CS70

Random Variables

Kelvin Lee

UC Berkeley

April 6, 2021

Overview

(1) Discrete Random Variables
(2) Expectation
(3) Variance
(4) Bernoulli Distribution
(5) Binomial Distribution
(6) Indicator Random Variable
(7) Geometric Distribution
(8) Poisson Distribution

Definitions

Definitions

(Random Variable).

Definitions

(Random Variable).

A random variable X on a sample space Ω is a function $X: \Omega \rightarrow \mathbb{R}$ that assigns to each sample point $\omega \in \Omega$ a real number $X(\omega)$.

Definitions

(Random Variable).
A random variable X on a sample space Ω is a function $X: \Omega \rightarrow \mathbb{R}$ that assigns to each sample point $\omega \in \Omega$ a real number $X(\omega)$.
(Distribution).

Definitions

(Random Variable).
A random variable X on a sample space Ω is a function $X: \Omega \rightarrow \mathbb{R}$ that assigns to each sample point $\omega \in \Omega$ a real number $X(\omega)$.
(Distribution).
The distribution of a discrete random variable X is the collection of values $\{(x, \mathbb{P}(X=x)): x \in \mathcal{X}\}$, where \mathcal{X} is the set of all possible values taken by X.

Definitions

(Random Variable).
A random variable X on a sample space Ω is a function $X: \Omega \rightarrow \mathbb{R}$ that assigns to each sample point $\omega \in \Omega$ a real number $X(\omega)$.
(Distribution).
The distribution of a discrete random variable X is the collection of values $\{(x, \mathbb{P}(X=x)): x \in \mathcal{X}\}$, where \mathcal{X} is the set of all possible values taken by X.
(Probability Mass Function).

Definitions

(Random Variable).

A random variable X on a sample space Ω is a function $X: \Omega \rightarrow \mathbb{R}$ that assigns to each sample point $\omega \in \Omega$ a real number $X(\omega)$.
(Distribution).
The distribution of a discrete random variable X is the collection of values $\{(x, \mathbb{P}(X=x)): x \in \mathcal{X}\}$, where \mathcal{X} is the set of all possible values taken by X.
(Probability Mass Function).
The probability mass function, or PMF, of a discrete random variable X is a function mapping X 's values to their associated probabilities. It is the function $p: \rightarrow[0,1]$ defined by

$$
p_{X}(x):=\mathbb{P}(X=x) .
$$

Definitions

Definitions

(Joint Distribution).

Definitions

(Joint Distribution).

The joint distribution for two discrete random variables X and Y is the collection of values $\{((x, y), \mathbb{P}(X=x, Y=y)): x \in \mathcal{X}, y \in \mathcal{Y}\}$, where \mathcal{X} is the set of all possible values taken by X and \mathcal{Y} is the set of all possible values taken Y.

Definitions

(Joint Distribution).

The joint distribution for two discrete random variables X and Y is the collection of values $\{((x, y), \mathbb{P}(X=x, Y=y)): x \in \mathcal{X}, y \in \mathcal{Y}\}$, where \mathcal{X} is the set of all possible values taken by X and \mathcal{Y} is the set of all possible values taken Y.
(Marginal Distribution).

Definitions

(Joint Distribution).

The joint distribution for two discrete random variables X and Y is the collection of values $\{((x, y), \mathbb{P}(X=x, Y=y)): x \in \mathcal{X}, y \in \mathcal{Y}\}$, where \mathcal{X} is the set of all possible values taken by X and \mathcal{Y} is the set of all possible values taken Y.
(Marginal Distribution).
Given the joint distribution for X and Y, the marginal distribution for X is as follows:

Definitions

(Joint Distribution).

The joint distribution for two discrete random variables X and Y is the collection of values $\{((x, y), \mathbb{P}(X=x, Y=y)): x \in \mathcal{X}, y \in \mathcal{Y}\}$, where \mathcal{X} is the set of all possible values taken by X and \mathcal{Y} is the set of all possible values taken Y.
(Marginal Distribution).
Given the joint distribution for X and Y, the marginal distribution for X is as follows:

$$
\mathbb{P}(X=x)=\sum_{y \in \mathcal{Y}} \mathbb{P}(X=x, Y=y)
$$

Independence

Independence

(Independence).

