CS70
 Countability

Kelvin Lee

UC Berkeley
March 11, 2021

Overview

(1) Bijection

(2) Cardinality
(3) Cantor-Bernstein's Theorem
(4) Cantor's Diagonalization

Bijection

How do we determine if two sets have the same cardinality, or size?

Bijection

How do we determine if two sets have the same cardinality, or size?

- This is obvious for finite sets, but trickier for infinite sets.

Bijection

How do we determine if two sets have the same cardinality, or size?

- This is obvious for finite sets, but trickier for infinite sets.
- Two finite sets have the same size if and only if their elements can be paired up, so that each element of one set has a unique partner in the other set, and vice versa.

Bijection

How do we determine if two sets have the same cardinality, or size?

- This is obvious for finite sets, but trickier for infinite sets.
- Two finite sets have the same size if and only if their elements can be paired up, so that each element of one set has a unique partner in the other set, and vice versa.
- We formalize this through the concept of a bijection, which you should have already learned about.

Bijection

How do we determine if two sets have the same cardinality, or size?

- This is obvious for finite sets, but trickier for infinite sets.
- Two finite sets have the same size if and only if their elements can be paired up, so that each element of one set has a unique partner in the other set, and vice versa.
- We formalize this through the concept of a bijection, which you should have already learned about.
- To show that two infinite sets have the same cardinality, we need to establish a bijection (one-to-one correspondence) between the two sets.

Cardinality

Are there more natural numbers \mathbb{N} than there are positive integers \mathbb{Z}^{+}?

Cardinality

Are there more natural numbers \mathbb{N} than there are positive integers \mathbb{Z}^{+}?

- We can actually define a mapping between the natural numbers and the positive integers.

Cardinality

Are there more natural numbers \mathbb{N} than there are positive integers \mathbb{Z}^{+}?

- We can actually define a mapping between the natural numbers and the positive integers.
- Define $f: \mathbb{N} \rightarrow \mathbb{Z}^{+}$such that $f(n)=n+1$. We can see there's a one-to-one correspondence (why?).

Cardinality

Are there more natural numbers \mathbb{N} than there are positive integers \mathbb{Z}^{+}?

- We can actually define a mapping between the natural numbers and the positive integers.
- Define $f: \mathbb{N} \rightarrow \mathbb{Z}^{+}$such that $f(n)=n+1$. We can see there's a one-to-one correspondence (why?).

\mathbb{N}	0	1	2	3	4	5	\cdots	
$f \downarrow$	\searrow	\searrow	\searrow	\searrow	\searrow	\searrow		
\mathbb{Z}^{+}	1	2	3	4	5	6	\ldots	

Cardinality

Are there more natural numbers \mathbb{N} than there are positive integers \mathbb{Z}^{+}?

- We can actually define a mapping between the natural numbers and the positive integers.
- Define $f: \mathbb{N} \rightarrow \mathbb{Z}^{+}$such that $f(n)=n+1$. We can see there's a one-to-one correspondence (why?).

\mathbb{N}	0	1	2	3	4	5	\cdots	
$f \downarrow$	\searrow	\searrow	\searrow	\searrow	\searrow	\searrow		
\mathbb{Z}^{+}	1	2	3	4	5	6	\ldots	

- This tells us that $|\mathbb{N}|=\left|\mathbb{Z}^{+}\right|$.

Cardinality

Are there more natural numbers \mathbb{N} than there are positive integers \mathbb{Z}^{+}?

- We can actually define a mapping between the natural numbers and the positive integers.
- Define $f: \mathbb{N} \rightarrow \mathbb{Z}^{+}$such that $f(n)=n+1$. We can see there's a one-to-one correspondence (why?).

\mathbb{N}	0	1	2	3	4	5	\cdots	
$f \downarrow$	\searrow	\searrow	\searrow	\searrow	\searrow	\searrow		
\mathbb{Z}^{+}	1	2	3	4	5	6	\ldots	

- This tells us that $|\mathbb{N}|=\left|\mathbb{Z}^{+}\right|$.
- We have just shown that $\infty+1=\infty$!

