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1 Sample Space and Probability

1.1 Probabilistic Models

A probabilistic model is a mathematical description of an uncertain situation. The elements
of a probabilistic model includes

• sample space Ω : set of all all possible outcomes of an experiment.

• probability law: assigns to a set A of possible outcomes (event) a nonnegative value
P(A) (probability of A) that encodes the knowledge about the likelihood of the elements
of A.

A recap of all basic terminologies:

Definition 1 (Experiment). An experiment is a procedure that yields one of a given set of
possible outcomes.

Definition 2 (Sample space). The sample space of the experiment is the set of possible out-
comes.

Definition 3 (Sample point). A sample point is an element of the sample space.

Definition 4 (Event). An event is a subset of the sample space.

1.2 Probability Space

Definition 5 (Probability Space). The probability space is defined by the triple (Ω,F ,P)
where Ω is the sample space, F ⊆ Ω is the event space and P is the probability function, satis-
fying the following axioms:

Probability Axioms (Kolmogorov):

• Nonnegativity: for all sample points ω ∈ Ω,

P(ω) ≥ 0.

• Additivity: any countable sequence of disjoint sets (mutually exclusive events) E1, E2, . . .
satisfies

P

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

P (Ei) .

• Normalization: the sum of all probabilities must be 1, thus∑
ω∈Ω

P(ω) = P(Ω) = 1.

Definition 6 (Probability). For any event A ⊆ Ω, we define the probability of A to be

P(A) =
∑
ω∈A

P(ω).
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1.2.1 Properties of Probability Laws

• P(∅) = 0.

• P(A) = 1−P(A), where A (or Ac) is the complement of A.

• P(A ∪B) = P(A) + P(A)−P(A ∩B).

• If A ⊆ B, then P(A) ≤ P(B).

1.3 Discrete Uniform Probability Space

Theorem 7 (Discrete Uniform Probability Law). In a uniform probability space, all sample
points have the same probability 1

|Ω| . Thus the probability of an event A is

P(A) =
|A|
|Ω|

.

Remark. For uniform spaces, computing probabilities is simply counting sample points.

Example 1.1 (Poker Hands). Consider shuffling a deck of cards and dealing a poker hand.
In this case, the sample space Ω = {all possible poker hands}. Hence, |Ω| =

(
52
5

)
. Assuming

that the probability of each outcome is equally likely and so we have an uniform probability
space.
Let A be the event that the poker hand is a flush (same suit). Since the probability space
is uniform, computing P(A) reduces to simply computing |A|, the number of poker hands
that are flushes. There are 13 cards in each suit, so the number of flushes in each suit is(

13
5

)
. The total number of flushes is therefore 4 ·

(
13
5

)
. Then we have

P (hand is a flush) ≈ 0.002.

Example 1.2 (Balls and Bins). Consider the experiment of throwing 20 labelled balls into
10 labeled bins. Assume that each ball is equally likely to land in any bin.
The sample space Ω is equal to {(b1, b2, . . . , b20) : 1 ≤ bi ≤ 10 for each i = 1, . . . , 20} , where
the component bi denotes the bin in which ball i lands. Then |Ω| = 1020, since each element
bi in the sequence has 10 possible choices and there are 20 elements in the sequence. In
general, throwing m balls into n bins gives a sample space of size nm.

Let A be the event that bin 1 is empty. Since the probability space is uniform, we simply
need to count how many outcomes have this property. This is exactly the number of ways
all 20 balls can fall into the remaining nine bins, which is 920. Hence, P(A) = 920

1020
=(

9
10

)20 ≈ 0.12. Let B be the event that bin 1 contains at least one ball. This event is the
complement A of A. So P(B) = 1−P(A) ≈ 0.88. More generally, if we throw m balls into
n bins, we have:

P(bin 1 is empty) =

(
n− 1

n

)m
=

(
1− 1

n

)m
.
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1.3.1 Birthday Paradox

The birthday paradox examines the chances that two people in a group have the same birth-
day. It is called a ”paradox” because it is counter-intuitive. Suppose there are 365 days in a
year. Then S = {1, . . . , 365}, and the experiment consists of drawing a sample of n elements
from S, where the elements are the birth dates of n people in a group. Then |Ω| = 365n because
there are 365 possible birth dates for each person. Let A be the event that at least a pair of
people have the same birthday. If we want to determine P(A), it is simpler to first compute the
probability of the complement of A; i.e., P(A), where A is the event that no two people have
the same birthday.

Since the probability space is uniform, we just need to determine |A|, the number of ways for
no two people to have the same birthday. There are 365 choices for the first person, 364 for the
second, . . . , 365−n+ 1 choices for the n-th person, for a total of 365× 364×· · ·× (365−n+ 1)
by the First Rule of Counting from previous section; we are sampling without replacement and
the order matters. Thus we have

P(A) =
|A|
|Ω|

=
365× 364× · · · × (365− n+ 1)

365n
,

so P(A) = 1 − P(A) = 1 − 365×364×···×(365−n+1)
365n . Here P(A) is a function of n. As n increases

P(A) increases. For example, with n = 23 people, you should be willing to bet that at least a
pair of people have the same birthday, since P(A) is larger than 50%. For n = 60 people, P(A)
is over 99%!

