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Definitions

(Random Variable).
A random variable X on a sample space Ω is a function X : Ω→ R that
assigns to each sample point ω ∈ Ω a real number X (ω).
(Distribution).
The distribution of a discrete random variable X is the collection of values
{(x ,P(X = x)) : x ∈ X}, where X is the set of all possible values taken by
X .
(Probability Mass Function).
The probability mass function, or PMF, of a discrete random variable X
is a function mapping X ’s values to their associated probabilities. It is the
function p :→ [0, 1] defined by

pX (x) := P(X = x).
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Definitions

(Joint Distribution).
The joint distribution for two discrete random variables X and Y is the
collection of values {((x , y),P(X = x ,Y = y)) : x ∈ X , y ∈ Y}, where X is
the set of all possible values taken by X and Y is the set of all possible
values taken Y .
(Marginal Distribution).
Given the joint distribution for X and Y , the marginal distribution for X
is as follows:

P(X = x) =
∑
y∈Y

P(X = x ,Y = y).
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Independence

(Independence).
Random variables X and Y are said to be independent if the events
X = x and Y = y are independent for all values x , y . Equivalently, the joint
distribution of independent R.V’s decomposes as

P(X = x ,Y = y) = P(X = x)P(Y = y), ∀x , y .
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Expectation

(Expectation).
The expectation of a discrete random variable X is defined as

E[X ] =
∑
x∈X

x · P(X = x).

Alternatively, we also have

E[X ] =
∑
ω∈Ω

X (ω) · P(ω).
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Variance

(Variance).
The variance of a random variable X is

Var(X ) = E[(X − E[X ])2].

(Standard Deviation).
The standard deviation of a random variable X

σ :=
√

Var(X ).
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Variance

Theorem
For a random variable X,

Var(X ) = E[X 2]− E[X ]2.

Proof:
Var(X ) = E

[
(X − E[X ])2

]
= E

[
X 2 − 2XE[X ] + E[X ]2

]
= E

[
X 2
]
− E[2XE[X ]] + E

[
E[X ]2

]
= E

[
X 2
]
− 2E[X ]2 + E[X ]2

= E
[
X 2
]
− E[X ]2.

�
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Variance

Theorem
For independent random variables X ,Y , E[XY ] = E[X ]E[Y ].

Proof:
E[XY ] =

∑
x

∑
y

xy · P(X = x ,Y = y)

=
∑

x

∑
y

xy · P(X = x) · P(Y = y)

=
(∑

x
x · P(X = x)

)
·
(∑

y
y · P(Y = y)

)

= E[X ] · E[Y ]

where the second line follows from independence. �
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Variance

Theorem
For independent random variables X ,Y ,

Var(X + Y ) = Var(X ) + Var(Y ).

Proof:
Try it on your own. �

Kelvin Lee (UC Berkeley) Discrete Math and Probability Theory April 6, 2021 10 / 19



Variance

Theorem
For independent random variables X ,Y ,

Var(X + Y ) = Var(X ) + Var(Y ).

Proof:
Try it on your own. �

Kelvin Lee (UC Berkeley) Discrete Math and Probability Theory April 6, 2021 10 / 19



Variance

Theorem
For independent random variables X ,Y ,

Var(X + Y ) = Var(X ) + Var(Y ).

Proof:
Try it on your own. �

Kelvin Lee (UC Berkeley) Discrete Math and Probability Theory April 6, 2021 10 / 19



Variance

Theorem
For independent random variables X ,Y ,

Var(X + Y ) = Var(X ) + Var(Y ).

Proof:

Try it on your own. �

Kelvin Lee (UC Berkeley) Discrete Math and Probability Theory April 6, 2021 10 / 19



Variance

Theorem
For independent random variables X ,Y ,

Var(X + Y ) = Var(X ) + Var(Y ).

Proof:
Try it on your own.