Independence

(Independence).

Random variables X and Y are said to be independent if the events $X=x$ and $Y=y$ are independent for all values x, y. Equivalently, the joint distribution of independent R.V's decomposes as

Independence

(Independence).

Random variables X and Y are said to be independent if the events $X=x$ and $Y=y$ are independent for all values x, y. Equivalently, the joint distribution of independent R.V's decomposes as

$$
\mathbb{P}(X=x, Y=y)=\mathbb{P}(X=x) \mathbb{P}(Y=y), \quad \forall x, y
$$

Expectation

Expectation

(Expectation).

Expectation

(Expectation).

The expectation of a discrete random variable X is defined as

Expectation

(Expectation).

The expectation of a discrete random variable X is defined as

$$
\mathbb{E}[X]=\sum_{x \in \mathcal{X}} x \cdot \mathbb{P}(X=x)
$$

Expectation

(Expectation).
The expectation of a discrete random variable X is defined as

$$
\mathbb{E}[X]=\sum_{x \in \mathcal{X}} x \cdot \mathbb{P}(X=x)
$$

Alternatively, we also have

Expectation

(Expectation).

The expectation of a discrete random variable X is defined as

$$
\mathbb{E}[X]=\sum_{x \in \mathcal{X}} x \cdot \mathbb{P}(X=x)
$$

Alternatively, we also have

$$
\mathbb{E}[X]=\sum_{\omega \in \Omega} X(\omega) \cdot \mathbb{P}(\omega)
$$

Variance

Variance

(Variance).

Variance

(Variance).
The variance of a random variable X is

Variance

(Variance).
The variance of a random variable X is

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]
$$

Variance

(Variance).
The variance of a random variable X is

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right] .
$$

(Standard Deviation).

Variance

(Variance).
The variance of a random variable X is

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]
$$

(Standard Deviation).

The standard deviation of a random variable X

Variance

(Variance).
The variance of a random variable X is

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right] .
$$

(Standard Deviation).

The standard deviation of a random variable X

$$
\sigma:=\sqrt{\operatorname{Var}(X)}
$$

Variance

Variance

Theorem
For a random variable X,

Variance

Theorem
For a random variable X,

$$
\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2} .
$$

Variance

Theorem
For a random variable X,

$$
\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2} .
$$

Proof:

Variance

Theorem
For a random variable X,

$$
\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2} .
$$

Proof:

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]
$$

Variance

Theorem
For a random variable X,

$$
\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2} .
$$

Proof:

$$
\begin{aligned}
\operatorname{Var}(X) & =\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right] \\
& =\mathbb{E}\left[X^{2}-2 X \mathbb{E}[X]+\mathbb{E}[X]^{2}\right]
\end{aligned}
$$

Variance

Theorem
For a random variable X,

$$
\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2} .
$$

Proof:

$$
\begin{aligned}
\operatorname{Var}(X) & =\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right] \\
& =\mathbb{E}\left[X^{2}-2 X \mathbb{E}[X]+\mathbb{E}[X]^{2}\right] \\
& =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[2 X \mathbb{E}[X]]+\mathbb{E}\left[\mathbb{E}[X]^{2}\right]
\end{aligned}
$$

Variance

Theorem
For a random variable X,

$$
\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2} .
$$

Proof:

$$
\begin{aligned}
\operatorname{Var}(X) & =\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right] \\
& =\mathbb{E}\left[X^{2}-2 X \mathbb{E}[X]+\mathbb{E}[X]^{2}\right] \\
& =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[2 X \mathbb{E}[X]]+\mathbb{E}\left[\mathbb{E}[X]^{2}\right] \\
& =\mathbb{E}\left[X^{2}\right]-2 \mathbb{E}[X]^{2}+\mathbb{E}[X]^{2}
\end{aligned}
$$

Variance

Theorem
For a random variable X,

$$
\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2} .
$$

Proof:

$$
\begin{aligned}
\operatorname{Var}(X) & =\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right] \\
& =\mathbb{E}\left[X^{2}-2 X \mathbb{E}[X]+\mathbb{E}[X]^{2}\right] \\
& =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[2 X \mathbb{E}[X]]+\mathbb{E}\left[\mathbb{E}[X]^{2}\right] \\
& =\mathbb{E}\left[X^{2}\right]-2 \mathbb{E}[X]^{2}+\mathbb{E}[X]^{2} \\
& =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2} .
\end{aligned}
$$

Variance

Variance

Theorem
For independent random variables $X, Y, \mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$.