1.4 Conditional Probability

Conditional probability provides a way to reason about the outcome of an experiment, based
on partial information. We wish to quantify the likelihood that the outcome also belongs to some
other given event A by constructing a new probability law to take into account the available
knowledge.

Definition 8 (Conditional Probability). Let B be an event such that P(B) > 0. The conditional
probability of A given B, denoted by P(A|B) is defined as

P(A|B) =
|A ∩B|
|B|

=
P(A ∩B)

P(B)
.

1.5 Independence

Definition 9 (Independence). Event A and B are independent if and only if P(A ∩ B) =
P(A)P(B) or P(A|B) = P(A).

Definition 10 (Independence of Several Events). Events {A}ni=1 are independent if

P

(⋂
i∈S

Ai

)
=
∏
i∈S

P(Ai).

1.5.1 Conditional Independence

Definition 11 (Conditional Independence). Given event C such that P(C) > 0, events A and B
are called conditionally independent if

P(A ∩B|C) = P(A|C)P(B|C),

or
P(A|B ∩ C) = P(A|C).
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1.6 Law of Total Probability

Theorem 12 (Law of Total Probability).

P(A) =
∑
n

P (A ∩Bn) =
∑
n

P (A | Bn)P (Bn) .

1.7 Bayes’ Rule

Theorem 13 (Bayes’ Rule). Let {A}ni=1 be disjoint events that form a partition of the sample
space, and that P(Ai) > 0 for all i. Then, for any event B such that P(B) > 0,

P(Ai ∩B) =
P(Ai)P(B|Ai)

P(B)
=

P(Ai)P(B|Ai)∑n
i P(Ai)P(B|Ai)

.
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2 Discrete Random variables

Definition 14 (Random variable). A random variable X on a sample space Ω is a function
X : Ω→ R that assigns to each sample point ω ∈ Ω a real number X(ω).

Remark (Functions of R.V.s are also R.V.s). Let Y = g(X). Then

P(Y = y) =
∑

x|g(x)=y

P(X = x).

An R.V. itself is a function, and we know that the function of a function is also a function.

Definition 15. The distribution of a discrete random variable X is the collection of values
{(x,P(X = x)) : x ∈ X}, where X is the set of all possible values taken by X.

Definition 16 (probability Mass Function). The probability mass function, or PMF, of a
discrete random variable X is a function mapping X’s values to their associated probabilities.
It is the function p : R→ [0, 1] defined by

pX(x) = P(X = x).

Definition 17 (Joint Distribution). The joint distribution for two discrete random variables
X and Y is the collection of values {((x, y),P(X = x, Y = y)) : x ∈ X , y ∈ Y}, where X is the
set of all possible values taken by X and Y is the set of all possible values taken Y .

Definition 18 (Marginal Distribution). Given the joint distribution for X and Y, the marginal
distribution for X is as follows:

P(X = x) =
∑
y∈Y

P(X = x, Y = y)

Definition 19 (Independence). Random variables X and Y are said to be independent if the
events X = x and Y = y are independent for all values x, y. Equivalently, the joint distribution
of independent R.V’s decomposes as

P(X = x, Y = y) = P(X = x)P(Y = y), ∀x, y.

Definition 20 (Indicator Random variable). Ii, or Xi, denotes the indicator random variable
that has takes on values {0, 1} according to whether a specified event occurs or not. Usually
{Ii}ni=1 are mutually independent and they are said to be independent and identically distributed
(i.i.d).
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2.1 Expectation

Definition 21 (Expectation). The expectation of a discrete random variable X is defined as

E[X] =
∑
x∈X

x · P(X = x).

Alternatively, we also have

E[X] =
∑
ω∈Ω

X(ω) · P(ω).

2.1.1 Linearity of Expectation

Theorem 22 (Linearity of Expectation). For any two random variables X and Y on the same
probability space, we have

E[X + Y ] = E[X] + E[Y ].

For any constant a, c, we also have

E[aX + c] = aE[X] + c.

Proof. Let g(X,Y ) = X + Y . Then we have

E[X + Y ] =
∑
x,y

(x+ y)P(X = x, Y = y)

=
∑
x,y

xP(X = x, Y = y) +
∑
x,y

yP(X = x, Y = y)

=
∑
x

∑
y

xP(X = x, Y = y) +
∑
y

∑
x

yP(X = x, Y = y)

=
∑
x

x
∑
y

P(X = x, Y = y) +
∑
y

y
∑
x

P(X = x, Y = y)

=
∑
x

xP(X = x) +
∑
y

yP(Y = y)

= E[X] + E[Y ].

The proof of the second equality is left as an exercise.

This is a powerful theorem because this always applies without any assumption about the R.V.s.

Remark. Be careful that this doesn’t imply that E[XY ] = E[X]E[Y ], or E
[

1
X

]
= 1

E[X] . These
are not true in general.

2.2 Variance

Definition 23 (Variance). The variance of a random variable X is

Var(X) = E[(X − E[X])2].

Definition 24 (Standard Deviation). The standard deviation of a random variable X

σ :=
√

Var(X).

