CS70

Discrete Probability II

Kelvin Lee

UC Berkeley

March 30, 2021

Overview

(1) Conditional Probability
(2) Bayes' Rule
(3) Law of Total Probability
(4) Independence
(5) Union Bound

Conditional Probability

Conditional Probability

- Given that event B happened, we are interested in finding the probability of event A, which is $\mathbb{P}(A \mid B)$.

Conditional Probability

- Given that event B happened, we are interested in finding the probability of event A, which is $\mathbb{P}(A \mid B)$.
- Since B is guaranteed to happen, we restrict our focus to the sample points in B instead of Ω.

Conditional Probability

- Given that event B happened, we are interested in finding the probability of event A, which is $\mathbb{P}(A \mid B)$.
- Since B is guaranteed to happen, we restrict our focus to the sample points in B instead of Ω.
- Then we know that

Conditional Probability

- Given that event B happened, we are interested in finding the probability of event A, which is $\mathbb{P}(A \mid B)$.
- Since B is guaranteed to happen, we restrict our focus to the sample points in B instead of Ω.
- Then we know that

$$
\mathbb{P}(B)=\sum_{\omega \in B} \mathbb{P}(\omega)
$$

Conditional Probability

- Given that event B happened, we are interested in finding the probability of event A, which is $\mathbb{P}(A \mid B)$.
- Since B is guaranteed to happen, we restrict our focus to the sample points in B instead of Ω.
- Then we know that

$$
\mathbb{P}(B)=\sum_{\omega \in B} \mathbb{P}(\omega)
$$

which is less than 1 in general.

Conditional Probability

- Given that event B happened, we are interested in finding the probability of event A, which is $\mathbb{P}(A \mid B)$.
- Since B is guaranteed to happen, we restrict our focus to the sample points in B instead of Ω.
- Then we know that

$$
\mathbb{P}(B)=\sum_{\omega \in B} \mathbb{P}(\omega)
$$

which is less than 1 in general.

- To get the correct normalization, we scale the probability of each ω by $\frac{1}{\mathbb{P}(B)}$ and so

Conditional Probability

- Given that event B happened, we are interested in finding the probability of event A, which is $\mathbb{P}(A \mid B)$.
- Since B is guaranteed to happen, we restrict our focus to the sample points in B instead of Ω.
- Then we know that

$$
\mathbb{P}(B)=\sum_{\omega \in B} \mathbb{P}(\omega)
$$

which is less than 1 in general.

- To get the correct normalization, we scale the probability of each ω by $\frac{1}{\mathbb{P}(B)}$ and so

$$
\mathbb{P}(\omega \mid B)=\frac{\mathbb{P}(\omega)}{\mathbb{P}(B)}
$$

Conditional Probability

Conditional Probability

- Now we are ready to compute $\mathbb{P}(A \mid B)$:

Conditional Probability

- Now we are ready to compute $\mathbb{P}(A \mid B)$:

$$
\mathbb{P}(A \mid B)=\sum_{\omega \in A \cap B} \mathbb{P}(\omega \mid B)=\sum_{\omega \in A \cap B} \frac{\mathbb{P}(\omega)}{\mathbb{P}(B)}=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

Conditional Probability

- Now we are ready to compute $\mathbb{P}(A \mid B)$:

$$
\mathbb{P}(A \mid B)=\sum_{\omega \in A \cap B} \mathbb{P}(\omega \mid B)=\sum_{\omega \in A \cap B} \frac{\mathbb{P}(\omega)}{\mathbb{P}(B)}=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

- For events $A, B \subseteq \Omega$ in the same probability space such that $\mathbb{P}(B)>0$, the conditional probability of A given B is

Conditional Probability

- Now we are ready to compute $\mathbb{P}(A \mid B)$:

$$
\mathbb{P}(A \mid B)=\sum_{\omega \in A \cap B} \mathbb{P}(\omega \mid B)=\sum_{\omega \in A \cap B} \frac{\mathbb{P}(\omega)}{\mathbb{P}(B)}=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

- For events $A, B \subseteq \Omega$ in the same probability space such that $\mathbb{P}(B)>0$, the conditional probability of A given B is

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

Conditional Probability

- Now we are ready to compute $\mathbb{P}(A \mid B)$:

$$
\mathbb{P}(A \mid B)=\sum_{\omega \in A \cap B} \mathbb{P}(\omega \mid B)=\sum_{\omega \in A \cap B} \frac{\mathbb{P}(\omega)}{\mathbb{P}(B)}=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

- For events $A, B \subseteq \Omega$ in the same probability space such that $\mathbb{P}(B)>0$, the conditional probability of A given B is

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

- Chain Rule.

