CS70

Conditional Expectation and Estimations

Kelvin Lee

UC Berkeley

April 20, 2021

Overview

(1) LLSE

- Projection
(2) MMSE
- Orthogonality Property of MMSE
(3) Properties of Conditional Expectation

LLSE

LLSE

The Linear Least Squares Estimate (LLSE) of Y given X, denoted by $L[Y \mid X]$ is the linear function $a+b X$ that minimizes

LLSE

The Linear Least Squares Estimate (LLSE) of Y given X, denoted by $L[Y \mid X]$ is the linear function $a+b X$ that minimizes

$$
\mathbb{E}\left[(Y-(a+b X))^{2}\right] .
$$

LLSE

The Linear Least Squares Estimate (LLSE) of Y given X, denoted by $L[Y \mid X]$ is the linear function $a+b X$ that minimizes

$$
\mathbb{E}\left[(Y-(a+b X))^{2}\right] .
$$

Theorem

LLSE

The Linear Least Squares Estimate (LLSE) of Y given X, denoted by $L[Y \mid X]$ is the linear function $a+b X$ that minimizes

$$
\mathbb{E}\left[(Y-(a+b X))^{2}\right] .
$$

Theorem

$$
L[Y \mid X]=a+b X=\mathbb{E}[Y]+\frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)}(X-\mathbb{E}[X])
$$

LLSE

The Linear Least Squares Estimate (LLSE) of Y given X, denoted by $L[Y \mid X]$ is the linear function $a+b X$ that minimizes

$$
\mathbb{E}\left[(Y-(a+b X))^{2}\right] .
$$

Theorem

$$
L[Y \mid X]=a+b X=\mathbb{E}[Y]+\frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)}(X-\mathbb{E}[X])
$$

Proof:

LLSE

The Linear Least Squares Estimate (LLSE) of Y given X, denoted by $L[Y \mid X]$ is the linear function $a+b X$ that minimizes

$$
\mathbb{E}\left[(Y-(a+b X))^{2}\right] .
$$

Theorem

$$
L[Y \mid X]=a+b X=\mathbb{E}[Y]+\frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)}(X-\mathbb{E}[X])
$$

Proof:

Expand $\mathbb{E}\left[(Y-(a+b X))^{2}\right]$ and optimize over a and b.

LLSE

The Linear Least Squares Estimate (LLSE) of Y given X, denoted by $L[Y \mid X]$ is the linear function $a+b X$ that minimizes

$$
\mathbb{E}\left[(Y-(a+b X))^{2}\right] .
$$

Theorem

$$
L[Y \mid X]=a+b X=\mathbb{E}[Y]+\frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)}(X-\mathbb{E}[X])
$$

Proof:

Expand $\mathbb{E}\left[(Y-(a+b X))^{2}\right]$ and optimize over a and b. Plug in optimal a, b to $a+b X$.

Projection

Projection

$L[Y \mid X]$ can be interpreted as the projection of Y onto the set of linear functions of X, call it $\mathcal{L}(X)$.

Projection

$L[Y \mid X]$ can be interpreted as the projection of Y onto the set of linear functions of X, call it $\mathcal{L}(X)$.

Figure: $L[Y \mid X]$ is the projection of Y onto $\mathcal{L}(X)$.

Orthogonality

Orthogonality

- Two vectors V and W are orthogonal to each other if and only if $\mathbb{E}[V W]=0$.

Orthogonality

- Two vectors V and W are orthogonal to each other if and only if $\mathbb{E}[V W]=0$.
- Thus, $L[Y \mid X]=a+b X$ is the projection of Y onto $\mathcal{L}(X)$ if $Y-L[Y \mid X]$ is orthogonal to every linear function of X, i.e., if