Variance

Theorem
For independent random variables $X, Y, \mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$.

Proof:

Variance

Theorem
For independent random variables $X, Y, \mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$.

Proof:

$$
\mathbb{E}[X Y]=\sum_{x} \sum_{y} x y \cdot \mathbb{P}(X=x, Y=y)
$$

Variance

Theorem
For independent random variables $X, Y, \mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$.

Proof:

$$
\begin{aligned}
\mathbb{E}[X Y] & =\sum_{x} \sum_{y} x y \cdot \mathbb{P}(X=x, Y=y) \\
& =\sum_{x} \sum_{y} x y \cdot \mathbb{P}(X=x) \cdot \mathbb{P}(Y=y)
\end{aligned}
$$

Variance

Theorem
For independent random variables $X, Y, \mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$.

Proof:

$$
\begin{aligned}
\mathbb{E}[X Y] & =\sum_{x} \sum_{y} x y \cdot \mathbb{P}(X=x, Y=y) \\
& =\sum_{x} \sum_{y} x y \cdot \mathbb{P}(X=x) \cdot \mathbb{P}(Y=y) \\
& =\left(\sum_{x} x \cdot \mathbb{P}(X=x)\right) \cdot\left(\sum_{y} y \cdot \mathbb{P}(Y=y)\right)
\end{aligned}
$$

Variance

Theorem
For independent random variables $X, Y, \mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$.

Proof:

$$
\begin{aligned}
\mathbb{E}[X Y] & =\sum_{x} \sum_{y} x y \cdot \mathbb{P}(X=x, Y=y) \\
& =\sum_{x} \sum_{y} x y \cdot \mathbb{P}(X=x) \cdot \mathbb{P}(Y=y) \\
& =\left(\sum_{x} x \cdot \mathbb{P}(X=x)\right) \cdot\left(\sum_{y} y \cdot \mathbb{P}(Y=y)\right) \\
& =\mathbb{E}[X] \cdot \mathbb{E}[Y]
\end{aligned}
$$

Variance

Theorem

For independent random variables $X, Y, \mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$.

Proof:

$$
\begin{aligned}
\mathbb{E}[X Y] & =\sum_{x} \sum_{y} x y \cdot \mathbb{P}(X=x, Y=y) \\
& =\sum_{x} \sum_{y} x y \cdot \mathbb{P}(X=x) \cdot \mathbb{P}(Y=y) \\
& =\left(\sum_{x} x \cdot \mathbb{P}(X=x)\right) \cdot\left(\sum_{y} y \cdot \mathbb{P}(Y=y)\right) \\
& =\mathbb{E}[X] \cdot \mathbb{E}[Y]
\end{aligned}
$$

where the second line follows from independence.

Variance

Variance

Theorem
For independent random variables X, Y,

Variance

Theorem
For independent random variables X, Y,

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)
$$

Variance

Theorem
For independent random variables X, Y,

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)
$$

Proof:

Variance

Theorem
For independent random variables X, Y,

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)
$$

Proof:

Try it on your own.

Variance

Theorem
For independent random variables X, Y,

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)
$$

Proof:

Try it on your own.

Bernoulli Distribution

Bernoulli Distribution

- $X \sim \operatorname{Bernoulli}(p)$.

Bernoulli Distribution

- $X \sim \operatorname{Bernoulli}(p)$.
- One coin flip with probability of p getting a head.

Bernoulli Distribution

- $X \sim \operatorname{Bernoulli}(p)$.
- One coin flip with probability of p getting a head.
- PMF:

Bernoulli Distribution

- $X \sim \operatorname{Bernoulli}(p)$.
- One coin flip with probability of p getting a head.
- PMF:

$$
\mathbb{P}(X=i)= \begin{cases}p, & \text { if } i=1 \\ 1-p, & \text { if } i=0\end{cases}
$$

Bernoulli Distribution

- $X \sim \operatorname{Bernoulli}(p)$.
- One coin flip with probability of p getting a head.
- PMF:

$$
\mathbb{P}(X=i)= \begin{cases}p, & \text { if } i=1 \\ 1-p, & \text { if } i=0\end{cases}
$$

where $0 \leq p \leq 1$.