Conditional Probability

- Now we are ready to compute $\mathbb{P}(A \mid B)$:

$$
\mathbb{P}(A \mid B)=\sum_{\omega \in A \cap B} \mathbb{P}(\omega \mid B)=\sum_{\omega \in A \cap B} \frac{\mathbb{P}(\omega)}{\mathbb{P}(B)}=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

- For events $A, B \subseteq \Omega$ in the same probability space such that $\mathbb{P}(B)>0$, the conditional probability of A given B is

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

- Chain Rule.

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A \mid B) \cdot \mathbb{P}(B)
$$

Bayes' Rule

Bayes' Rule

How do we compute $\mathbb{P}(A \mid B)$ given $\mathbb{P}(B \mid A)$?

Bayes' Rule

How do we compute $\mathbb{P}(A \mid B)$ given $\mathbb{P}(B \mid A)$?

- Using the definition and chain rule, we have

Bayes' Rule

How do we compute $\mathbb{P}(A \mid B)$ given $\mathbb{P}(B \mid A)$?

- Using the definition and chain rule, we have

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}=\frac{\mathbb{P}(B \mid A) \cdot \mathbb{P}(A)}{\mathbb{P}(B)}
$$

Bayes' Rule

How do we compute $\mathbb{P}(A \mid B)$ given $\mathbb{P}(B \mid A)$?

- Using the definition and chain rule, we have

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}=\frac{\mathbb{P}(B \mid A) \cdot \mathbb{P}(A)}{\mathbb{P}(B)}
$$

which is the Bayes' Rule.

Law of Total Probability

Law of Total Probability

Usually we are not given what $\mathbb{P}(B)$ is, so we need to figure out $\mathbb{P}(B)$ based on our current information.

Law of Total Probability

Usually we are not given what $\mathbb{P}(B)$ is, so we need to figure out $\mathbb{P}(B)$ based on our current information.

- Observe that

Law of Total Probability

Usually we are not given what $\mathbb{P}(B)$ is, so we need to figure out $\mathbb{P}(B)$ based on our current information.

- Observe that

$$
\mathbb{P}(B)=\mathbb{P}(A \cap B)+\mathbb{P}(\bar{A} \cap B)
$$

Law of Total Probability

Usually we are not given what $\mathbb{P}(B)$ is, so we need to figure out $\mathbb{P}(B)$ based on our current information.

- Observe that

$$
\mathbb{P}(B)=\mathbb{P}(A \cap B)+\mathbb{P}(\bar{A} \cap B),
$$

which is equivalent to

Law of Total Probability

Usually we are not given what $\mathbb{P}(B)$ is, so we need to figure out $\mathbb{P}(B)$ based on our current information.

- Observe that

$$
\mathbb{P}(B)=\mathbb{P}(A \cap B)+\mathbb{P}(\bar{A} \cap B)
$$

which is equivalent to

$$
\mathbb{P}(B)=\mathbb{P}(B \mid A) \cdot \mathbb{P}(A)+\mathbb{P}(B \mid \bar{A}) \mathbb{P}(\bar{A})
$$

Law of Total Probability

Usually we are not given what $\mathbb{P}(B)$ is, so we need to figure out $\mathbb{P}(B)$ based on our current information.

- Observe that

$$
\mathbb{P}(B)=\mathbb{P}(A \cap B)+\mathbb{P}(\bar{A} \cap B)
$$

which is equivalent to

$$
\mathbb{P}(B)=\mathbb{P}(B \mid A) \cdot \mathbb{P}(A)+\mathbb{P}(B \mid \bar{A}) \mathbb{P}(\bar{A})
$$

This is exactly the Law of Total Probability, which is a very important law in probability theory.