Orthogonality

- Two vectors V and W are orthogonal to each other if and only if $\mathbb{E}[V W]=0$.
- Thus, $L[Y \mid X]=a+b X$ is the projection of Y onto $\mathcal{L}(X)$ if $Y-L[Y \mid X]$ is orthogonal to every linear function of X, i.e., if

$$
\forall c, d \in \mathbb{R}, \quad \mathbb{E}[(Y-(a+b X))(c+d X)]=0
$$

Orthogonality

- Two vectors V and W are orthogonal to each other if and only if $\mathbb{E}[V W]=0$.
- Thus, $L[Y \mid X]=a+b X$ is the projection of Y onto $\mathcal{L}(X)$ if $Y-L[Y \mid X]$ is orthogonal to every linear function of X, i.e., if

$$
\forall c, d \in \mathbb{R}, \quad \mathbb{E}[(Y-(a+b X))(c+d X)]=0
$$

Equivalently,

Orthogonality

- Two vectors V and W are orthogonal to each other if and only if $\mathbb{E}[V W]=0$.
- Thus, $L[Y \mid X]=a+b X$ is the projection of Y onto $\mathcal{L}(X)$ if $Y-L[Y \mid X]$ is orthogonal to every linear function of X, i.e., if

$$
\forall c, d \in \mathbb{R}, \quad \mathbb{E}[(Y-(a+b X))(c+d X)]=0
$$

Equivalently,

$$
\mathbb{E}[Y]=a+b \mathbb{E}[X] \text { and } \mathbb{E}[(Y-(a+b X)) X]=0
$$

Orthogonality

- Two vectors V and W are orthogonal to each other if and only if $\mathbb{E}[V W]=0$.
- Thus, $L[Y \mid X]=a+b X$ is the projection of Y onto $\mathcal{L}(X)$ if $Y-L[Y \mid X]$ is orthogonal to every linear function of X, i.e., if

$$
\forall c, d \in \mathbb{R}, \quad \mathbb{E}[(Y-(a+b X))(c+d X)]=0
$$

Equivalently,

$$
\mathbb{E}[Y]=a+b \mathbb{E}[X] \text { and } \mathbb{E}[(Y-(a+b X)) X]=0
$$

This is known as the projection property.

MMSE

MMSE

- The MMSE of Y given X is given by $\mathbb{E}[Y \mid X]$, which is the conditional expectation of Y given X.

MMSE

- The MMSE of Y given X is given by $\mathbb{E}[Y \mid X]$, which is the conditional expectation of Y given X.
- The conditional expectation of Y given X is defined by

MMSE

- The MMSE of Y given X is given by $\mathbb{E}[Y \mid X]$, which is the conditional expectation of Y given X.
- The conditional expectation of Y given X is defined by

$$
\mathbb{E}[Y \mid X=x]=\sum_{y} y \cdot \mathbb{P}(Y=y \mid X=x)=\sum_{y} y \cdot \frac{\mathbb{P}(X=x, Y=y)}{\mathbb{P}(X=x)}
$$

Orthogonality Property of MMSE

Orthogonality Property of MMSE

Lemma (Orthogonality Property of MMSE)

For any function $\phi(\cdot)$, one has

Orthogonality Property of MMSE

Lemma (Orthogonality Property of MMSE)
For any function $\phi(\cdot)$, one has

$$
\mathbb{E}[(Y-\mathbb{E}[Y \mid X]) \phi(X)]=0 .
$$

Orthogonality Property of MMSE

Lemma (Orthogonality Property of MMSE)
For any function $\phi(\cdot)$, one has

$$
\mathbb{E}[(Y-\mathbb{E}[Y \mid X]) \phi(X)]=0 .
$$

Moreover, if the function $g(X)$ is such that

Orthogonality Property of MMSE

Lemma (Orthogonality Property of MMSE)
For any function $\phi(\cdot)$, one has

$$
\mathbb{E}[(Y-\mathbb{E}[Y \mid X]) \phi(X)]=0 .
$$

Moreover, if the function $g(X)$ is such that

$$
\forall \phi(\cdot), \quad \mathbb{E}[(Y-g(X)) \phi(X)]=0,
$$

Orthogonality Property of MMSE

Lemma (Orthogonality Property of MMSE)

For any function $\phi(\cdot)$, one has

$$
\mathbb{E}[(Y-\mathbb{E}[Y \mid X]) \phi(X)]=0
$$

Moreover, if the function $g(X)$ is such that

$$
\forall \phi(\cdot), \quad \mathbb{E}[(Y-g(X)) \phi(X)]=0,
$$

then $g(X)=\mathbb{E}[Y \mid X]$.