Examples

What about \mathbb{N} and \mathbb{Z} ?

Examples

What about \mathbb{N} and \mathbb{Z} ?

- They both actually have the same size! Let's see why, consider the following function f :

Examples

What about \mathbb{N} and \mathbb{Z} ?

- They both actually have the same size! Let's see why, consider the following function f :

$$
f(x)=\left\{\begin{array}{cc}
\frac{x}{2}, & \text { if } x \text { is even } \\
\frac{-(x+1)}{2}, & \text { if } x \text { is odd }
\end{array}\right.
$$

Examples

What about \mathbb{N} and \mathbb{Z} ?

- They both actually have the same size! Let's see why, consider the following function f :

$$
f(x)=\left\{\begin{array}{cc}
\frac{x}{2}, & \text { if } x \text { is even } \\
\frac{-(x+1)}{2}, & \text { if } x \text { is odd }
\end{array}\right.
$$

This function is in fact a bijection. Thus, the two sets have the same size.

Countable Sets

Countable Sets

- A set S is countable if there is a bijection between S and \mathbb{N} or some subset of \mathbb{N}.

Countable Sets

- A set S is countable if there is a bijection between S and \mathbb{N} or some subset of \mathbb{N}.
- Intuitively, any finite set S is clearly countable.

Countable Sets

- A set S is countable if there is a bijection between S and \mathbb{N} or some subset of \mathbb{N}.
- Intuitively, any finite set S is clearly countable.
- The examples we did earlier are countable because they are subsets of \mathbb{N}, which is a countable set.

Examples

Examples

Now consider the set of rational numbers \mathbb{Q}, is it larger than \mathbb{N} ? Recall that $\mathbb{Q}=\left\{\left.\frac{x}{y} \right\rvert\, x, y \in \mathbb{Z}, y \neq 0\right\}$.

Examples

Now consider the set of rational numbers \mathbb{Q}, is it larger than \mathbb{N} ? Recall that $\mathbb{Q}=\left\{\left.\frac{x}{y} \right\rvert\, x, y \in \mathbb{Z}, y \neq 0\right\}$.

- The two sets actually have the same cardinality! Let's first learn some new definitions and an important theorem.

Examples

Now consider the set of rational numbers \mathbb{Q}, is it larger than \mathbb{N} ? Recall that $\mathbb{Q}=\left\{\left.\frac{x}{y} \right\rvert\, x, y \in \mathbb{Z}, y \neq 0\right\}$.

- The two sets actually have the same cardinality! Let's first learn some new definitions and an important theorem.

Definition 1

Examples

Now consider the set of rational numbers \mathbb{Q}, is it larger than \mathbb{N} ?
Recall that $\mathbb{Q}=\left\{\left.\frac{x}{y} \right\rvert\, x, y \in \mathbb{Z}, y \neq 0\right\}$.

- The two sets actually have the same cardinality! Let's first learn some new definitions and an important theorem.

Definition 1

If there is a injective function $f: A \rightarrow B$, then $|A| \leq|B|$.

Examples

Now consider the set of rational numbers \mathbb{Q}, is it larger than \mathbb{N} ? Recall that $\mathbb{Q}=\left\{\left.\frac{x}{y} \right\rvert\, x, y \in \mathbb{Z}, y \neq 0\right\}$.

- The two sets actually have the same cardinality! Let's first learn some new definitions and an important theorem.

Definition 1
If there is a injective function $f: A \rightarrow B$, then $|A| \leq|B|$.
Definition 2

Examples

Now consider the set of rational numbers \mathbb{Q}, is it larger than \mathbb{N} ?
Recall that $\mathbb{Q}=\left\{\left.\frac{x}{y} \right\rvert\, x, y \in \mathbb{Z}, y \neq 0\right\}$.

- The two sets actually have the same cardinality! Let's first learn some new definitions and an important theorem.

Definition 1
If there is a injective function $f: A \rightarrow B$, then $|A| \leq|B|$.
Definition 2
If there is a surjective function $f: A \rightarrow B$, then $|A| \geq|B|$.