Bayes' Rule

Bayes' Rule

Now putting back together what we have currently, we have

Bayes' Rule

Now putting back together what we have currently, we have

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

Bayes' Rule

Now putting back together what we have currently, we have

$$
\begin{aligned}
\mathbb{P}(A \mid B) & =\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \\
& =\frac{\mathbb{P}(B \mid A) \cdot \mathbb{P}(A)}{\mathbb{P}(B)}
\end{aligned}
$$

Bayes' Rule

Now putting back together what we have currently, we have

$$
\begin{aligned}
\mathbb{P}(A \mid B) & =\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \\
& =\frac{\mathbb{P}(B \mid A) \cdot \mathbb{P}(A)}{\mathbb{P}(B)} \\
& =\frac{\mathbb{P}(B \mid A) \cdot \mathbb{P}(A)}{\mathbb{P}(B \mid A) \cdot \mathbb{P}(A)+\mathbb{P}(B \mid \bar{A}) \cdot \mathbb{P}(\bar{A})}
\end{aligned}
$$

Bayes' Rule

Now putting back together what we have currently, we have

$$
\begin{aligned}
\mathbb{P}(A \mid B) & =\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \\
& =\frac{\mathbb{P}(B \mid A) \cdot \mathbb{P}(A)}{\mathbb{P}(B)} \\
& =\frac{\mathbb{P}(B \mid A) \cdot \mathbb{P}(A)}{\mathbb{P}(B \mid A) \cdot \mathbb{P}(A)+\mathbb{P}(B \mid \bar{A}) \cdot \mathbb{P}(\bar{A})} \\
& =\frac{\mathbb{P}(B \mid A) \cdot \mathbb{P}(A)}{\mathbb{P}(B \mid A) \cdot \mathbb{P}(A)+\mathbb{P}(B \mid \bar{A}) \cdot(1-\mathbb{P}(A))}
\end{aligned}
$$

Law of Total Probability

Law of Total Probability

Let's now consider Bayes' Rule and the Law of Total Probability in a more general context. First, let's define a partition of an event as follows:

Law of Total Probability

Let's now consider Bayes' Rule and the Law of Total Probability in a more general context. First, let's define a partition of an event as follows:

- (Partition of an event). We say that an event A is partitioned into n events A_{1}, \ldots, A_{n} if

Law of Total Probability

Let's now consider Bayes' Rule and the Law of Total Probability in a more general context. First, let's define a partition of an event as follows:

- (Partition of an event). We say that an event A is partitioned into n events A_{1}, \ldots, A_{n} if
- $A=A_{1} \cup A_{2} \cup \cdots \cup A_{n}$,

Law of Total Probability

Let's now consider Bayes' Rule and the Law of Total Probability in a more general context. First, let's define a partition of an event as follows:

- (Partition of an event). We say that an event A is partitioned into n events A_{1}, \ldots, A_{n} if
- $A=A_{1} \cup A_{2} \cup \cdots \cup A_{n}$,
- $A_{i} \cap A_{j}=\varnothing$ for all $i \neq j$ (i.e., A_{1}, \ldots, A_{n} are mutually exclusive).

Law of Total Probability

Let's now consider Bayes' Rule and the Law of Total Probability in a more general context. First, let's define a partition of an event as follows:

- (Partition of an event). We say that an event A is partitioned into n events A_{1}, \ldots, A_{n} if
- $A=A_{1} \cup A_{2} \cup \cdots \cup A_{n}$,
- $A_{i} \cap A_{j}=\varnothing$ for all $i \neq j$ (i.e., A_{1}, \ldots, A_{n} are mutually exclusive).

In simpler terms, each outcome in A belongs to exactly one of the events A_{1}, \ldots, A_{n}.

Law of Total Probability

Let's now consider Bayes' Rule and the Law of Total Probability in a more general context. First, let's define a partition of an event as follows:

- (Partition of an event). We say that an event A is partitioned into n events A_{1}, \ldots, A_{n} if
- $A=A_{1} \cup A_{2} \cup \cdots \cup A_{n}$,
- $A_{i} \cap A_{j}=\varnothing$ for all $i \neq j$ (i.e., A_{1}, \ldots, A_{n} are mutually exclusive).

In simpler terms, each outcome in A belongs to exactly one of the events A_{1}, \ldots, A_{n}.

