Counting and Probability Practice

Kelvin Lee

November 4, 2020

1 Problems

Problem 1. How many integer solutions does the equation

$$
x_{1}+x_{2}+x_{3}+x_{4}=15
$$

have, if $x_{1} \geq 2, x_{2} \geq 3, x_{3} \geq 10$ and $x_{4} \geq-3$?

Problem 2. How many integer solutions are there to the system of inequalities

$$
x_{1}+x_{2}+x_{3}+x_{4} \leq 15, \quad x_{1}, \ldots, x_{4} \geq 0 ?
$$

Problem 3. Count the number of non-negative integer solutions to

$$
3 x_{1}+3 x_{2}+3 x_{3}+7 x_{4}=22 .
$$

Problem 4. Compute the number of injections $f: A \rightarrow B$ if $|A|=n$ and $|B|=m$.
Problem 5. There are five people of different height. In how many ways can they stand in a line, so there is no 3 consecutive people with increasing height.

Problem 6. For a fixed $1 \leq k \leq n$, what is the probability that a permutation σ of 1 through n satisfies the property that for all $i<k, \sigma(i)<\sigma(k)$? Express your answers in terms of n and k. Use this to compute the number of such permutations.

Problem 7. What is the probability that a permutation from 1 through n satisfies the property that for each $i, \sigma(\sigma(i))=i$ and $\sigma(i) \neq i$? (For example, the permutation 3,4,1,2 is such a permutation, since for example $\sigma(\sigma(1))=\sigma(3)=1$. You may assume n is even.)

2 Answers

Answer 1. $\binom{3+4-1}{4-1}$.
Answer 2. $\binom{15+5-1}{5-1}$.
Answer 3. 10.
Answer 4. $\frac{m!}{(m-n)!}$
Answer 5. $5!-3\binom{5}{3} \cdot 2!+\left[2\binom{5}{4}+1\right]-1$.
Answer 6. $\frac{1}{k}$.
Answer 7. $\frac{1}{2^{n / 2}\left(\frac{n}{2}\right)!}$.