Properties of Conditional Expectation

Properties of Conditional Expectation

- Linearity:

Properties of Conditional Expectation

- Linearity:

$$
\mathbb{E}\left[a_{1} Y_{1}+a_{2} Y_{2} \mid X\right]=a_{1} \mathbb{E}\left[Y_{1} \mid X\right]+a_{2} \mathbb{E}\left[Y_{2} \mid X\right] ;
$$

Properties of Conditional Expectation

- Linearity:

$$
\mathbb{E}\left[a_{1} Y_{1}+a_{2} Y_{2} \mid X\right]=a_{1} \mathbb{E}\left[Y_{1} \mid X\right]+a_{2} \mathbb{E}\left[Y_{2} \mid X\right] ;
$$

- Factoring known values:

Properties of Conditional Expectation

- Linearity:

$$
\mathbb{E}\left[a_{1} Y_{1}+a_{2} Y_{2} \mid X\right]=a_{1} \mathbb{E}\left[Y_{1} \mid X\right]+a_{2} \mathbb{E}\left[Y_{2} \mid X\right] ;
$$

- Factoring known values:

$$
\mathbb{E}[h(X) Y \mid X]=h(X) \mathbb{E}[Y \mid X] ;
$$

Properties of Conditional Expectation

- Linearity:

$$
\mathbb{E}\left[a_{1} Y_{1}+a_{2} Y_{2} \mid X\right]=a_{1} \mathbb{E}\left[Y_{1} \mid X\right]+a_{2} \mathbb{E}\left[Y_{2} \mid X\right] ;
$$

- Factoring known values:

$$
\mathbb{E}[h(X) Y \mid X]=h(X) \mathbb{E}[Y \mid X]
$$

- Law of iterated expectation:

Properties of Conditional Expectation

- Linearity:

$$
\mathbb{E}\left[a_{1} Y_{1}+a_{2} Y_{2} \mid X\right]=a_{1} \mathbb{E}\left[Y_{1} \mid X\right]+a_{2} \mathbb{E}\left[Y_{2} \mid X\right] ;
$$

- Factoring known values:

$$
\mathbb{E}[h(X) Y \mid X]=h(X) \mathbb{E}[Y \mid X]
$$

- Law of iterated expectation:

$$
\mathbb{E}[\mathbb{E}[Y \mid X]]=\mathbb{E}[Y]
$$

Properties of Conditional Expectation

- Linearity:

$$
\mathbb{E}\left[a_{1} Y_{1}+a_{2} Y_{2} \mid X\right]=a_{1} \mathbb{E}\left[Y_{1} \mid X\right]+a_{2} \mathbb{E}\left[Y_{2} \mid X\right] ;
$$

- Factoring known values:

$$
\mathbb{E}[h(X) Y \mid X]=h(X) \mathbb{E}[Y \mid X]
$$

- Law of iterated expectation:

$$
\mathbb{E}[\mathbb{E}[Y \mid X]]=\mathbb{E}[Y]
$$

- Independence:

Properties of Conditional Expectation

- Linearity:

$$
\mathbb{E}\left[a_{1} Y_{1}+a_{2} Y_{2} \mid X\right]=a_{1} \mathbb{E}\left[Y_{1} \mid X\right]+a_{2} \mathbb{E}\left[Y_{2} \mid X\right] ;
$$

- Factoring known values:

$$
\mathbb{E}[h(X) Y \mid X]=h(X) \mathbb{E}[Y \mid X]
$$

- Law of iterated expectation:

$$
\mathbb{E}[\mathbb{E}[Y \mid X]]=\mathbb{E}[Y]
$$

- Independence:

$$
\mathbb{E}[Y \mid X]=\mathbb{E}[Y]
$$

Problem Time!

