CS70

Discrete Probability

Kelvin Lee

UC Berkeley

March 18, 2021

Overview

(1) Probabilistic Models
(2) Probability Space
(3) Discrete Uniform Probability Space

Probabilistic Models

Probabilistic Models

A probabilistic model is a mathematical description of an uncertain situation. The elements of a probabilistic model includes

Probabilistic Models

A probabilistic model is a mathematical description of an uncertain situation. The elements of a probabilistic model includes

- sample space Ω : set of all all possible outcomes of an experiment.

Probabilistic Models

A probabilistic model is a mathematical description of an uncertain situation. The elements of a probabilistic model includes

- sample space Ω : set of all all possible outcomes of an experiment.
- probability law: assigns to a set A of possible outcomes (event) a nonnegative value $P(A)$ (probability of A) that encodes the knowledge about the likelihood of the elements of A.

Terminology

Terminology

Experiment:

Terminology

Experiment:

A procedure that yields one of a given set of possible outcomes.

Terminology

Experiment:

A procedure that yields one of a given set of possible outcomes.
Sample space Ω :

Terminology

Experiment:

A procedure that yields one of a given set of possible outcomes.
Sample space Ω :
The set of possible outcomes.

Terminology

Experiment:

A procedure that yields one of a given set of possible outcomes.
Sample space Ω :
The set of possible outcomes.
Sample point ω :

Terminology

Experiment:

A procedure that yields one of a given set of possible outcomes.
Sample space Ω :
The set of possible outcomes.
Sample point ω :
An element from the sample space.

Terminology

Experiment:

A procedure that yields one of a given set of possible outcomes.
Sample space Ω :
The set of possible outcomes.
Sample point ω :
An element from the sample space.

Event:

Terminology

Experiment:

A procedure that yields one of a given set of possible outcomes.
Sample space Ω :
The set of possible outcomes.
Sample point ω :
An element from the sample space.
Event:
A subset of the sample space.

Probability Space

Probability Space

The probability space is defined by the triple (Ω, \mathscr{A}, P) where Ω is the sample space, $\mathscr{A} \subseteq \Omega$ is the event space and P is the probability function, satisfying the following axioms:

Probability Space

The probability space is defined by the triple (Ω, \mathscr{A}, P) where Ω is the sample space, $\mathscr{A} \subseteq \Omega$ is the event space and P is the probability function, satisfying the following axioms:

- Nonnegativity:

Probability Space

The probability space is defined by the triple (Ω, \mathscr{A}, P) where Ω is the sample space, $\mathscr{A} \subseteq \Omega$ is the event space and P is the probability function, satisfying the following axioms:

- Nonnegativity: $P(\omega) \geq 0$ for all sample points $\omega \in \Omega$.

Probability Space

The probability space is defined by the triple (Ω, \mathscr{A}, P) where Ω is the sample space, $\mathscr{A} \subseteq \Omega$ is the event space and P is the probability function, satisfying the following axioms:

- Nonnegativity: $P(\omega) \geq 0$ for all sample points $\omega \in \Omega$.
- Additivity:

Probability Space

The probability space is defined by the triple (Ω, \mathscr{A}, P) where Ω is the sample space, $\mathscr{A} \subseteq \Omega$ is the event space and P is the probability function, satisfying the following axioms:

- Nonnegativity: $P(\omega) \geq 0$ for all sample points $\omega \in \Omega$.
- Additivity: any countable sequence of disjoint sets (mutually exclusive events) E_{1}, E_{2}, \ldots satisfies

$$
P\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} P\left(E_{i}\right)
$$

Probability Space

The probability space is defined by the triple (Ω, \mathscr{A}, P) where Ω is the sample space, $\mathscr{A} \subseteq \Omega$ is the event space and P is the probability function, satisfying the following axioms:

- Nonnegativity: $P(\omega) \geq 0$ for all sample points $\omega \in \Omega$.
- Additivity: any countable sequence of disjoint sets (mutually exclusive events) E_{1}, E_{2}, \ldots satisfies

$$
P\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} P\left(E_{i}\right)
$$

- Normalization:

Probability Space

The probability space is defined by the triple (Ω, \mathscr{A}, P) where Ω is the sample space, $\mathscr{A} \subseteq \Omega$ is the event space and P is the probability function, satisfying the following axioms:

- Nonnegativity: $P(\omega) \geq 0$ for all sample points $\omega \in \Omega$.
- Additivity: any countable sequence of disjoint sets (mutually exclusive events) E_{1}, E_{2}, \ldots satisfies

$$
P\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} P\left(E_{i}\right)
$$

- Normalization:

$$
\sum_{\omega \in \Omega} P(\omega)=P(\Omega)=1
$$

Probability Space

Probability Space

Let's define probability.

Probability Space

Let's define probability.
For any event $A \subseteq \Omega$, we define the probability of A to be

Probability Space

Let's define probability.
For any event $A \subseteq \Omega$, we define the probability of A to be

$$
P(A)=\sum_{\omega \in A} P(\omega)
$$

Probability Space

Let's define probability.
For any event $A \subseteq \Omega$, we define the probability of A to be

$$
P(A)=\sum_{\omega \in A} P(\omega) .
$$

Using the axioms above, we can derive some properties:

Probability Space

Let's define probability.
For any event $A \subseteq \Omega$, we define the probability of A to be

$$
P(A)=\sum_{\omega \in A} P(\omega) .
$$

Using the axioms above, we can derive some properties:

- $P(\emptyset)=0$.

Probability Space

Let's define probability.
For any event $A \subseteq \Omega$, we define the probability of A to be

$$
P(A)=\sum_{\omega \in A} P(\omega)
$$

Using the axioms above, we can derive some properties:

- $P(\emptyset)=0$.
- $P(\bar{A})=1-P(A)$, where \bar{A} (or A^{c}) is the complement of A.

Probability Space

Let's define probability.
For any event $A \subseteq \Omega$, we define the probability of A to be

$$
P(A)=\sum_{\omega \in A} P(\omega) .
$$

Using the axioms above, we can derive some properties:

- $P(\emptyset)=0$.
- $P(\bar{A})=1-P(A)$, where \bar{A} (or A^{c}) is the complement of A.
- $P(A \cup B)=P(A)+P(A)-P(A \cap B)$.

Probability Space

Let's define probability.
For any event $A \subseteq \Omega$, we define the probability of A to be

$$
P(A)=\sum_{\omega \in A} P(\omega) .
$$

Using the axioms above, we can derive some properties:

- $P(\emptyset)=0$.
- $P(\bar{A})=1-P(A)$, where \bar{A} (or A^{c}) is the complement of A.
- $P(A \cup B)=P(A)+P(A)-P(A \cap B)$.
- If $A \subseteq B$, then $P(A) \leq P(B)$.

Discrete Uniform Probability Space

Discrete Uniform Probability Space

Discrete Uniform Probability Law:

Discrete Uniform Probability Space

Discrete Uniform Probability Law:

In a uniform probability space, all sample points have the same probability
$\frac{1}{|\Omega|}$ and the probability of an event A is

Discrete Uniform Probability Space

Discrete Uniform Probability Law:

In a uniform probability space, all sample points have the same probability
$\frac{1}{|\Omega|}$ and the probability of an event A is

$$
P(A)=\frac{|A|}{|\Omega|} .
$$

Discrete Uniform Probability Space

Discrete Uniform Probability Law:

In a uniform probability space, all sample points have the same probability
$\frac{1}{|\Omega|}$ and the probability of an event A is

$$
P(A)=\frac{|A|}{|\Omega|} .
$$

For uniform spaces, computing probabilities is simply counting sample points.

Problem Time!