- Now, let A_{1}, \ldots, A_{n} be a partition of the sample space Ω. Then, the Law of Total Probability for any event B is

Law of Total Probability

Let's now consider Bayes' Rule and the Law of Total Probability in a more general context. First, let's define a partition of an event as follows:

- (Partition of an event). We say that an event A is partitioned into n events A_{1}, \ldots, A_{n} if
- $A=A_{1} \cup A_{2} \cup \cdots \cup A_{n}$,
- $A_{i} \cap A_{j}=\varnothing$ for all $i \neq j$ (i.e., A_{1}, \ldots, A_{n} are mutually exclusive).

In simpler terms, each outcome in A belongs to exactly one of the events A_{1}, \ldots, A_{n}.

- Now, let A_{1}, \ldots, A_{n} be a partition of the sample space Ω. Then, the Law of Total Probability for any event B is

$$
\mathbb{P}(B)=\sum_{i=1}^{n} P\left(B \cap A_{i}\right)=\sum_{i=1}^{n} P\left(B \mid A_{i}\right) P\left(A_{i}\right)
$$

Bayes' Rule

Bayes' Rule

Similarly, with the general version of Law of Total Probability, the general version of Bayes' Rule, assuming $\mathbb{P}(B) \neq 0$, is given by

Bayes' Rule

Similarly, with the general version of Law of Total Probability, the general version of Bayes' Rule, assuming $\mathbb{P}(B) \neq 0$, is given by

$$
P\left(A_{i} \mid B\right)=\frac{P\left(B \mid A_{i}\right) P\left(A_{i}\right)}{\mathbb{P}(B)}=\frac{P\left(B \mid A_{i}\right) P\left(A_{i}\right)}{\sum_{j=1}^{n} P\left(B \mid A_{j}\right) P\left(A_{j}\right)}
$$

Independence

Independence

Independence.

Independence

Independence.

Event A and B are independent if and only if

Independence

Independence.

Event A and B are independent if and only if

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A) \cdot \mathbb{P}(B) \text { or } \mathbb{P}(A \mid B)=\mathbb{P}(A)
$$

Independence

Independence.

Event A and B are independent if and only if

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A) \cdot \mathbb{P}(B) \text { or } \mathbb{P}(A \mid B)=\mathbb{P}(A)
$$

The probability of A is not affected by whether or not B occurs.

Independence

Independence.

Event A and B are independent if and only if

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A) \cdot \mathbb{P}(B) \text { or } \mathbb{P}(A \mid B)=\mathbb{P}(A)
$$

The probability of A is not affected by whether or not B occurs. Mutual Independence.

Independence

Independence.
Event A and B are independent if and only if

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A) \cdot \mathbb{P}(B) \text { or } \mathbb{P}(A \mid B)=\mathbb{P}(A)
$$

The probability of A is not affected by whether or not B occurs.
Mutual Independence.
Events A_{1}, \ldots, A_{n} are said to be mutually independent if for every subset $I \subseteq\{1, \ldots, n\}$ with size $|I| \geq 2$,

Independence

Independence.
Event A and B are independent if and only if

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A) \cdot \mathbb{P}(B) \text { or } \mathbb{P}(A \mid B)=\mathbb{P}(A)
$$

The probability of A is not affected by whether or not B occurs.
Mutual Independence.
Events A_{1}, \ldots, A_{n} are said to be mutually independent if for every subset $I \subseteq\{1, \ldots, n\}$ with size $|I| \geq 2$,

$$
P\left(\bigcap_{i \in I} A_{i}\right)=\prod_{i \in I} \mathbb{P}\left(A_{i}\right)
$$

Independence

Independence.
Event A and B are independent if and only if

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A) \cdot \mathbb{P}(B) \text { or } \mathbb{P}(A \mid B)=\mathbb{P}(A)
$$

The probability of A is not affected by whether or not B occurs.
Mutual Independence.
Events A_{1}, \ldots, A_{n} are said to be mutually independent if for every subset $I \subseteq\{1, \ldots, n\}$ with size $|I| \geq 2$,

$$
P\left(\bigcap_{i \in I} A_{i}\right)=\prod_{i \in I} \mathbb{P}\left(A_{i}\right)
$$

Pairwise independence does not imply mutual independence!

Chain Rule

Chain Rule

Finding the probability of the intersection of mutually independent events is easy, but what if they are not mutually independent?

Chain Rule

Finding the probability of the intersection of mutually independent events is easy, but what if they are not mutually independent?

- We use the chain rule again but here's the generalized version.

Chain Rule

Finding the probability of the intersection of mutually independent events is easy, but what if they are not mutually independent?