8
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Theorem 25. For a random variable X,

Var(X) = E[X2]− E[X]2.

Proof.

Var(X) = E
[
(X − E[X])2

]
= E

[
X2 − 2XE[X] + E[X]2

]
= E

[
X2
]
− E[2XE[X]] + E

[
E[X]2

]
= E

[
X2
]
− 2E[X]2 + E[X]2

= E
[
X2
]
− E[X]2.

Note that E[X] is a constant.

Fact 26. For any constant c and any random variable X, we have

Var(cX) = c2Var(X).

Theorem 27. For independent random variables X,Y , we have E[XY ] = E[X]E[Y ].

Proof.

E[XY ] =
∑
x

∑
y

xy · P(X = x, Y = y)

=
∑
x

∑
y

xy · P(X = x) · P(Y = y)

=

(∑
x

x · P(X = x)

)
·

(∑
y

y · P(Y = y)

)
= E[X] · E[Y ]

.

where the second line made crucial use of independence.

Here’s a more general statement:

Theorem 28. If X,Y are independent, then

E[g(X)h(Y )] = E[g(X)]E[h(Y )].

Proof. This is left as an exercise.

Theorem 29. For independent random variables X,Y ,

Var(X + Y ) = Var(X) + Var(Y ).

Proof.

Var(X + Y ) = E
[
(X + Y )2

]
− (E[X + Y ])2

= E
[
X2
]

+ E
[
Y 2
]

+ 2E[XY ]− (E[X] + E[Y ])2

=
(
E
[
X2
]
− E[X]2

)
+
(
E
[
Y 2
]
− E[Y ]2

)
+ 2(E[XY ]− E[X]E[Y ])

= Var(X) + Var(Y ) + 2(E[XY ]− E[X]E[Y ]).

= Var(X) + Var(Y ).
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2.2.1 Covariance

Covariance is a measure of the joint variability of two random variables.

Definition 30 (Covariance). The covariance of random variables X and Y , denoted Cov(X,Y ),
is defined as

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ].

Remark. Some important facts about covariance.

1. If X,Y are independent, then Cov(X,Y ) = 0. However, the converse is not true.

2. Cov(X,X) = Var(X).

3. Bilinearity :

Cov

 n∑
i=1

aiXi,

m∑
j=1

bjYj

 =

n∑
i=1

m∑
j=1

aibjCov(Xi, Yj).

4. For general random variables X and Y ,

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y ).

2.2.2 Correlation

Definition 31 (Correlation). Suppose X,Y are random variables with σX , σY > 0. Then the
correlation of X and Y is

ρ(X,Y ) =
Cov(X,Y )√

Var(X)Var(Y )
=

Cov(X,Y )

σXσY

and −1 ≤ ρ(X,Y ) ≤ 1.

2.3 Discrete Probability Distribution

2.3.1 Bernoulli Distribution

A Bernoulli random variable X, denoted as Bernoulli(p), has a PDF of the form

P(X = i) =

{
p, if i = 1
1− p, if i = 0,

where 0 ≤ p ≤ 1.
Expectation:

E[X] = p.

Variance:
Var(X) = E[X2]− E[X]2 = p− p2 = p(1− p).

10
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2.3.2 Binomial Distribution

A binomial random variable X, denoted as Bin(n, p), has a PDF of the form

P(X = k) =

(
n

k

)
pk(1− p)n−k, for k = 0, 1, . . . , n.

Quick check on normalization:

n∑
i=0

P(X = i) = 1 =⇒
n∑
i=0

(
n

i

)
pi(1− p)n−i = 1.

A probabilistic proof of the Binomial Theorem for a = p and b = 1− p.
Fact 32. A binomial random variable is equivalent to sum of n i.i.d Bernoulli variables with
parameter p.

Expectation:

E[X] = E

[
n∑
i=1

Yi

]
=

n∑
i=1

E[Yi] =
n∑
i=1

p = np, where Yi ∼ Bernoulli(p).

Variance:

Var(X) = Var

(
n∑
i=1

Yi

)
= np(1− p), where Yi ∼ Bernoulli(p).

2.3.3 Hypergeometric Distribution

We are given N = G + B balls, where G balls are good and B balls are bad. Sample n balls
without replacement and observe k successes. Denoted as Hypergeometric(N,B, n) and has a
PDF of the form

P(X = k) =

(
G
k

)(
B
n−k
)(

N
n

) .

2.3.4 Geometric Distribution

A geometric random variable X, denoted as Geo(p), has a PDF of the form

P(X = k) = (1− p)k−1p, for i = 1, 2, 3, . . . .

It represents the number of trials until first success, where p is the probability of success.
Quick check on normalization:

∞∑
i=1

P(X = i) =

∞∑
i=1

(1− p)i−1p = p

∞∑
i=1

(1− p)i−1 = p · 1

1− (1− p)
= 1.

Expectation:

E[X] =

∞∑
i=1

P(X ≥ i) =

∞∑
x=1

(1− p)i−1 =
1

1− (1− p)
=

1

p
,

where the first equality uses the tail sum formula, which is on the next page.
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Theorem 33 (Tail Sum Formula). LetX be a random variable that takes values in {0, 1, 2, . . .}.
Then

E[X] =
∞∑
i=1

P(X ≥ i).