Bernoulli Distribution

- $X \sim \operatorname{Bernoulli}(p)$.
- One coin flip with probability of p getting a head.
- PMF:

$$
\mathbb{P}(X=i)= \begin{cases}p, & \text { if } i=1 \\ 1-p, & \text { if } i=0\end{cases}
$$

where $0 \leq p \leq 1$.

- Expectation:

Bernoulli Distribution

- $X \sim \operatorname{Bernoulli}(p)$.
- One coin flip with probability of p getting a head.
- PMF:

$$
\mathbb{P}(X=i)= \begin{cases}p, & \text { if } i=1 \\ 1-p, & \text { if } i=0\end{cases}
$$

where $0 \leq p \leq 1$.

- Expectation:

$$
\mathbb{E}[X]=p .
$$

Bernoulli Distribution

- $X \sim \operatorname{Bernoulli}(p)$.
- One coin flip with probability of p getting a head.
- PMF:

$$
\mathbb{P}(X=i)= \begin{cases}p, & \text { if } i=1 \\ 1-p, & \text { if } i=0\end{cases}
$$

where $0 \leq p \leq 1$.

- Expectation:

$$
\mathbb{E}[X]=p .
$$

- Variance:

Bernoulli Distribution

- $X \sim \operatorname{Bernoulli}(p)$.
- One coin flip with probability of p getting a head.
- PMF:

$$
\mathbb{P}(X=i)= \begin{cases}p, & \text { if } i=1 \\ 1-p, & \text { if } i=0\end{cases}
$$

where $0 \leq p \leq 1$.

- Expectation:

$$
\mathbb{E}[X]=p .
$$

- Variance:

$$
\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=p-p^{2}=p(1-p) .
$$

Binomial Distribution

Binomial Distribution

- $X \sim \operatorname{Bin}(n, p)$.

Binomial Distribution

- $X \sim \operatorname{Bin}(n, p)$.
- n coin flips with probability of p getting a head.

Binomial Distribution

- $X \sim \operatorname{Bin}(n, p)$.
- n coin flips with probability of p getting a head.
- PMF:

Binomial Distribution

- $X \sim \operatorname{Bin}(n, p)$.
- n coin flips with probability of p getting a head.
- PMF:

$$
\mathbb{P}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad \text { for } k=0,1, \ldots, n .
$$

Binomial Distribution

- $X \sim \operatorname{Bin}(n, p)$.
- n coin flips with probability of p getting a head.
- PMF:

$$
\mathbb{P}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad \text { for } k=0,1, \ldots, n .
$$

- Expectation:

Binomial Distribution

- $X \sim \operatorname{Bin}(n, p)$.
- n coin flips with probability of p getting a head.
- PMF:

$$
\mathbb{P}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad \text { for } k=0,1, \ldots, n .
$$

- Expectation:

$$
\mathbb{E}[X]=\mathbb{E}\left[\sum_{i=1}^{n} Y_{i}\right]=\sum_{i=1}^{n} \mathbb{E}\left[Y_{i}\right]=\sum_{i=1}^{n} p=n p, \quad Y_{i} \sim \operatorname{Bernoulli}(p) .
$$

Binomial Distribution

- $X \sim \operatorname{Bin}(n, p)$.
- n coin flips with probability of p getting a head.
- PMF:

$$
\mathbb{P}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad \text { for } k=0,1, \ldots, n .
$$

- Expectation:

$$
\mathbb{E}[X]=\mathbb{E}\left[\sum_{i=1}^{n} Y_{i}\right]=\sum_{i=1}^{n} \mathbb{E}\left[Y_{i}\right]=\sum_{i=1}^{n} p=n p, \quad Y_{i} \sim \operatorname{Bernoulli}(p) .
$$

- Variance:

Binomial Distribution

- $X \sim \operatorname{Bin}(n, p)$.
- n coin flips with probability of p getting a head.
- PMF:

$$
\mathbb{P}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad \text { for } k=0,1, \ldots, n .
$$

- Expectation:

$$
\mathbb{E}[X]=\mathbb{E}\left[\sum_{i=1}^{n} Y_{i}\right]=\sum_{i=1}^{n} \mathbb{E}\left[Y_{i}\right]=\sum_{i=1}^{n} p=n p, \quad Y_{i} \sim \operatorname{Bernoulli}(p) .
$$

- Variance:

$$
\operatorname{Var}(X)=\operatorname{Var}\left(\sum_{i=1}^{n} Y_{i}\right)=n p(1-p)
$$

Indicator Random Variable

Indicator Random Variable

(Indicator Random variable).

