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Conditional Probability

Given that event B happened, we are interested in finding the
probability of event A, which is P(A|B).

Since B is guaranteed to happen, we restrict our focus to the sample
points in B instead of Ω.

Then we know that
P(B) =

∑
ω∈B

P(ω),

which is less than 1 in general.

To get the correct normalization, we scale the probability of each ω

by 1
P(B) and so

P(ω|B) = P(ω)
P(B) .
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Conditional Probability

Now we are ready to compute P(A|B):

P(A | B) =
∑

ω∈A∩B
P(ω | B) =

∑
ω∈A∩B

P(ω)
P(B) = P(A ∩ B)

P(B) .

For events A, B ⊆ Ω in the same probability space such that P(B) > 0,

the conditional probability of A given B is

P(A | B) = P(A ∩ B)
P(B) .

Chain Rule.
P(A ∩ B) = P(A | B) · P(B).
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Bayes’ Rule

How do we compute P(A | B) given P(B | A)?

Using the definition and chain rule, we have

P(A | B) = P(A ∩ B)
P(B) = P(B | A) · P(A)

P(B) ,

which is the Bayes’ Rule.
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Law of Total Probability

Usually we are not given what P(B) is, so we need to figure out P(B) based
on our current information.

Observe that
P(B) = P(A ∩ B) + P(A ∩ B),

which is equivalent to

P(B) = P(B | A) · P(A) + P(B | A)P(A).

This is exactly the Law of Total Probability, which is a very
important law in probability theory.
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Bayes’ Rule

Now putting back together what we have currently, we have

P(A|B) = P(A ∩ B)
P(B)

= P(B | A) · P(A)
P(B)

= P(B | A) · P(A)
P(B | A) · P(A) + P(B | A) · P(A)

= P(B | A) · P(A)
P(B | A) · P(A) + P(B | A) · (1− P(A))

.
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Law of Total Probability

Let’s now consider Bayes’ Rule and the Law of Total Probability in a
more general context. First, let’s define a partition of an event as follows:

(Partition of an event). We say that an event A is partitioned into n
events A1, . . . , An if

I A = A1 ∪ A2 ∪ · · · ∪ An,

I Ai ∩ Aj = ∅ for all i 6= j (i.e., A1, . . . , An are mutually exclusive).

In simpler terms, each outcome in A belongs to exactly one of the
events A1, . . . , An.

Now, let A1, . . . , An be a partition of the sample space Ω. Then, the
Law of Total Probability for any event B is

P(B) =
n∑

i=1
P (B ∩ Ai ) =

n∑
i=1

P (B | Ai ) P (Ai ) .
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Bayes’ Rule

Similarly, with the general version of Law of Total Probability, the general
version of Bayes’ Rule, assuming P(B) 6= 0, is given by

P (Ai | B) = P (B | Ai ) P (Ai )
P(B) = P (B | Ai ) P (Ai )∑n

j=1 P (B | Aj) P (Aj)
.
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Independence

Independence.
Event A and B are independent if and only if

P(A ∩ B) = P(A) · P(B) or P(A | B) = P(A).

The probability of A is not affected by whether or not B occurs.
Mutual Independence.
Events A1, . . . , An are said to be mutually independent if for every subset
I ⊆ {1, . . . , n} with size |I| ≥ 2,

P

⋂
i∈I

Ai

 =
∏
i∈I

P(Ai ).

Pairwise independence does not imply mutual independence!
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Chain Rule

Finding the probability of the intersection of mutually independent events is
easy, but what if they are not mutually independent?

We use the chain rule again but here’s the generalized version.

Chain Rule. For any events A1, . . . , An,

P
( n⋂

i=1
Ai

)
= P (A1) · P (A2 | A1) · P (A3 | A1 ∩ A2) · · · · · P

(
An

∣∣∣∣∣
n−1⋂
i=1

Ai

)
.
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Union of Events

Sometimes we are also interested in finding the probability of the union of
several events.

If the events are mutually exclusive, then

P
( n⋃

i=1
Ai

)
=

n∑
i=1

P(Ai ).

Otherwise, we use the Inclusion-Exclusion Principle: let A1, . . . , An

be events in some probability space, where n ≥ 2. Then, we have

P
( n⋃

i=1
Ai

)
=

n∑
k=1

(−1)k−1 ∑
S⊆{1,...,n}:|S|=k

P

⋂
i∈S

Ai



=
n∑

i=1
P (Ai )−

∑
i<j

P (Ai ∩ Aj) + . . . + (−1)n−1P (A1 ∩ A2 ∩ · · · ∩ An) .
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Union Bound

Sometimes we are also interested in the upper bound of the probability of
the union of several events.

We have the Union Bound: let A1, . . . , An be events in some
probability space. Then

P
( n⋃

i=1
Ai

)
≤

n∑
i=1

P(Ai ).

Summing up all P(Ai ) only overestimate the probability of the union
(equality holds when they are disjoint).
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Problem Time!
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