Proof. We can manipulate the formula for the expectation:

E[X] =

∞∑
x=1

xP(X = x)

=
∞∑
x=1

x∑
i=1

P(X = x)

=
∞∑
i=1

∞∑
x=i

P(X = x)

=
∞∑
i=1

P(X ≥ i).

This is called the Tail Sum Formula because we are summing over the tail probabilities of the
distribution.

Remark. Here’s a smarter way to derive the expectation. Suppose we toss our first coin. There
are two possibilities: we get a head with probability p and call it a day, or we get a tail with
probability 1 − p and we are right back where we just started. In the latter case, we expect
1 + E[X] trials until our first success because we already used one trial. Hence,

E[X] = p · 1 + (1− p)(1 + E[X]).

This makes use of an important property called the memoryless property, which will be
covered later.

Variance:

Var(X) =
1− p
p2

.

2.3.5 Poisson Distribution

A Poisson random variable X, denoted as Poisson(λ), has a PDF of the form

P(X = k) =
λke−λ

k!
, for i = 0, 1, 2, . . . .

It is used to model rare events and is an approximation of the limiting case of binomial distri-
bution.
Quick check on normalization:

∞∑
i=0

P(X = i) =

∞∑
i=0

λke−λ

k!
= e−λ

∞∑
i=0

λk

k!
= e−λ · eλ = 1.

Remark. The second equality uses the Taylor series expansion

ex =

∞∑
i=1

xi

i!
.

12
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Expectation:

E[X] =
∞∑
i=0

i · P(X = i)

=
∞∑
i=1

λie−λ

i!

= λe−λ
∞∑
i=1

λi−1

(i− 1)!

= λe−λeλ (eλ =
∞∑
j=1

λj

j!
with j = i− 1)

= λ.

Variance:

Similarly, we can calculate E[X(X − 1)] as follows:

E[X(X − 1)] =

∞∑
i=0

i(i− 1) · P(X = i)

=

∞∑
i=2

i(i− 1)
λi

i!
e−λ i=0 and i=1 terms are equal to 0)

= λ2e−λ
∞∑
i=2

λi−2

(i− 2)!

= λ2e−λeλ ( since eλ =

∞∑
j=0

λj

j!
with j = i− 2)

= λ2

Therefore,

Var(X) = E
[
X2
]
− E[X]2 = E[X(X − 1)] + E[X]− E[X]2 = λ2 + λ− λ2 = λ.

13
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Theorem 34. Let X ∼ Poisson(λ) and Y ∼ Poisson(µ) be independent Poisson random
variables. Then X + Y ∼ Poisson(λ+ µ).

Proof. For all k = 0, 1, 2, . . . , we have

P(X + Y = k) =
k∑
j=0

P(X = j, Y = k − j)

=
k∑
j=0

P(X = j)P(Y = k − j)

=
k∑
j=0

λj

j!
e−λ

µk−j

(k − j)!
e−µ

= e−(λ+µ) 1

k!

k∑
j=0

k!

j!(k − j)!
λjµk−j

= e−(λ+µ) (λ+ µ)k

k!

where the second equality follows from independence, and the last equality from the binomial
theorem.

Theorem 35. If X1, X2, ..., Xn are independent Poisson random variables with parameters
λ1, λ2, . . . , λn respectively, then

X1 +X2 + . . .+Xn ∼ Poisson(λ1 + λ2 + . . .+ λn).

Proof. This can be shown by induction.

2.4 Conditioning of Random Variables

Definition 36 (Conditional PMF). The conditional PMF of a random variable X, conditioned
on an event A with P(A) > 0 is defined by

pX|A(x) = P(X = x|A) =
P({X = x} ∩A)

P(A)
.

Since
P(A) =

∑
x

P({X = x} ∩A),

combining the two gives ∑
x

pX|A(x) = 1.

Definition 37 (Conditional PMF II). Given two random variables X,Y , the conditional PMF
of X, conditioned on Y with PpY (y) > 0 is defined by

pX|Y (x|y) = P(X = x|Y = y) =
pX,Y (x, y)

pY (y)
.

We also have ∑
x

pX|Y (x|y) = 1.

14
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2.4.1 Conditional Expectation

Definition 38 (Conditional Expectation). The conditional expectation of X given an event
A with P(A) > 0 is defined by

E[X|A] =
∑
x

xpX|A(x).

For a function g(X), we have

E[g(X)|A] =
∑
x

g(x)pX|A(x).

Similarly if we condition on a given value y of a random variable Y , then

E[X|Y = y] =
∑
x

xpX|Y (x|y).

Theorem 39 (Total Expectation). These follow form the Law of Total Probability:

• If A1, . . . , An are disjoint events that form a partition of the sample space, with
P(Ai) > 0 for all i, then

E[X] =
∑
x

E[X|Ai]P(Ai).

• Similarly, we have

E[X] =
∑
y

pY (y)E[X|Y = y].

Proof.