Indicator Random Variable

(Indicator Random variable).

We use \mathbb{I}_{i}, or X_{i} to denotes the indicator random variable that takes on values $\{0,1\}$ according to whether a specified event occurs or not.

Indicator Random Variable

(Indicator Random variable).

We use \mathbb{I}_{i}, or X_{i} to denotes the indicator random variable that takes on values $\{0,1\}$ according to whether a specified event occurs or not.

- Usually $\left\{\mathbb{I}_{i}\right\}_{i=1}^{n}$ are mutually independent and they are said to be independent and identically distributed (i.i.d).

Indicator Random Variable

(Indicator Random variable).

We use \mathbb{I}_{i}, or X_{i} to denotes the indicator random variable that takes on values $\{0,1\}$ according to whether a specified event occurs or not.

- Usually $\left\{\mathbb{I}_{i}\right\}_{i=1}^{n}$ are mutually independent and they are said to be independent and identically distributed (i.i.d).
- Will be very useful soon for computing expectations.

Geometric Distribution

Geometric Distribution

- $X \sim$ Geo (p).

Geometric Distribution

- $X \sim$ Geo (p).
- Number of coin flips until first head appears.

Geometric Distribution

- $X \sim$ Geo (p).
- Number of coin flips until first head appears.
- PMF:

Geometric Distribution

- $X \sim$ Geo (p).
- Number of coin flips until first head appears.
- PMF:

$$
\mathbb{P}(X=k)=(1-p)^{k-1} p, \quad \text { for } i=1,2,3, \ldots
$$

Geometric Distribution

- $X \sim$ Geo (p).
- Number of coin flips until first head appears.
- PMF:

$$
\mathbb{P}(X=k)=(1-p)^{k-1} p, \quad \text { for } i=1,2,3, \ldots
$$

- Expectation:

Geometric Distribution

- $X \sim$ Geo (p).
- Number of coin flips until first head appears.
- PMF:

$$
\mathbb{P}(X=k)=(1-p)^{k-1} p, \quad \text { for } i=1,2,3, \ldots
$$

- Expectation:

$$
\mathbb{E}[X]=\sum_{i=1}^{\infty} \mathbb{P}(X \geq i)=\sum_{x=1}^{\infty}(1-p)^{i-1}=\frac{1}{1-(1-p)}=\frac{1}{p},
$$

Geometric Distribution

- $X \sim$ Geo (p).
- Number of coin flips until first head appears.
- PMF:

$$
\mathbb{P}(X=k)=(1-p)^{k-1} p, \quad \text { for } i=1,2,3, \ldots
$$

- Expectation:

$$
\mathbb{E}[X]=\sum_{i=1}^{\infty} \mathbb{P}(X \geq i)=\sum_{x=1}^{\infty}(1-p)^{i-1}=\frac{1}{1-(1-p)}=\frac{1}{p}
$$

where the first equality uses the tail sum formula (discussed in next slide).

Geometric Distribution

- $X \sim$ Geo (p).
- Number of coin flips until first head appears.
- PMF:

$$
\mathbb{P}(X=k)=(1-p)^{k-1} p, \quad \text { for } i=1,2,3, \ldots
$$

- Expectation:

$$
\mathbb{E}[X]=\sum_{i=1}^{\infty} \mathbb{P}(X \geq i)=\sum_{x=1}^{\infty}(1-p)^{i-1}=\frac{1}{1-(1-p)}=\frac{1}{p}
$$

where the first equality uses the tail sum formula (discussed in next slide).

