Continuous Probability Practice

Kelvin Lee

December 4, 2020

1 Problems

Problem 1 (Sp19 Final). Consider a standard Gaussian random variable Z whose PDF is

$$
\forall z \in \mathbb{R}, \quad f_{Z}(z)=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}
$$

Define another random variable X such that $X=|Z|$.
(a) Determine a reasonably simple expression for $f_{X}(x)$, the PDF of X.
(b) Determine a reasonably simple expression for $\mathbb{E}[X]$, the mean of X.

Problem 2 (Sp19 Final). A random-number generator produces sample values of a continuous random variable U that is uniformly distributed between 0 and 1 . In this problem you'll explore a method that uses the generated values of U to produce another random variable X that follows a desired probability law distinct from the uniform.
(a) Let $g: \mathbb{R} \rightarrow[0,1]$ be a function that satisfies all the properties of a CDF. Furthermore, assume that g is invertible, i.e. for every $y \in(0,1)$ there exists a unique $x \in \mathbb{R}$ such that $g(x)=y$ Let random variable X be given by $X=g^{-1}(U)$, where g^{-1} denotes the inverse of g. Prove that the CDF of X is $F_{X}(x)=g(x)$.
(b) A random variable X follows a double-exponential PDF given by

$$
\forall x \in \mathbb{R}, \quad f_{X}(x)=\frac{\lambda}{2} e^{-\lambda|x|}
$$

where $\lambda>0$ is a fixed parameter. Using the random-number generator described above (which samples U), we want to generate sample values of X. Derive the explicit function that expresses X in terms of U. In other words, determine the expression on the right-hand side of

$$
X=g^{-1}(U)
$$

To do this, you must first determine the function g. From part (a) you know that $g(x)=$ $F_{X}(x)$, so you must first determine $F_{X}(x)$.

Problem 3 (Fa18 Final). Suppose $X \sim \operatorname{Exp}(\lambda)$ and $Y \sim \operatorname{Exp}(\mu)$ are independent random variables, where $\lambda, \mu>0$. What is $\mathbb{P}[\min \{X, Y\} \leq t]$, where t is a positive constant?

Problem 4 (Fa18 Final). Suppose A and B are independent $\mathcal{N}(1,1)$ random variables. Find $\mathbb{P}[2 A+B \geq 4]$ in terms of the cumulative distribution function (c.d.f.) Φ of the standard normal distribution.

2 Solutions

Solution 1.

(a) For $x<0$, the CDF of X is

$$
F_{X}(x)=\mathbb{P}[X \leq x]=0 .
$$

For $x \geq 0$ the CDF is given by

$$
\begin{aligned}
F_{X}(x) & =\mathbb{P}(-x \leq Z \leq x) \\
& =\Phi(x)-\Phi(-x) \\
& =\Phi(x)-\underbrace{[1-\Phi(x)]}_{\Phi(-x)} \\
& =2 \Phi(x)-1 .
\end{aligned}
$$

Differentiating gives

$$
f_{X}(x)=\frac{d}{d x} F_{X}(x)=2 \cdot \frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}=\sqrt{\frac{2}{\pi}} e^{-z^{2} / 2} .
$$

(b) The mean of X is given by

$$
\begin{aligned}
\mathbb{E}(X) & =\int_{0}^{\infty} x f_{X}(x) d x \\
& =\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} x e^{-x^{2} / 2} d x
\end{aligned}
$$

Let $s=x^{2} / 2$, so that $d s=x d x$. We then have

$$
\mathbb{E}(X)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-s} d s
$$

which leads to

$$
\mathbb{E}(X)=\sqrt{\frac{2}{\pi}}
$$

Solution 2.