E[X] =
∑
x

xpX(x)

=
∑
x

x

n∑
i=1

P (Ai) px|Ai
(x | Ai)

=

n∑
i=1

P (Ai)
∑
x

xpx|Ai
(x | Ai)

=

n∑
i=1

P (Ai)E [X | Ai]

The second equality can be verified similarly.

Definition 40 (Memoryless Property). ] A random variable X is memoryless if

P(X > s+ t | X > s) = P(X > t).

Proof.

P(X = s+ t | X > s) =
P(X > s+ t ∩X > s)

P(X > s)

=
P(X > s+ t)

P(X > s)

=
(1− p)s+t

(1− p)s

= (1− p)t

= P(X > t).

15
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Fact 41. Geometric random variables are memoryless.

Lemma 42.
E[g(X)|X > 1] = E[g(1 +X)].

Proof.

E[g(X) | X > 1] =

∞∑
k=1

g(k)P(X = k | X > 1)

=
∞∑
k=1

g(k)P(X = k − 1) (memoryless property)

=
∞∑
n=1

g(1 + n)P(X = l) (let n = k − 1)

= E[g(1 +X)]

= 1.

Remark. Here’s a clever trick using memorylessness property to calculate the mean and variance
of a geometric random variable. If the first try is successful, we have X = 1, and E[X|X = 1] =
1. If the first try fails (X > 1), we have wasted one try and we are back where we started. So

E[X|X > 1] = 1 + E[X].

Thus, by total expectation

E[X] = E[X|X = 1]P(X = 1) + P(X > 1)E[X|X > 1]

= p+ (1− p)(1 + E[X]),

from which we obtain

E[X] =
1

p
.

Similar for variance, we have E[X2|X = 1] = 1 and E[X2|X > 1] = E[(1 +X)2] = 1 + 2E[X] +
E[X2] using the lemma proved above. Thus,

E[X2] = p · 1 + (1− p)(1 + 2E[X] + E[X2]) =⇒ E[X2] =
1 + 2(1− p)E[X]

p
.

Using the fact that E[X] = 1
p , we have E[X2] = 2

p2
− 1

p . Therefore,

Var(X) = E[X2]− E[X]2 =
2

p2
− 1

p
− 1

p2
=

1− p
p2

.
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3 Continuous Probability

3.1 Continuous Random Variables

Definition 43 (Probability Density Function). A probability density function, or PDF, for
a real-valued random variable X is a function f : R→ R satisfying:

1. Non-negativity: f(x) ≥ 0 for all x ∈ R.

2. Normalization: ∫ ∞
−∞

f(x)dx = 1.

The distribution of X is given by

P(X ∈ B) =

∫
B
fX(x)dx.

In particular, the probability that the value of X falls within an interval is

P(a ≤ X ≤ b) =

∫ b

a
f(x)dx for all a < b.

For an interval [x, x+ δ] with very small length δ, we have

P([x, x+ δ]) =

∫ x+δ

x
fX(t)dt ≈ fX(x) · δ.

3.2 Expectation and Variance

Definition 44 (Expectation). The expectation of a continuous random variable X with PDF
f is

E[X] =

∫ ∞
−∞

xfX(x)dx.

We also have

E[g(X)] =

∫ ∞
−∞

g(x)fX(x)dx.

Definition 45 (Variance). The variance of a continuous random variable X with PDF f is

Var[X] = E[X2]− E[X]2 =

∫ ∞
−∞

x2fX(x)dx−
(∫ ∞
−∞

xfX(x)dx

)2

.

3.3 Continuous Probability Distribution

3.3.1 Exponential Random Variable

An exponential random variable X, denoted as Exp(λ), has a PDF of the form

f(x) =

{
λe−λx, if x ≥ 0
0, otherwise

Quick check on normalization:∫ ∞
−∞

f(x)dx =

∫ ∞
0

λe−λxdx = −e−λx
∣∣∣∞
0

= 1.

17
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Expectation:

E[X] =

∫ ∞
−∞

xf(x)dx =

∫ ∞
0

λxe−λxdx = − xe−λx
∣∣∣∞
0

+

∫ ∞
0

e−λxdx = 0 +

(
−e
−λx

λ

)∣∣∣∣∞
0

=
1

λ
.

Variance:

E
[
X2
]

=

∫ ∞
−∞

x2f(x)dx =

∫ ∞
0

λx2e−λxdx = − x2e−λx
∣∣∣∞
0

+

∫ ∞
0

2xe−λxdx = 0 +
2

λ
E[X] =

2

λ2
.

Var(X) = E
[
X2
]
− E[X]2 =

2

λ2
− 1

λ2
=

1

λ2
.

Theorem 46 (Minimum of Exponential Random Variables). Let X1, . . . , Xn be independent
exponential random variables with parameters λ1, . . . , λn respectively. Then the minimum
of the random variables is also exponentially distributed:

min {X1, . . . , Xn} ∼ Exp (λ1 + · · ·+ λn) .

Proof.
P (min {X1, . . . , Xn} > t) = P (X1 > t, . . . ,Xn > t)

=
n∏
i=1

P (Xi > t)

=
n∏
i=1

e−λit

= e−(
∑n

i=1 λi)t.