- Variance:

Geometric Distribution

- $X \sim$ Geo (p).
- Number of coin flips until first head appears.
- PMF:

$$
\mathbb{P}(X=k)=(1-p)^{k-1} p, \quad \text { for } i=1,2,3, \ldots
$$

- Expectation:

$$
\mathbb{E}[X]=\sum_{i=1}^{\infty} \mathbb{P}(X \geq i)=\sum_{x=1}^{\infty}(1-p)^{i-1}=\frac{1}{1-(1-p)}=\frac{1}{p}
$$

where the first equality uses the tail sum formula (discussed in next slide).

- Variance:

$$
\operatorname{Var}(X)=\frac{1-p}{p^{2}}
$$

Tail Sum Formula

Tail Sum Formula

Let X be a random variable that takes values in $\{0,1,2, \ldots\}$. Then

Tail Sum Formula

Let X be a random variable that takes values in $\{0,1,2, \ldots\}$. Then

$$
\mathbb{E}[X]=\sum_{i=1}^{\infty} \mathbb{P}(X \geq i)
$$

Tail Sum Formula

Let X be a random variable that takes values in $\{0,1,2, \ldots\}$. Then

$$
\mathbb{E}[X]=\sum_{i=1}^{\infty} \mathbb{P}(X \geq i)
$$

Proof:

Tail Sum Formula

Let X be a random variable that takes values in $\{0,1,2, \ldots\}$. Then

$$
\mathbb{E}[X]=\sum_{i=1}^{\infty} \mathbb{P}(X \geq i)
$$

Proof:

$$
\mathbb{E}[X]=\sum_{x=1}^{\infty} x \mathbb{P}(X=x)
$$

Tail Sum Formula

Let X be a random variable that takes values in $\{0,1,2, \ldots\}$. Then

$$
\mathbb{E}[X]=\sum_{i=1}^{\infty} \mathbb{P}(X \geq i)
$$

Proof:

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{x=1}^{\infty} x \mathbb{P}(X=x) \\
& =\sum_{x=1}^{\infty} \sum_{i=1}^{x} \mathbb{P}(X=x)
\end{aligned}
$$

Tail Sum Formula

Let X be a random variable that takes values in $\{0,1,2, \ldots\}$. Then

$$
\mathbb{E}[X]=\sum_{i=1}^{\infty} \mathbb{P}(X \geq i)
$$

Proof:

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{x=1}^{\infty} x \mathbb{P}(X=x) \\
& =\sum_{x=1}^{\infty} \sum_{i=1}^{x} \mathbb{P}(X=x) \\
& =\sum_{i=1}^{\infty} \sum_{x=i}^{\infty} \mathbb{P}(X=x)
\end{aligned}
$$

Tail Sum Formula

Let X be a random variable that takes values in $\{0,1,2, \ldots\}$. Then

$$
\mathbb{E}[X]=\sum_{i=1}^{\infty} \mathbb{P}(X \geq i)
$$

Proof:

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{x=1}^{\infty} x \mathbb{P}(X=x) \\
& =\sum_{x=1}^{\infty} \sum_{i=1}^{x} \mathbb{P}(X=x) \\
& =\sum_{i=1}^{\infty} \sum_{x=i}^{\infty} \mathbb{P}(X=x) \\
& =\sum_{i=1}^{\infty} \mathbb{P}(X \geq i) .
\end{aligned}
$$

A Clever Way of Computing the Geometric Expectation

A Clever Way of Computing the Geometric Expectation

The Tail Sum Formula certainly makes the computation a lot easier, but there's an even more simpler way.

A Clever Way of Computing the Geometric Expectation

The Tail Sum Formula certainly makes the computation a lot easier, but there's an even more simpler way.

- Suppose we toss our first coin. There are two possibilities: (1) we get a head with probability p and call it a day, (2) we get a tail with probability $1-p$ and we are right back where we just started.

A Clever Way of Computing the Geometric Expectation

The Tail Sum Formula certainly makes the computation a lot easier, but there's an even more simpler way.

- Suppose we toss our first coin. There are two possibilities: (1) we get a head with probability p and call it a day, (2) we get a tail with probability $1-p$ and we are right back where we just started.
- In the latter case, we expect $1+\mathbb{E}[X]$ trials until our first success because we already wasted one trial. Hence,

A Clever Way of Computing the Geometric Expectation

The Tail Sum Formula certainly makes the computation a lot easier, but there's an even more simpler way.

