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Bijection

How do we determine if two sets have the same cardinality, or size?

This is obvious for finite sets, but trickier for infinite sets.

Two finite sets have the same size if and only if their elements can be
paired up, so that each element of one set has a unique partner in the
other set, and vice versa.

We formalize this through the concept of a bijection, which you
should have already learned about.

To show that two infinite sets have the same cardinality, we need to
establish a bijection (one-to-one correspondence) between the two sets.
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Cardinality

Are there more natural numbers N than there are positive integers
Z+?

We can actually define a mapping between the natural numbers and
the positive integers.

Define f : N→ Z+ such that f (n) = n + 1. We can see there’s a
one-to-one correspondence (why?).

This tells us that |N| = |Z+|.

We have just shown that ∞+ 1 =∞!
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Examples

What about N and Z?

They both actually have the same size! Let’s see why, consider the
following function f :

f (x) =

 x
2 , if x is even

−(x+1)
2 , if x is odd

This function is in fact a bijection. Thus, the two sets have the same
size.
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Countable Sets

A set S is countable if there is a bijection between S and N or some
subset of N.

Intuitively, any finite set S is clearly countable.

The examples we did earlier are countable because they are subsets of
N, which is a countable set.
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Examples

Now consider the set of rational numbers Q, is it larger than N?
Recall that Q =

{
x
y | x , y ∈ Z, y 6= 0

}
.

The two sets actually have the same cardinality! Let’s first learn some
new definitions and an important theorem.

Definition 1
If there is a injective function f : A→ B, then |A| ≤ |B|.
Definition 2
If there is a surjective function f : A→ B, then |A| ≥ |B|.
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Cantor-Bernstein’s Theorem

Theorem (Schröder–Bernstein Theorem (Cantor–Bernstein))
If A and B are sets with |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|. In other
words, if there are injective functions f : A→ B and g : B → A, then there
is a bijection h between A and B.

Proof:
The proof of this theorem is out of scope for this class. We’ll skip that for
now. �

This theorem will be very useful when showing a set S is countable.
We can give separate injections f : S → N and g : N→ S, instead of
designing a bijection (which is trickier).
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Examples

Now back to our problem. First it is obvious that |N| ≤ |Q| because
N ⊆ Q.

Now the theorem comes in handy and all we need to do now is to
prove |Q| ≤ |N|.

Recall the definition, we must exhibit an injection f : Q→ N.

Notice that each rational number a
b (gcd(a, b) = 1) can be represented

by the point (a, b) ∈ Z× Z (the set of all pairs of integers).

However, not all points are valid.

Thus, we can actually tell that |Z× Z| ≥ |Q|.

If we are able to come up with an injection from Z× Z to N, then this
will also be an injection from Q to N (why?).
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Examples

Map each pair (a, b) to its position along the spiral, starting at the
origin(indexing through each point starting from index 0).

This mapping maps every pair of integers injectively to a natural
number.

Thus we have |Q| ≤ |Z× Z| ≤ |N|. Remember that |N| ≤ |Q|, then by
the Cantor-Bernstein Theorem |N| = |Q|.
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Cantor’s Diagonalization

An set S is uncountable if it is not countable, or cannot be
enumerated. This introduces the concept of diagonalization.

The idea of diagonalization is that we can always create an element
that does not belong to the set, i.e., enumeration is impossible.

One example would be R[0, 1] demonstrated in lecture.

We can create a real number where each of its ith digit differs from
the ith digit of the ith element.

Thus the real interval R[0, 1] is uncountable, so do its supersets.
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Problem Time!
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