3.3.2 Cumulative Distribution Functions

Definition 47. For a continuous random variable X, the cumulative distribution function,
or CDF, is the function as follows:

FX(x) = P(X ≤ x) =

∫ x

−∞
f(t)dt.

It is closely related to the PDF for X:

fX(x) =
dFX(x)

dx
.

Some properties of a CDF:

• FX is monotonically nondecreasing:

x ≤ y =⇒ FX(x) ≤ FX(y).

•
lim

x→−∞
FX(x) = 0 lim

x→∞
FX(x) = 1.

• If X is discrete, the PMF and CDF can be obtained from each other by summing or
differencing:

FX(k) =
k∑

i=−∞
pX(i),

pX(k) = P(X ≤ k)− P(X ≤ k − 1) = FX(k)− FX(k − 1).

18
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3.4 Normal Random Variables

Definition 48 (Normal/Gaussian RV). A normal or Gaussian random variable X, denoted by
N (µ, σ2) where µ is the mean and σ2 is the variance, has a PDF of the form

fX(x) =
1√
2πσ

e−(x−µ)2/2σ2
,

Let’s verify that
1√
2πσ

∫ ∞
−∞

e−(x−µ)2/2σ2
dx = 1.

Proof. We can show this for µ = 0 and σ2 = 1 and this will show for the general case. The trick
is to show that (∫ ∞

−∞
fX(x)dx

)2

= 1

We have (∫ ∞
−∞

fX(x)dx

)2

=

(∫ ∞
−∞

fX(x)dx

)(∫ ∞
−∞

fY (y)dy

)
=

∫ ∞
−∞

∫ ∞
−∞

fX(x)fY (y)dxdy

=

∫ ∞
−∞

∫ ∞
−∞

1

2π
e−(x2+y2)/2dxdy.

Using polar integration, we have dydx = rdrdθ. Then∫ 2π

0

∫ ∞
0

1

2π
e−r

2/2rdrdθ

=

∫ ∞
0

e−r
2/2rdr

=

∫ 0

−∞
esds

= 1.

Definition 49 (Standard Normal RV). The PDF of the standard normal distribution N (0, 1)
(with mean 0 and variance 1) is

fX(x) =
1√
2π
e−x

2/2.

Since its CDF cannot be expressed in elementary functions, the CDF is denoted by Φ

Φ(x) = P(X ≤ x) = P(X < x) =
1√
2π

∫ x

−∞
e−t

2/2dt.

Remark. The CDF of a normal random variable is symmetrical, so

Φ(−x) = 1− Φ(x).
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Theorem 50 (Normality is preserved by Linear Transformations). If X ∼ N (µ, σ2) and a 6= 0, b
are constants, then the random variable

Y = aX + b

is also normal. In particular, Y ∼ N (aµ+ b, a2σ2).

To calculate the CDF for a normal random variable X ∼ N (µ, σ2), we standardize X

P(X ≤ x) = P

(
X − µ
σ

≤ x− µ
σ

)
= P

(
Y ≤ x− µ

σ

)
= Φ

(
x− µ
σ

)
.

3.5 Joint PDFs of Multiple Random Variables

Two continuous random variables are jointly continuous and can be described in terms of a
joint PDF fX , Y that satisfies

P((X,Y ) ∈ B) =

∫∫
(x,y)∈B

fX,Y (x, y)dxdy,

for every subset B of the 2-dimensional plane. If B is a rectangle of the form B = {(x, y)|a ≤
b, c ≤ y ≤ d}, we have

P(a ≤ X ≤ b, c ≤ Y ≤ d) =

∫ d

c

∫ b

a
fX,Y (x, y)dxdy.

3.6 Joint CDFs

The joint CDF of two random variables X and Y is given by

FX,Y (x, y) = P(X ≤ x, Y ≤ y) =

∫ x

−∞

∫ y

−∞
fX,Y (s, t)dtds.

Conversely, the PDF can be recovered from the CDF by differentiating:

fX,Y (x, y) =
∂2FX,Y
∂x∂y

(x, y).

3.7 Conditioning

Definition 51 (Conditional PDF). For two continuous random variables X,Y with joint PDF
fX,Y . The conditional PDF of X given that Y = y is defined by

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
.

This is analogous to the discrete case. Similarly for marginalization we have

fY (y) =

∫ ∞
−∞

fX,Y (x, y)dx,

which implies the normalization property∫ ∞
−∞

fX|Y (x|y)dx = 1.
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3.7.1 Continuous Bayes’ Rule

Similar to the discrete Bayes’ Rule, we have

fX|Y (x|y) =
fX(x)fY |X(y|x)

fY (y)
,

combining with the law of total probability gives

fX|Y (x|y) =
fX(x)fY |X(y|x)∫∞

−∞ fX(t)fY |X(y|t)dt
.

Summary 3.1.
Continuous Uniform Over [a, b] :

fX(x) =

{
1
b−a , if a ≤ x ≤ b
0, otherwise

E[X] =
a+ b

2
, Var(X) =

(b− a)2

12
.

