Counting Practice

Kelvin Lee

October 19, 2020

1 Problems

Exercise 1. How many ways can we distribute 10 candies to 5 kids so that each kid receives at least one?

Exercise 2 (Fa16 MT2). How many combinations of even natural numbers (including zero) $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ are there such that $x_{1}+x_{2}+x_{3}+x_{4}=20$?

Exercise 3 (Fa18 Final). A 5-card poker hand is called a straight if its cards can be rearranged to form a contiguous sequence, regardless of their suits, i.e., if the hand is of the form $\{A, 2,3,4,5\},\{2,3,4,5,6\}, \ldots$, or $\{10, J, Q, K, A\}$. How many straight hands are there consisting of 3 black and 2 red cards?

Exercise 4 (Sp15 MT2). How many different ways are there to rearrange the letters of DIAGONALIZATION without the two N's being adjacent?

Exercise 5 (Sp15 Final). What is the number of ways of placing k labelled balls in n labelled bins such that no two balls are in the same bin? Assume $k \leq n$.

Exercise 6 (Sp16 Final). Compute the number of ways to split n dollars among k people where at most one gets zero dollars.

Exercise 7 (Sp15 MT2). How many non-decreasing sequences of k numbers from $\{1, \ldots, n\}$ are there? For example, for $n=12$ and $k=7,(2,3,3,6,9,9,12)$ is a non-decreasing sequence, but ($2,3,3,9,9,6,12$) is not.

Exercise 8 (Sp19 Final). How many $\left(x_{1}, \ldots, x_{k}, y_{1}, y_{2}, \ldots, y_{k}\right)$ are there such that all x_{i}, y_{i} are non-negative integers, $\sum_{i=1}^{k} x_{i}=n$, and $y_{i} \leq x_{i}$ for $1 \leq i \leq k$? Answer may not include any summations.

2 Solutions

Solution 1. Reserve one candy for each kid, so we remove 5 candies and are left with 5 remaining.
Then we directly use stars and bars and get $\binom{5+5-1}{5-1}=\binom{9}{4}$.

Solution 2. Even numbers have the form $2 k$, so if divide the equation by 2 , we get $x_{1}^{\prime}+x_{2}^{\prime}+x_{3}^{\prime}+$ $x_{4}^{\prime}=10$. For every solution of this form, we can construct our desired solution $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ by multiplying by 2 (bijection). Then by stars and bars, we have $\left.\binom{10+4-1}{4-1}\right)=\binom{13}{3}$.

Solution 3. There are 10 distinct sets of numeric values that can form a straight. Given such a set of five numbers, there are $\binom{5}{3}$ ways of choosing which ones are red and which ones are black, and given the color of a card, there are two different suits that share this colour. So $10 \cdot\binom{5}{3} \cdot 2^{5}$.

Solution 4. The word DIAGONALIZATION has 15 letters with 3 A's, 3 I's, 2 N 's, and 2 O's, so there are $\frac{15!}{3!3!2!2!}$ ways to rearrange the letters in total. The number of rearrangements where the two N's are adjacent is $\frac{14!}{3!3!2!}$, where we have considered "NN" as a single character. The difference $\frac{15!}{3!3!2!2!}-\frac{14!}{3!3!2!}$ is then equal to the number of rearrangements without the two N's being adjacent. Hence, we get $\frac{15!}{3!3!2!2!}-\frac{14!}{3!3!2!}$

Solution 5. There are $\binom{n}{k}$ ways to choose k bins to place those labelled balls. There are k ! ways to arrange those balls among the k assigned bins. Thus, the answer is $\binom{n}{k} \cdot k!$.

Solution 6. We first count the ways where exactly one gets zero; there are k choices for the person who may get zero, then we distribute the dollars to the $k-1$ remaining people so that each gets at least one. Then we add the ways for all to get at least one. So we have $k\binom{n-(k-1)+(k-2)}{k-2}+\binom{n-(k-1)+(k-1)}{k-1}=k\binom{n-1}{k-2}+\binom{n-1}{k-1}$.

Solution 7. Each non-decreasing sequence is specified by how many times each element $i \in$ $\{1, \ldots, n\}$ appears in the sequence. Therefore, the number of non-decreasing sequences of length k is equal to the number of solutions to the equation

$$
x_{1}+x_{2}+\cdots+x_{n}=k
$$

where $x_{i} \geq 0$ is the number of times i appears in the sequence. Therefore, the number of such non-decreasing sequences is $\binom{k+n-1}{n-1}$ by stars and bars.

Solution 8. Define $z_{i}=x_{i}-y_{i}$ for each i. Then, we see that $z_{i} \geq 0$ and

$$
\sum_{i=1}^{k} z_{i}+\sum_{i=1}^{k} y_{i}=n .
$$

From stars and bars, there are $\left.\begin{array}{c}n+2 k-1 \\ 2 k-1\end{array}\right)$ ways to pick the y_{i} and the z_{i}. We can uniquely construct x_{i} from y_{i} and z_{i}, so this is our final answer.

