Concentration Inequalities Practice

Kelvin Lee

December 3, 2020

1 Problems

Problem 1 (EECS126 Fa20 MT1). Let's say that for some real $b \geq 1$ that a random variable X is b-reasonable if it satisfies:

$$
\mathbb{E}\left[X^{4}\right] \leq b\left(\mathbb{E}\left[X^{2}\right]\right)^{2}
$$

Suppose X is b-reasonable and that $\mathbb{E}[X]=0$ and $\operatorname{Var}(X)=\sigma^{2}$. Prove that

$$
\mathbb{P}[|X| \geq t \sigma] \leq \frac{b}{t^{4}}
$$

Solution 1. We know that $\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\mathbb{E}\left[X^{2}\right]=\sigma^{2} \Longrightarrow \sigma=\sqrt{\mathbb{E}}\left[X^{2}\right]$. Then we have $\mathbb{P}[|X| \geq t \sigma]=\mathbb{P}\left[|X| \geq t \sqrt{\mathbb{E}\left[X^{2}\right.}\right]$. Taking the fourth power on both sides removes the absolute value sign because X^{4} is non-negative and we have $\mathbb{P}\left[X^{4} \geq t^{4} \mathbb{E}\left[X^{2}\right]^{2}\right]$. Then we can apply the Markov Inequality to X^{4} :

$$
\mathbb{P}\left[X^{4} \geq t^{4}\left(\mathbb{E}\left[X^{2}\right]\right)^{2}\right] \leq \frac{\mathbb{E}\left[X^{4}\right]}{t^{4}\left(\mathbb{E}\left[X^{2}\right]\right)^{2}} \leq \frac{b\left(\mathbb{E}\left[X^{2}\right]\right)^{2}}{t^{4}\left(\mathbb{E}\left[X^{2}\right]\right)^{2}}=\frac{b}{t^{4}}
$$

Note that $t^{4}\left(\mathbb{E}\left[X^{2}\right]\right)^{2}$ is a constant.
Problem 2 (EECS126 Fa18 Final). Let $X_{1}, \ldots, X_{n} \stackrel{i . i . d}{\sim} \operatorname{Lognormal}\left(\mu, \sigma^{2}\right)$. Let $Y_{k}:=\left(\Pi_{i=1}^{k} X_{i}\right)^{1 / k}$. (If X is log-normally distributed, then $\ln (X)$ is $\mathcal{N}\left(\mu, \sigma^{2}\right)$)
(a) Find $\mathbb{E}\left[\ln \left(Y_{k}\right)\right]$.
(b) Find a lower bound on n such that $\mathbb{P}\left(\left|\ln Y_{n}-\mathbb{E}\left[\ln Y_{n}\right]\right|>0.01\right)<0.05$. You may leave your answer in terms of $\Phi(x)$, the normal CDF. Use the fact that $\mathbb{P}(-1.96<X<1.96)=0.95$.

Solution 2.

(a)

$$
\mathbb{E}\left[\ln \left(Y_{k}\right)\right]=\mathbb{E}\left[\frac{1}{k} \sum_{i=1}^{k} \ln X_{i}\right]=\frac{1}{k} \cdot k \mathbb{E}\left[\ln X_{1}\right]=\mu .
$$

(b) Notice that $\ln Y_{n}$ is a normal random variable. Let's first compute its variance:

$$
\operatorname{Var}\left(\ln Y_{n}\right)=\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} \ln X_{i}\right)=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(\ln X_{i}\right)=\frac{1}{n^{2}} \cdot n \operatorname{Var}\left(\ln X_{1}\right)=\frac{\sigma^{2}}{n},
$$

where the second inequality follows from the independence of $\left\{\ln X_{i}\right\}_{i=1}^{n}$. Then we know
that $\ln Y_{i} \sim \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)$. Also note that $\frac{\ln Y_{i}-\mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0,1)$. Then

$$
\begin{aligned}
\mathbb{P}\left(\left|\ln Y_{n}-\mathbb{E}\left[\ln Y_{n}\right]\right|>0.01\right) & =\mathbb{P}\left(\left|\frac{\ln Y_{n}-\mathbb{E}\left[\ln Y_{n}\right]}{\sigma / \sqrt{n}}\right|>\frac{0.01}{\sigma / \sqrt{n}}\right) \\
& =\mathbb{P}\left(|\mathcal{N}(0,1)|>\frac{0.01 \sqrt{n}}{\sigma}\right)<0.05 \\
& \Longrightarrow 2\left(\Phi\left(-\frac{0.01 \sqrt{n}}{\sigma}\right)\right)<0.05 \\
& \Longrightarrow-\frac{0.01 \sqrt{n}}{\sigma}<-1.96 \\
& \Longrightarrow n>196^{2} \sigma^{2} .
\end{aligned}
$$

We multiply by two on the third line because $\Phi\left(-\frac{0.01 \sqrt{n}}{\sigma}\right)$ represents the one-tailed probability of X that is less than $-\frac{0.01 \sqrt{n}}{\sigma}$ but we need a two-tailed probability due to the absolute value sign (normal distribution is symmetrical). The second to last line uses the fact that $\mathbb{P}(-1.96<X<1.96)=0.95$, which implies that the probability of X being outside of the interval $[-1.96,1.96]$ is 0.05 . We need the probability to be less than that and so we must restrict $-\frac{0.01 \sqrt{n}}{\sigma}$ to be less than -1.96 .

