected graphs on 6 vertices with equal degrees there are.
(c) How many ways can we form a long cycle of length 6?

Hint: how many ways can we permute the vertices?

Solution:

- We think of the cycle as a permutation of the vertices, which has 6 ! possibilities.
- However, it doesn't matter where we start, so divide by 6.

Problems

SP18 MT2 5

We wish to count how many undirected graphs on 6 vertices with equal degrees there are.
(c) How many ways can we form a long cycle of length 6?

Hint: how many ways can we permute the vertices?

Solution:

- We think of the cycle as a permutation of the vertices, which has 6 ! possibilities.
- However, it doesn't matter where we start, so divide by 6.
- The direction in which we travel along the cycle also doesn't matter, so divide by 2 .

Problems

SP18 MT2 5

We wish to count how many undirected graphs on 6 vertices with equal degrees there are.
(c) How many ways can we form a long cycle of length 6?

Hint: how many ways can we permute the vertices?
Solution:

- We think of the cycle as a permutation of the vertices, which has 6 ! possibilities.
- However, it doesn't matter where we start, so divide by 6.
- The direction in which we travel along the cycle also doesn't matter, so divide by 2 .
- Thus, our answer is $\frac{6!}{2 \cdot 6}=60$.

Problems

Problems

SP17 MT2 4

Problems

SP17 MT2 4

What are the number of ways to divide m dollar bills among z people?

Problems

SP17 MT2 4

What are the number of ways to divide m dollar bills among z people? Hint:

Problems

SP17 MT2 4

What are the number of ways to divide m dollar bills among z people? Hint: Stars and bars.

Problems

SP17 MT2 4

What are the number of ways to divide m dollar bills among z people? Hint: Stars and bars.

Solution:

Problems

SP17 MT2 4

What are the number of ways to divide m dollar bills among z people? Hint: Stars and bars.

Solution:

- This is a stars and bars problem where we have $z-1$ bars and m stars.

Problems

SP17 MT2 4

What are the number of ways to divide m dollar bills among z people? Hint: Stars and bars.

Solution:

- This is a stars and bars problem where we have $z-1$ bars and m stars.
- So $n=m$ and $k=z$ in this case.

Problems

SP17 MT2 4

What are the number of ways to divide m dollar bills among z people? Hint: Stars and bars.

Solution:

- This is a stars and bars problem where we have $z-1$ bars and m stars.
- So $n=m$ and $k=z$ in this case.
- Thus, the answer is $\binom{n+k-1}{k-1}=\binom{m+z-1}{z-1}$.

Problems

Problems

SP16 MT2 6

Problems

SP16 MT2 6

Give a combinatorial proof for

$$
3^{n}=\sum_{i=0}^{n}\binom{n}{i} 2^{n-i}
$$

Problems

SP16 MT2 6

Give a combinatorial proof for

$$
3^{n}=\sum_{i=0}^{n}\binom{n}{i} 2^{n-i}
$$

Hint:

Problems

SP16 MT2 6

Give a combinatorial proof for

$$
3^{n}=\sum_{i=0}^{n}\binom{n}{i} 2^{n-i}
$$

Hint: Ternary strings.

Problems

SP16 MT2 6

Give a combinatorial proof for

$$
3^{n}=\sum_{i=0}^{n}\binom{n}{i} 2^{n-i}
$$

Hint: Ternary strings.
Solution:

Problems

SP16 MT2 6

Give a combinatorial proof for

$$
3^{n}=\sum_{i=0}^{n}\binom{n}{i} 2^{n-i}
$$

Hint: Ternary strings.
Solution:

- LHS:

Problems

SP16 MT2 6

Give a combinatorial proof for

$$
3^{n}=\sum_{i=0}^{n}\binom{n}{i} 2^{n-i}
$$

Hint: Ternary strings.
Solution:

- LHS: the number of ternary strings of length n.

Problems

SP16 MT2 6

Give a combinatorial proof for

$$
3^{n}=\sum_{i=0}^{n}\binom{n}{i} 2^{n-i}
$$

Hint: Ternary strings.
Solution:

- LHS: the number of ternary strings of length n.
- RHS:

Problems

SP16 MT2 6

Give a combinatorial proof for

$$
3^{n}=\sum_{i=0}^{n}\binom{n}{i} 2^{n-i}
$$

Hint: Ternary strings.
Solution:

- LHS: the number of ternary strings of length n.
- RHS: There are $\binom{n}{i}$ positions of the 2 's, and there are 2^{n-i} possible patterns of 0 and 1's in the remaining positions. The sum gives you all the ternary strings.

Summary/Tips

Summary/Tips

Summary:

Summary/Tips

Summary:

	with replacement	w/o replacement
order matters	n^{k}	$\frac{n!}{(n-k)!}$
order doesn't matter	$\binom{n+k-1}{k-1}$	$\binom{n}{k}$

Summary/Tips

Summary:

	with replacement	w/o replacement
order matters	n^{k}	$\frac{n!}{(n-k)!}$
order doesn't matter	$\binom{n+k-1}{k-1}$	$\binom{n}{k}$

Tips:

Summary/Tips

Summary:

	with replacement	w/o replacement
order matters	n^{k}	$\frac{n!}{(n-k)!}$
order doesn't matter	$\binom{n+k-1}{k-1}$	$\binom{n}{k}$

Tips:

- Don't memorize formulas. Understand them by counting.

Summary/Tips

Summary:

	with replacement	w/o replacement
order matters	n^{k}	$\frac{n!}{(n-k)!}$
order doesn't matter	$\binom{n+k-1}{k-1}$	$\binom{n}{k}$

Tips:

- Don't memorize formulas. Understand them by counting.
- Identify which categories does the problem fall under.

Summary/Tips

Summary:

	with replacement	w/o replacement
order matters	n^{k}	$\frac{n!}{(n-k)!}$
order doesn't matter	$\binom{n+k-1}{k-1}$	$\binom{n}{k}$

Tips:

- Don't memorize formulas. Understand them by counting.
- Identify which categories does the problem fall under.
- Double check answers by using two different counting approaches.

Summary/Tips

Summary:

	with replacement	w/o replacement
order matters	n^{k}	$\frac{n!}{(n-k)!}$
order doesn't matter	$\binom{n+k-1}{k-1}$	$\binom{n}{k}$

Tips:

- Don't memorize formulas. Understand them by counting.
- Identify which categories does the problem fall under.
- Double check answers by using two different counting approaches.
- Check for overcounting.

Summary/Tips

Summary:

	with replacement	w/o replacement
order matters	n^{k}	$\frac{n!}{(n-k)!}$
order doesn't matter	$\binom{n+k-1}{k-1}$	$\binom{n}{k}$

Tips:

- Don't memorize formulas. Understand them by counting.
- Identify which categories does the problem fall under.
- Double check answers by using two different counting approaches.
- Check for overcounting.
- Relax and have fun!