Exponential with Parameter λ :

fX(x) =

{
λe−λx, if x ≥ 0
0, otherwise

FX(x) =

{
1− e−λx, if x ≥ 0
0, otherwise

E[X] =
1

λ
, Var(X) =

1

λ2

Normal with Parameters µ and σ2 > 0 :

fX(x) =
1√
2πσ

e−(x−µ)2/2σ2

E[X] = µ, Var(X) = σ2.
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4 More on Random Variables

4.1 Derived Distributions

Now let’s discuss techniques whereby, given the PDF of X, we calculate the PDF of Y (derived
distribution).

Theorem 52 (PDF of Linear Function of a Random Variable). Let X and Y be random
variables, such that Y = aX + b where a 6= 0. Then given fX , we can derive fY (y) as

fY (y) =
1

|a|
fX

(
y − b
a

)
.

Proof. We only show for the case where a > 0 because the case a < 0 is similar. We have

FY (y) = P(Y ≤ y)

= P(aX + b ≤ y)

= P
(
X ≤ y − b

a

)
= FX

(
y − b
a

)
.

Differentiating this with chain rule gives

fY (y) =
dFY (y)

dy
=

1

a
fX

(
y − b
a

)
.

Example 4.1. Suppose X = σY + µ, where Y ∼ N (0, 1). Given that

fY (y) =
1√
2π
e−y

2/2,

we have

fX(x) =
1

σ
fY

(
x− µ
σ

)
=

1

σ
√

2π
e−(x−µ)2/2σ2

which is exactly the PDF for a normal distribution.

Summary 4.1 (Calculation of Derived Distributions). Suppose Y = g(X). Then to find the
PDF of Y :

1. Calculate

FY (y) =

∫
{x|g(x)≤y}

fX(x)dx.

2. Then differentiate

fY (y) =
dFY (y)

dy
.
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Example 4.2. Let Y = X2. Then

1. For y ≥ 0,

FY (y) = P(Y ≤ y) = P(x2 ≤ y) = P(−√y ≤ x ≤ √y) = FX(
√
y)− FX(−√y)

2. Differentiating gives

fY (y) =
dFY (y)

dy
=

1

2
√
y
fX(
√
y)− 1

2
√
y
fX(−√y).

4.2 Convolution

Let Z = X + Y, where X and Y are both continuous and independent. We are interested in
calculating the PDF of Z using law of total probability:

fZ(z) =

∫
x
fX,Z(x, z).

First note that

FZ|X(z|x) = P(X + Y ≤ z|X = x)

= P(Y ≤ z − x)

⇒ fZ|X(z|x) = fY (z − x).

Now we have

fZ(z) =

∫
x
fX(x)fZ|X(z|x)dx =

∫
x
fX(x)fY (z − x)dx = (fX ∗ fY ) (z).

fZ(z) is called the convolution of the PDFs of X and Y . We are basically integrating over all
possible combinations of X and Y that could sum to z. The discrete case is analogous:

P(Z = z) =
∑
x

P(X = x)P(Y = z − x).

4.3 Law of Iterated Expectations

Theorem 53 (Law of Iterated Expectations).

E[E[X|Y ]] = E[X].

Proof.

E[E[X|Y ]] =
∑
y

E[X|Y = y]P(Y = y)

=
∑
y

∑
x

xP(X = x|Y = y)P(Y = y)

=
∑
x

x
∑
y

P(X = x, Y = y)

=
∑
x

xP(X = x)

= E[X].
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Property 1.
E[E[Xg(X)|Y ]] = g(Y )E[X|Y ].

This follows from the fact that g(Y ) is a constant.

Example 4.3. We have a biased coin with probability of head is Y, which is random over
[0, 1]. Let X be the number of heads obtained. What is E[X]?

Solution.
E[X] = E[E[X|Y ]] = E[nY ] = nE[Y ] =

n

2
.

4.4 Law of Total Variance

Theorem 54 (Law of Total Variance).

Var(X) = E[Var(X|Y )] + Var(E[X|Y ]).

Proof. Using the law of iterated expectation, we have

Var(X) = E
[
X2
]

+ E[X]2 = E
[
E
[
X2|Y

]]
− (E[E[X|Y ]])2

= E
[
Var(X|Y ) + E[X|Y ]2

]
− (E[E[X|Y ]])2

= E[Var(X|Y )] +
(
E
[
E[X|Y ]2

]
− (E[E[X|Y ]])2

)
= E[Var(X|Y )] + Var(E[X|Y ]).

Example 4.4. Using the previous example, we now compute the variance of X.

Solution.

Var(X) = E[Var(X|Y )] + Var(E[X|Y ])

= E[nY (1− Y )] + Var(nY )

= n(E[Y ]− E[Y 2]) + n2Var(Y )

=
n

6
+
n2

12
.
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4.5 Order Statistics

Definition 55 (Order Statistics). Suppose X1, X2, . . . , Xn are i.i.d. random variables with com-
mon density fX(x) and CDF FX(x). We define X(i) = x(i) the ith order statistic, which is
the ith smallest element of the set. Then X(1) is the minimum while X(n) is the maximum.