Cantor-Bernstein's Theorem

Cantor-Bernstein's Theorem

Theorem (Schröder-Bernstein Theorem (Cantor-Bernstein))
If A and B are sets with $|A| \leq|B|$ and $|B| \leq|A|$, then $|A|=|B|$. In other words, if there are injective functions $f: A \rightarrow B$ and $g: B \rightarrow A$, then there is a bijection h between A and B.

Cantor-Bernstein's Theorem

Theorem (Schröder-Bernstein Theorem (Cantor-Bernstein))
If A and B are sets with $|A| \leq|B|$ and $|B| \leq|A|$, then $|A|=|B|$. In other words, if there are injective functions $f: A \rightarrow B$ and $g: B \rightarrow A$, then there is a bijection h between A and B.

Proof:

Cantor-Bernstein's Theorem

Theorem (Schröder-Bernstein Theorem (Cantor-Bernstein))
If A and B are sets with $|A| \leq|B|$ and $|B| \leq|A|$, then $|A|=|B|$. In other words, if there are injective functions $f: A \rightarrow B$ and $g: B \rightarrow A$, then there is a bijection h between A and B.

Proof:

The proof of this theorem is out of scope for this class. We'll skip that for now.

Cantor-Bernstein's Theorem

Theorem (Schröder-Bernstein Theorem (Cantor-Bernstein))

If A and B are sets with $|A| \leq|B|$ and $|B| \leq|A|$, then $|A|=|B|$. In other words, if there are injective functions $f: A \rightarrow B$ and $g: B \rightarrow A$, then there is a bijection h between A and B.

Proof:

The proof of this theorem is out of scope for this class. We'll skip that for now.

- This theorem will be very useful when showing a set S is countable. We can give separate injections $f: S \rightarrow \mathbb{N}$ and $g: \mathbb{N} \rightarrow S$, instead of designing a bijection (which is trickier).

Examples

Examples

- Now back to our problem. First it is obvious that $|\mathbb{N}| \leq|\mathbb{Q}|$ because $\mathbb{N} \subseteq \mathbb{Q}$.

Examples

- Now back to our problem. First it is obvious that $|\mathbb{N}| \leq|\mathbb{Q}|$ because $\mathbb{N} \subseteq \mathbb{Q}$.
- Now the theorem comes in handy and all we need to do now is to prove $|\mathbb{Q}| \leq|\mathbb{N}|$.

Examples

- Now back to our problem. First it is obvious that $|\mathbb{N}| \leq|\mathbb{Q}|$ because $\mathbb{N} \subseteq \mathbb{Q}$.
- Now the theorem comes in handy and all we need to do now is to prove $|\mathbb{Q}| \leq|\mathbb{N}|$.
- Recall the definition, we must exhibit an injection $f: \mathbb{Q} \rightarrow \mathbb{N}$.

Examples

- Now back to our problem. First it is obvious that $|\mathbb{N}| \leq|\mathbb{Q}|$ because $\mathbb{N} \subseteq \mathbb{Q}$.
- Now the theorem comes in handy and all we need to do now is to prove $|\mathbb{Q}| \leq|\mathbb{N}|$.
- Recall the definition, we must exhibit an injection $f: \mathbb{Q} \rightarrow \mathbb{N}$.
- Notice that each rational number $\frac{a}{b}(\operatorname{gcd}(a, b)=1)$ can be represented by the point $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ (the set of all pairs of integers).

Examples

- Now back to our problem. First it is obvious that $|\mathbb{N}| \leq|\mathbb{Q}|$ because $\mathbb{N} \subseteq \mathbb{Q}$.
- Now the theorem comes in handy and all we need to do now is to prove $|\mathbb{Q}| \leq|\mathbb{N}|$.
- Recall the definition, we must exhibit an injection $f: \mathbb{Q} \rightarrow \mathbb{N}$.
- Notice that each rational number $\frac{a}{b}(\operatorname{gcd}(a, b)=1)$ can be represented by the point $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ (the set of all pairs of integers).
- However, not all points are valid.

