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LLSE

The Linear Least Squares Estimate (LLSE ) of Y given X , denoted by
L[Y |X ] is the linear function a + bX that minimizes

E[(Y − (a + bX ))2].

Theorem

L[Y |X ] = a + bX = E[Y ] + Cov(X ,Y )
Var(X ) (X − E[X ]).

Proof:
Expand E[(Y − (a + bX ))2] and optimize over a and b. Plug in optimal
a, b to a + bX . �
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Projection

L[Y |X ] can be interpreted as the projection of Y onto the set of linear
functions of X , call it L(X ).

Figure: L[Y |X ] is the projection of Y onto L(X ).
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Orthogonality

Two vectors V and W are orthogonal to each other if and only if
E[VW ] = 0.

Thus, L[Y |X ] = a + bX is the projection of Y onto L(X ) if
Y − L[Y |X ] is orthogonal to every linear function of X , i.e., if

∀c, d ∈ R, E[(Y − (a + bX ))(c + dX )] = 0.

Equivalently,

E[Y ] = a + bE[X ] and E[(Y − (a + bX ))X ] = 0.

This is known as the projection property.
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MMSE

The MMSE of Y given X is given by E[Y |X ], which is the conditional
expectation of Y given X .

The conditional expectation of Y given X is defined by

E[Y |X = x ] =
∑

y
y · P(Y = y |X = x) =

∑
y

y · P(X = x ,Y = y)
P(X = x) .
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Orthogonality Property of MMSE

Lemma (Orthogonality Property of MMSE )
For any function φ(·), one has

E[(Y − E[Y |X ])φ(X )] = 0.

Moreover, if the function g(X ) is such that

∀φ(·), E[(Y − g(X ))φ(X )] = 0,

then g(X ) = E[Y |X ].
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Properties of Conditional Expectation

Linearity:

E[a1Y1 + a2Y2 | X ] = a1E[Y1|X ] + a2E[Y2|X ];

Factoring known values:

E[h(X )Y | X ] = h(X )E[Y |X ];

Law of iterated expectation:

E[E[Y |X ]] = E[Y ].

Independence:
E[Y |X ] = E[Y ].
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Problem Time!
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