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First Rule of Counting

First Rule of Counting(Product Rule):
If there are n ways of doing something, and m ways of doing another thing
after that, then there are n ×m ways to perform both of these actions.

Order matters (permutations).
Sampling k elements from n items:

I With replacement: nk .
I Without replacement: n!

(n−k)!
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Second Rule of Counting

Second Rule of Counting:
If order doesn’t matter count ordered objects and then divide by number of
orderings.

Without replacement and ordering doesn’t matter (combinations).

Number of ways of choosing k-element subsets out of a set of size n:(
n
k

)
= n!

(n − k)!k! .
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Starts and Bars

Problem: Consider the equation a + b + c + d = 12 where a, b, c, d are
non-negative integers. How many solutions are there to this equation?

Let’s simplify this problem a little bit. Suppose we have 12 stars and 3
bars.

? ? | ? ?| ? ? ? | ? ? ? ??

How many ways can we arrange them?
(12+3

3
)

=
(15

3
)

This is the answer to our original problem! Do you see the bijection
between the two problems?

Zeroth Rule of Counting:
If a set A has a bijection relationship with a set B, then |A| = |B|.
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Starts and Bars

Stars and Bars:
How many ways can one distribute n indistinguishable objects into k
distinguishable bins? (

n + k − 1
k − 1

)
.

Useful for with replacement but order doesn’t matter type of
problems.
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Binomial Theorem

Binomial Theorem:
For all n ∈ N,

(a + b)n =
n∑

k=0

(
n
k

)
akbn−k .

Proof:
See notes. �

Corollary:
n∑

k=0
(−1)k

(
n
k

)
= 0.

Proof:
Plug in a = −1 and b = 1 for the binomial theorem. �
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Combinatorial Proofs

Intuitive counting arguments. No tedious algebraic manipulation.

Proofs by stories: same story from multiple perspectives.

Proving an identity by counting the same thing in two different ways.

Useful identity: (
n
k

)
=
(

n
n − k

)
.

Choosing k objects to include is equivalent to choosing n − k objects
to exclude.
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Example

Combinatorial Identity:

n∑
i=0

(
n
i

)
= 2n.

Proof:
Although we can use binomial theorem by letting a = b = 1, we use
combinatorial argument to prove this.
RHS: Total number of subsets of a set of size n.
LHS: The number of ways to choose a subset of size i is

(n
i
)
. To find the

total number of subsets, we simply add all the cases when i = 0, 1, 2, . . . , n.
�
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Principle of Inclusion-Exclusion

Principle of Inclusion-Exclusion(General):
Let A1, . . . , An be arbitrary subsets of the same finite set A. Then,

|A1 ∪ · · · ∪ An| =
n∑

k=1
(−1)k−1 ∑

S⊆{1,...,n}:|S|=k
|∩i∈SAi | .

Proof:
See notes. �

Principle of Inclusion-Exclusion(Simplified):

|A ∪ B| = |A|+ |B| − |A ∩ B|.
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Problems

SP19 MT2 6.3
How many permutations of the numbers 1 through n are there such that 1
comes before 2 and after 3? Assume n > 3.
Hint: how many ways to choose the positions for the three numbers? What
do we do with the remaining numbers?
Solution:

There are
(n

3
)

ways to pick positions for 1, 2, 3. For the positions
picked, we place the three numbers in a way such that the conditions
are met, i.e, we place them in the order of 3, 1, 2.

Now for the remaining numbers, there are (n − 3)! to arrange them.

Finally, by the first rule of counting, we have n!
6 permutations.
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Problems

SP18 MT2 5
We wish to count how many undirected graphs on 6 vertices with equal
degrees there are.
(a) How many such graphs are there such that all vertices have degree 1?
Hint: how many edges are there? How do we choose them?
Solution:

If every vertex has degree 1, then we can only have 3 edges.
Each edge requires 2 vertices, so

(6
2
)

= 15 ways to choose an edge.
After choosing the first edge, we have 4 vertices remaining, so there
are

(4
2
)

= 6 ways to choose the second edge and similarly
(2

2
)

= 1 way
to choose the final edge.
However, since order doesn’t matter, by the second rule of counting,
we divide by 3! = 6. So our final answer is 15 .
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Problems

SP18 MT2 5
We wish to count how many undirected graphs on 6 vertices with equal
degrees there are.
(b) How many ways can we form two disjoint cycles of length 3 with 6
vertice?
Hint: how many ways to pick two groups?
Solution:

We are choosing two sets of 3 vertices. There are
(6

3
) (3

3
)

= 20 ways.

But order doesn’t matter here again. So we divide by 2!. Thus, the
answer is 10 .
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Problems

SP18 MT2 5
We wish to count how many undirected graphs on 6 vertices with equal
degrees there are.
(c) How many ways can we form a long cycle of length 6?
Hint: how many ways can we permute the vertices?
Solution:

We think of the cycle as a permutation of the vertices, which has 6!
possibilities.

However, it doesn’t matter where we start, so divide by 6.

The direction in which we travel along the cycle also doesn’t matter, so
divide by 2.

Thus, our answer is 6!
2·6 = 60 .
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The direction in which we travel along the cycle also doesn’t matter, so
divide by 2.

Thus, our answer is 6!
2·6 = 60 .
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Problems

SP17 MT2 4
What are the number of ways to divide m dollar bills among z people?
Hint: Stars and bars.
Solution:

This is a stars and bars problem where we have z − 1 bars and m stars.

So n = m and k = z in this case.

Thus, the answer is
(n+k−1

k−1
)

=
(

m + z − 1
z − 1

)
.
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Problems

SP16 MT2 6
Give a combinatorial proof for

3n =
n∑

i=0

(
n
i

)
2n−i

Hint: Ternary strings.
Solution:

LHS: the number of ternary strings of length n.

RHS: There are
(n

i
)

positions of the 2’s, and there are 2n−i possible
patterns of 0 and 1’s in the remaining positions. The sum gives you all
the ternary strings.
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Summary/Tips

Summary:

with replacement w/o replacement
order matters nk n!

(n−k)!

order doesn’t matter
(n+k−1

k−1
) (n

k
)

Tips:
Don’t memorize formulas. Understand them by counting.

Identify which categories does the problem fall under.

Double check answers by using two different counting approaches.

Check for overcounting.

Relax and have fun!
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