- Suppose we toss our first coin. There are two possibilities: (1) we get a head with probability p and call it a day, (2) we get a tail with probability $1-p$ and we are right back where we just started.
- In the latter case, we expect $1+\mathbb{E}[X]$ trials until our first success because we already wasted one trial. Hence,

$$
\mathbb{E}[X]=p \cdot 1+(1-p)(1+\mathbb{E}[X]) \Longrightarrow \mathbb{E}[X]=\frac{1}{p}
$$

A Clever Way of Computing the Geometric Expectation

The Tail Sum Formula certainly makes the computation a lot easier, but there's an even more simpler way.

- Suppose we toss our first coin. There are two possibilities: (1) we get a head with probability p and call it a day, (2) we get a tail with probability $1-p$ and we are right back where we just started.
- In the latter case, we expect $1+\mathbb{E}[X]$ trials until our first success because we already wasted one trial. Hence,

$$
\mathbb{E}[X]=p \cdot 1+(1-p)(1+\mathbb{E}[X]) \Longrightarrow \mathbb{E}[X]=\frac{1}{p}
$$

This makes use of an important property called the memoryless property, which will be covered later in the class.

Poisson Distribution

Poisson Distribution

- $X \sim \operatorname{Poisson}(\lambda)$.

Poisson Distribution

- $X \sim \operatorname{Poisson}(\lambda)$.
- Models rare events, such as number of arrivals of a bus in an hour.

Poisson Distribution

- $X \sim \operatorname{Poisson}(\lambda)$.
- Models rare events, such as number of arrivals of a bus in an hour.
- Defined in terms of a rate λ, which specifies the average number of times an event occurs in a time interval.

Poisson Distribution

- $X \sim \operatorname{Poisson}(\lambda)$.
- Models rare events, such as number of arrivals of a bus in an hour.
- Defined in terms of a rate λ, which specifies the average number of times an event occurs in a time interval.
- PMF:

Poisson Distribution

- $X \sim \operatorname{Poisson}(\lambda)$.
- Models rare events, such as number of arrivals of a bus in an hour.
- Defined in terms of a rate λ, which specifies the average number of times an event occurs in a time interval.
- PMF:

$$
\mathbb{P}(X=k)=\frac{\lambda^{k} e^{-\lambda}}{k!}, \quad \text { for } i=0,1,2, \ldots
$$

Poisson Distribution

- $X \sim \operatorname{Poisson}(\lambda)$.
- Models rare events, such as number of arrivals of a bus in an hour.
- Defined in terms of a rate λ, which specifies the average number of times an event occurs in a time interval.
- PMF:

$$
\mathbb{P}(X=k)=\frac{\lambda^{k} e^{-\lambda}}{k!}, \quad \text { for } i=0,1,2, \ldots
$$

$$
\sum_{i=0}^{\infty} \mathbb{P}(X=i)=\sum_{i=0}^{\infty} \frac{\lambda^{k} e^{-\lambda}}{k!}=e^{-\lambda} \sum_{i=0}^{\infty} \frac{\lambda^{k}}{k!}=e^{-\lambda} \cdot e^{\lambda}=1
$$

Poisson Distribution

- $X \sim \operatorname{Poisson}(\lambda)$.
- Models rare events, such as number of arrivals of a bus in an hour.
- Defined in terms of a rate λ, which specifies the average number of times an event occurs in a time interval.
- PMF:

$$
\begin{gathered}
\mathbb{P}(X=k)=\frac{\lambda^{k} e^{-\lambda}}{k!}, \quad \text { for } i=0,1,2, \ldots \\
\sum_{i=0}^{\infty} \mathbb{P}(X=i)=\sum_{i=0}^{\infty} \frac{\lambda^{k} e^{-\lambda}}{k!}=e^{-\lambda} \sum_{i=0}^{\infty} \frac{\lambda^{k}}{k!}=e^{-\lambda} \cdot e^{\lambda}=1
\end{gathered}
$$

Recall the Taylor series expansion from calculus:

Poisson Distribution

- $X \sim \operatorname{Poisson}(\lambda)$.
- Models rare events, such as number of arrivals of a bus in an hour.
- Defined in terms of a rate λ, which specifies the average number of times an event occurs in a time interval.
- PMF:

$$
\begin{gathered}
\mathbb{P}(X=k)=\frac{\lambda^{k} e^{-\lambda}}{k!}, \quad \text { for } i=0,1,2, \ldots \\
\sum_{i=0}^{\infty} \mathbb{P}(X=i)=\sum_{i=0}^{\infty} \frac{\lambda^{k} e^{-\lambda}}{k!}=e^{-\lambda} \sum_{i=0}^{\infty} \frac{\lambda^{k}}{k!}=e^{-\lambda} \cdot e^{\lambda}=1
\end{gathered}
$$

Recall the Taylor series expansion from calculus:

$$
e^{x}=\sum_{i=1}^{\infty} \frac{x^{i}}{i!}
$$

Poisson Distribution

Poisson Distribution

- Expectation:

Poisson Distribution

- Expectation:

$$
\mathbb{E}[X]=\sum_{i=0}^{\infty} i \cdot \mathbb{P}(X=i)
$$

Poisson Distribution

- Expectation:

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{i=0}^{\infty} i \cdot \mathbb{P}(X=i) \\
& =\sum_{i=1}^{\infty} \frac{\lambda^{i} e^{-\lambda}}{i!}
\end{aligned}
$$

Poisson Distribution

- Expectation:

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{i=0}^{\infty} i \cdot \mathbb{P}(X=i) \\
& =\sum_{i=1}^{\infty} \frac{\lambda^{i} e^{-\lambda}}{i!} \\
& =\lambda e^{-\lambda} \sum_{i=1}^{\infty} \frac{\lambda^{i-1}}{(i-1)!}
\end{aligned}
$$

Poisson Distribution

- Expectation:

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{i=0}^{\infty} i \cdot \mathbb{P}(X=i) \\
& =\sum_{i=1}^{\infty} \frac{\lambda^{i} e^{-\lambda}}{i!} \\
& =\lambda e^{-\lambda} \sum_{i=1}^{\infty} \frac{\lambda^{i-1}}{(i-1)!} \\
& =\lambda e^{-\lambda} e^{\lambda}
\end{aligned}
$$

$$
\left(e^{\lambda}=\sum_{j=1}^{\infty} \frac{\lambda^{j}}{j!} \text { with } j=i-1\right)
$$

Poisson Distribution

- Expectation:

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{i=0}^{\infty} i \cdot \mathbb{P}(X=i) \\
& =\sum_{i=1}^{\infty} \frac{\lambda^{i} e^{-\lambda}}{i!} \\
& =\lambda e^{-\lambda} \sum_{i=1}^{\infty} \frac{\lambda^{i-1}}{(i-1)!} \\
& =\lambda e^{-\lambda} e^{\lambda} \quad\left(e^{\lambda}=\sum_{j=1}^{\infty} \frac{\lambda^{j}}{j!} \text { with } j=i-1\right) \\
& =\lambda
\end{aligned}
$$

Poisson Distribution

- Expectation:

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{i=0}^{\infty} i \cdot \mathbb{P}(X=i) \\
& =\sum_{i=1}^{\infty} \frac{\lambda^{i} e^{-\lambda}}{i!} \\
& =\lambda e^{-\lambda} \sum_{i=1}^{\infty} \frac{\lambda^{i-1}}{(i-1)!} \\
& =\lambda e^{-\lambda} e^{\lambda} \quad\left(e^{\lambda}=\sum_{j=1}^{\infty} \frac{\lambda^{j}}{j!} \text { with } j=i-1\right) \\
& =\lambda
\end{aligned}
$$

- Variance:

Poisson Distribution

- Expectation:

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{i=0}^{\infty} i \cdot \mathbb{P}(X=i) \\
& =\sum_{i=1}^{\infty} \frac{\lambda^{i} e^{-\lambda}}{i!} \\
& =\lambda e^{-\lambda} \sum_{i=1}^{\infty} \frac{\lambda^{i-1}}{(i-1)!} \\
& =\lambda e^{-\lambda} e^{\lambda} \quad\left(e^{\lambda}=\sum_{j=1}^{\infty} \frac{\lambda^{j}}{j!} \text { with } j=i-1\right) \\
& =\lambda
\end{aligned}
$$

- Variance:

$$
\operatorname{Var}(X)=\lambda
$$

Problem Time!