- We use the chain rule again but here's the generalized version. Chain Rule.

Chain Rule

Finding the probability of the intersection of mutually independent events is easy, but what if they are not mutually independent?

- We use the chain rule again but here's the generalized version.

Chain Rule. For any events A_{1}, \ldots, A_{n},

Chain Rule

Finding the probability of the intersection of mutually independent events is easy, but what if they are not mutually independent?

- We use the chain rule again but here's the generalized version.

Chain Rule. For any events A_{1}, \ldots, A_{n},
$P\left(\bigcap_{i=1}^{n} A_{i}\right)=P\left(A_{1}\right) \cdot P\left(A_{2} \mid A_{1}\right) \cdot P\left(A_{3} \mid A_{1} \cap A_{2}\right) \cdots \cdot P\left(A_{n} \bigcap_{i=1}^{n-1} A_{i}\right)$.

Union of Events

Union of Events

Sometimes we are also interested in finding the probability of the union of several events.

Union of Events

Sometimes we are also interested in finding the probability of the union of several events.

- If the events are mutually exclusive, then

Union of Events

Sometimes we are also interested in finding the probability of the union of several events.

- If the events are mutually exclusive, then

$$
P\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} \mathbb{P}\left(A_{i}\right) .
$$

Union of Events

Sometimes we are also interested in finding the probability of the union of several events.

- If the events are mutually exclusive, then

$$
P\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} \mathbb{P}\left(A_{i}\right) .
$$

- Otherwise, we use the Inclusion-Exclusion Principle:

Union of Events

Sometimes we are also interested in finding the probability of the union of several events.

- If the events are mutually exclusive, then

$$
P\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} \mathbb{P}\left(A_{i}\right) .
$$

- Otherwise, we use the Inclusion-Exclusion Principle: let A_{1}, \ldots, A_{n} be events in some probability space, where $n \geq 2$. Then, we have

Union of Events

Sometimes we are also interested in finding the probability of the union of several events.

- If the events are mutually exclusive, then

$$
P\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} \mathbb{P}\left(A_{i}\right) .
$$

- Otherwise, we use the Inclusion-Exclusion Principle: let A_{1}, \ldots, A_{n} be events in some probability space, where $n \geq 2$. Then, we have

$$
P\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{k=1}^{n}(-1)^{k-1} \sum_{S \subseteq\{1, \ldots, n\}:|S|=k} P\left(\bigcap_{i \in S} A_{i}\right)
$$

Union of Events

Sometimes we are also interested in finding the probability of the union of several events.

- If the events are mutually exclusive, then

$$
P\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} \mathbb{P}\left(A_{i}\right)
$$

- Otherwise, we use the Inclusion-Exclusion Principle: let A_{1}, \ldots, A_{n} be events in some probability space, where $n \geq 2$. Then, we have

$$
\begin{gathered}
P\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{k=1}^{n}(-1)^{k-1} \sum_{S \subseteq\{1, \ldots, n\}:|S|=k} P\left(\bigcap_{i \in S} A_{i}\right) \\
=\sum_{i=1}^{n} P\left(A_{i}\right)-\sum_{i<j} P\left(A_{i} \cap A_{j}\right)+\ldots+(-1)^{n-1} P\left(A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right) .
\end{gathered}
$$

Union Bound

Union Bound

Sometimes we are also interested in the upper bound of the probability of the union of several events.

Union Bound

Sometimes we are also interested in the upper bound of the probability of the union of several events.

- We have the Union Bound:

Union Bound

Sometimes we are also interested in the upper bound of the probability of the union of several events.

- We have the Union Bound: let A_{1}, \ldots, A_{n} be events in some probability space. Then

Union Bound

Sometimes we are also interested in the upper bound of the probability of the union of several events.

- We have the Union Bound: let A_{1}, \ldots, A_{n} be events in some probability space. Then

$$
P\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} \mathbb{P}\left(A_{i}\right)
$$

Union Bound

Sometimes we are also interested in the upper bound of the probability of the union of several events.

- We have the Union Bound: let A_{1}, \ldots, A_{n} be events in some probability space. Then

$$
P\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} \mathbb{P}\left(A_{i}\right)
$$

Summing up all $\mathbb{P}\left(A_{i}\right)$ only overestimate the probability of the union (equality holds when they are disjoint).

Problem Time!