Examples

- Now back to our problem. First it is obvious that $|\mathbb{N}| \leq|\mathbb{Q}|$ because $\mathbb{N} \subseteq \mathbb{Q}$.
- Now the theorem comes in handy and all we need to do now is to prove $|\mathbb{Q}| \leq|\mathbb{N}|$.
- Recall the definition, we must exhibit an injection $f: \mathbb{Q} \rightarrow \mathbb{N}$.
- Notice that each rational number $\frac{a}{b}(\operatorname{gcd}(a, b)=1)$ can be represented by the point $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ (the set of all pairs of integers).
- However, not all points are valid.
- Thus, we can actually tell that $|\mathbb{Z} \times \mathbb{Z}| \geq|\mathbb{Q}|$.

Examples

- Now back to our problem. First it is obvious that $|\mathbb{N}| \leq|\mathbb{Q}|$ because $\mathbb{N} \subseteq \mathbb{Q}$.
- Now the theorem comes in handy and all we need to do now is to prove $|\mathbb{Q}| \leq|\mathbb{N}|$.
- Recall the definition, we must exhibit an injection $f: \mathbb{Q} \rightarrow \mathbb{N}$.
- Notice that each rational number $\frac{a}{b}(\operatorname{gcd}(a, b)=1)$ can be represented by the point $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ (the set of all pairs of integers).
- However, not all points are valid.
- Thus, we can actually tell that $|\mathbb{Z} \times \mathbb{Z}| \geq|\mathbb{Q}|$.
- If we are able to come up with an injection from $\mathbb{Z} \times \mathbb{Z}$ to N, then this will also be an injection from \mathbb{Q} to \mathbb{N} (why?).

Examples

Examples

Examples

- Map each pair (a, b) to its position along the spiral, starting at the origin(indexing through each point starting from index 0).

Examples

- Map each pair (a, b) to its position along the spiral, starting at the origin(indexing through each point starting from index 0).
- This mapping maps every pair of integers injectively to a natural number.

Examples

- Map each pair (a, b) to its position along the spiral, starting at the origin(indexing through each point starting from index 0).
- This mapping maps every pair of integers injectively to a natural number.
- Thus we have $|\mathbb{Q}| \leq|\mathbb{Z} \times \mathbb{Z}| \leq|\mathbb{N}|$. Remember that $|\mathbb{N}| \leq|\mathbb{Q}|$, then by the Cantor-Bernstein Theorem $|\mathbb{N}|=|\mathbb{Q}|$.

Cantor's Diagonalization

Cantor's Diagonalization

- An set S is uncountable if it is not countable, or cannot be enumerated. This introduces the concept of diagonalization.

Cantor's Diagonalization

- An set S is uncountable if it is not countable, or cannot be enumerated. This introduces the concept of diagonalization.
- The idea of diagonalization is that we can always create an element that does not belong to the set, i.e., enumeration is impossible.

Cantor's Diagonalization

- An set S is uncountable if it is not countable, or cannot be enumerated. This introduces the concept of diagonalization.
- The idea of diagonalization is that we can always create an element that does not belong to the set, i.e., enumeration is impossible.
- One example would be $\mathbb{R}[0,1]$ demonstrated in lecture.

Cantor's Diagonalization

- An set S is uncountable if it is not countable, or cannot be enumerated. This introduces the concept of diagonalization.
- The idea of diagonalization is that we can always create an element that does not belong to the set, i.e., enumeration is impossible.
- One example would be $\mathbb{R}[0,1]$ demonstrated in lecture.
- We can create a real number where each of its i th digit differs from the i th digit of the i th element.

Cantor's Diagonalization

- An set S is uncountable if it is not countable, or cannot be enumerated. This introduces the concept of diagonalization.
- The idea of diagonalization is that we can always create an element that does not belong to the set, i.e., enumeration is impossible.
- One example would be $\mathbb{R}[0,1]$ demonstrated in lecture.
- We can create a real number where each of its i th digit differs from the i th digit of the i th element.
- Thus the real interval $\mathbb{R}[0,1]$ is uncountable, so do its supersets.

Problem Time!