(a) The CDF of X is

$$
F_{X}(x)=\mathbb{P}(X \leq x)=\mathbb{P}\left[g^{-1}(U) \leq x\right]
$$

since g is strictly increasing, we know that $g^{-1}(U) \leq x$ if, and only if,

$$
g\left[g^{-1}(U)\right]=U \leq g(x) .
$$

Therefore,

$$
F_{X}(x)=\mathbb{P}[U \leq g(x)]=F_{U}[g(x)]=g(x) .
$$

If g is differentiable, we can obtain the PDF of X as well:

$$
f_{X}(x)=\frac{d F_{X}(x)}{d x}=\frac{d g(x)}{d x} .
$$

Remark. If we want to simulate a random variable X that obeys a desired CDF $F_{X}(x)$, which is invertible over a range $S=\{x \mid 0<g(x)<1\}$ of interest, we can generate
random variable U uniformly distributed in $[0,1)$, and let $X=F_{X}^{-1}(U)$.
(b) For $x<0$

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t=\frac{\lambda}{2} \int_{-\infty}^{x} e^{\lambda t} d t=\frac{1}{2} e^{\lambda x} .
$$

For $x \geq 0$

$$
F_{X}(x)=F_{X}(0)+\int_{0}^{x} f_{X}(t) d t=\frac{1}{2}+\frac{\lambda}{2} \int_{0}^{x} e^{-\lambda t} d t=\frac{1}{2}+\frac{1}{2}\left[1-e^{-\lambda x}\right]=1-\frac{1}{2} e^{-\lambda x} .
$$

That is,

$$
g(x)=F_{X}(x)=\left\{\begin{array}{cl}
\frac{1}{2} e^{\lambda x} & \text { if } x<0 \\
1-\frac{1}{2} e^{-\lambda x} & \text { if } x \geq 0
\end{array}\right.
$$

To determine $X=g^{-1}(U)$, we consider two ranges of U separately: $0 \leq U<1 / 2$ and $1 / 2 \leq U<1$ We do this because for each of these two ranges the CDF $F_{X}(x)$ takes on distinct functional forms. If $0 \leq U<1 / 2$, we let $F_{X}(X)=\frac{1}{2} e^{\lambda X}=U$. Solving for X, we obtain

$$
X=\frac{1}{\lambda} \ln (2 U) .
$$

If $1 / 2 \leq U<1$, we let $F_{X}(X)=1-\frac{1}{2} e^{-\lambda X}=U$. Solving for X, we obtain

$$
X=-\frac{1}{\lambda} \ln [2(1-U)] .
$$

Accordingly, we generate sample values of X as follows:

$$
X=\left\{\begin{array}{cl}
\frac{1}{\lambda} \ln (2 U) & \text { if } 0 \leq U<1 / 2 \\
-\frac{1}{\lambda} \ln [2(1-U)] & \text { if } 1 / 2 \leq U<1 .
\end{array}\right.
$$

Solution 3. $1-e^{-t(\lambda+\mu)}$.
$\mathbb{P}[\min \{X, Y\} \leq t]=1-\mathbb{P}[\min \{X, Y\}>t]=1-\mathbb{P}[X>t] \mathbb{P}[Y>t]$ because X and Y are independent. Thus our solution is $1-e^{-t \lambda} e^{-t \mu}=1-e^{-t(\lambda+\mu)}$.
Solution 4. $1-\Phi\left(\frac{1}{\sqrt{5}}\right)$.
Let $Z=2 A+B$. Then $\mathbb{E}[Z]=2 \mathbb{E}[A]+\mathbb{E}[B]=3$ and $\operatorname{Var}[Z]=4 \operatorname{Var}[A]+\operatorname{Var}[B]=5$ so Z is a Normal $(3,5)$ random variable, and hence $\frac{Z-3}{\sqrt{5}}$ is standard normal. Then

$$
\mathbb{P}[Z \geq 4]=\mathbb{P}[Z-3 \geq 1]=\mathbb{P}\left[\frac{Z-3}{\sqrt{5}} \geq \frac{1}{\sqrt{5}}\right]=1-\Phi\left(\frac{1}{\sqrt{5}}\right) .
$$