�

Kelvin Lee (UC Berkeley) Discrete Math and Probability Theory April 6, 2021 10 / 19



Variance

Theorem
For independent random variables X ,Y ,

Var(X + Y ) = Var(X ) + Var(Y ).

Proof:
Try it on your own. �

Kelvin Lee (UC Berkeley) Discrete Math and Probability Theory April 6, 2021 10 / 19



Bernoulli Distribution

X ∼ Bernoulli(p).

One coin flip with probability of p getting a head.

PMF:

P(X = i) =

 p, if i = 1
1− p, if i = 0

where 0 ≤ p ≤ 1.

Expectation:
E[X ] = p.

Variance:

Var(X ) = E[X 2]− E[X ]2 = p − p2 = p(1− p).
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Binomial Distribution

X ∼ Bin(n, p).
n coin flips with probability of p getting a head.
PMF:

P(X = k) =
(

n
k

)
pk(1− p)n−k , for k = 0, 1, . . . , n.

Expectation:

E[X ] = E
[ n∑

i=1
Yi

]
=

n∑
i=1

E[Yi ] =
n∑

i=1
p = np, Yi ∼ Bernoulli(p).

Variance:
Var(X ) = Var

( n∑
i=1

Yi

)
= np(1− p).
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Indicator Random Variable

(Indicator Random variable).
We use Ii , or Xi to denotes the indicator random variable that takes on
values {0, 1} according to whether a specified event occurs or not.

Usually {Ii}ni=1 are mutually independent and they are said to be
independent and identically distributed (i.i.d).

Will be very useful soon for computing expectations.
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Geometric Distribution

X ∼ Geo (p).
Number of coin flips until first head appears.
PMF:

P(X = k) = (1− p)k−1p, for i = 1, 2, 3, . . . .

Expectation:

E[X ] =
∞∑

i=1
P(X ≥ i) =

∞∑
x=1

(1− p)i−1 = 1
1− (1− p) = 1

p ,

where the first equality uses the tail sum formula (discussed in next
slide).
Variance:

Var(X ) = 1− p
p2 .
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Tail Sum Formula

Let X be a random variable that takes values in {0, 1, 2, . . .}. Then

E[X ] =
∞∑

i=1
P(X ≥ i).

Proof: E[X ] =
∞∑

x=1
xP(X = x)

=
∞∑

x=1

x∑
i=1

P(X = x)

=
∞∑

i=1

∞∑
x=i

P(X = x)

=
∞∑

i=1
P(X ≥ i).
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A Clever Way of Computing the Geometric Expectation

The Tail Sum Formula certainly makes the computation a lot easier, but
there’s an even more simpler way.

Suppose we toss our first coin. There are two possibilities: (1) we get
a head with probability p and call it a day, (2) we get a tail with
probability 1− p and we are right back where we just started.

In the latter case, we expect 1 + E[X ] trials until our first success
because we already wasted one trial. Hence,

E[X ] = p · 1 + (1− p)(1 + E[X ]) =⇒ E[X ] = 1
p .

This makes use of an important property called the memoryless property,
which will be covered later in the class.
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Poisson Distribution

X ∼ Poisson(λ).
Models rare events, such as number of arrivals of a bus in an hour.
Defined in terms of a rate λ, which specifies the average number of
times an event occurs in a time interval.
PMF:

P(X = k) = λke−λ
k! , for i = 0, 1, 2, . . . .

∞∑
i=0

P(X = i) =
∞∑

i=0

λke−λ
k! = e−λ

∞∑
i=0

λk

k! = e−λ · eλ = 1.

Recall the Taylor series expansion from calculus:

ex =
∞∑

i=1

x i

i! .
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Poisson Distribution

Expectation:

E[X ] =
∞∑

i=0
i · P(X = i)

=
∞∑

i=1

λie−λ
i!

= λe−λ
∞∑

i=1

λi−1

(i − 1)!

= λe−λeλ (eλ =
∞∑

j=1

λj

j! with j = i − 1)

= λ.

Variance:
Var(X ) = λ.
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Problem Time!
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