Theorem 56. If X has pdf fX , the marginal PDF of the ith order statistic is

fX(i)(x) = n

(
n− 1

i− 1

)
(FX(x))i−1 (1− FX(x))n−i fX(x).

Proof. By definition,
P(X(i) ∈ (x, x+ dx)) ≈ fX(i)(x)dx.

In order for the ith smallest point to lie between x and x+ dx, we need

1. i− 1 points must lie in the interval (−∞, x).

2. One point must lie in (x, x+ dx).

3. n− i values to lie in the interval (x+ dx,∞).

We have n choices for a point, and
(
n−1
i−1

)
choices to distribute the rest, so we have n

(
n−1
i−1

)
ways

to distribute the points. Then combining these gives

fX(i)(x)dx = n

(
n− 1

i− 1

)
(FX(x))i−1 (1− FX(x))n−i fX(x)dx.

Example 4.5 (Beta Distribution). Suppose X ∼ U [0, 1], where fX(x) = 1 and FX(x) = x
for 0 ≤ x ≤ 1. Then the ith order statistic for X is

f
(i)
X (x) = n

(
n− 1

i− 1

)
xi−1(1− x)n−i.

This is a special case of a Beta Distribution.

Example 4.6. What is the probability that the 9th smallest out of 10 drawings from X ∼
U [0, 1] is greater than 0.8?

Solution.

fX(9)(x) =
10!

8!1!
x8(1− x) = 10x8 − 90x9 =⇒ P(X(9) > 0.8) =

∫ 1

0.8
(90x8 − 90x9)dx.

25



EECS126: Probability Theory and Random Processes Kelvin Lee

5 Moment Generating Functions (Transforms)

Definition 57 (Moment Generating Function). The transform (or MGF) of a random variable
X is a function MX(s) of a scalar parameter s, defined by

MX(s) = E
[
esX
]
.

Discrete case:
MX(s) =

∑
x

esxpX(x).

Continuous case:

MX(s) =

∫ ∞
−∞

esxfX(x)dx.

Recall the Taylor series expansion for e:

esX = 1 + sX +
s2

2!
X2 +

s3

3!
X3 + · · · .

Then we have

MX(s) = E[esX ] = 1 + sE[X] +
s2

2!
E[X2] +

s3

3!
E[X3] + · · · .

Theorem 58. We can use MGF to compute the moments of X as follows:

dn

dsn
[MX(s)]

∣∣∣∣
s=0

=

∫ ∞
−∞

xnfX(s)dx = E[Xn].

Remark. Convolution becomes multiplication in the MGF domain and so MGFs simplify com-
putations for us and it can be used to prove the Central Limit Theorem as we will soon cover.

Property 2 (Properties of MGFs). MX(s) satisfies the following properties:

1. MX(0) = 1.

2. For Y = aX + b, MY (s) = esbMX(as).

3. If X > 0, then MX(−∞) = 0.

4. If X < 0, then MX(∞) = 0.

Proof. For the first one, we have

MX(0) = E[e0X ] = 1.

For the second one, we have

MY (s) = E[esY ] = E[es(aX+b)] = esbE[easX ] = esbMX(as).

The rest will be exercise.
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Example 5.1 (Exponential MGF). Suppose X ∼ Exp(λ). Then

MX(s) = E[esX ] =

∫ ∞
0

esxfX(x)dx = λ

∫ ∞
0

e−λxesxdx = λ
e−(λ−s)x

−(λ− s)

∣∣∣∞
0

=
λ

λ− s

where s < λ must hold for the integral to converge. Then we obtain E[X] = M ′X(0) =
λ

(λ− s)2

∣∣∣∣
s=0

=
1

λ
, and E[X2] = M ′′X(0) =

2

λ
.

Example 5.2 (Poisson MGF). Suppose X ∼ Poisson(λ). Then

MX(s) = E[esX ] =

∞∑
k=0

esk
e−λλk

k!
= e−λ

∞∑
k=0

(λes)k

k!
= e−λ+λes .

From this we get M ′X(0) = λ and M ′′X(0) = λ2 + λ.

Example 5.3 (Normal MGF). Suppose X ∼ N (0, 1). Then

E
[
esX
]

=
1√
2π

∫ ∞
−∞

esxe−x
2/2dx

=
1√
2π

∫ ∞
−∞

esx−x
2/2dx

=
es

2/2

√
2π

∫ ∞
−∞

e−(x2/2−sx+s2/2)dx

= es
2/2 1√

2π

∫ ∞
−∞

e−(x−s)2/2dx

= es
2/2.

The third line is simply completing the square in the exponent, and the last line uses the
fact that 1√

2π
e−(x−s)2/2 is the PDF of a standard normal that has been shifted by s, and

so must integrate to 1. It is left as an exercise to verifty that M ′X(0) = 0 and M ′′X(0) = 1.

Remark. If Y ∼ N
(
µ, σ2

)
, then Y = σX + µ and we have

E
[
esY
]

= E
[
es(σX+µ)

]
= eµsE

[
eσY s

]
= eµs+σ

2s2/2.

5.1 Inversions of transforms

The transform MX(s) is invertible, i.e. it can be used to determine the probability law of the
random variable X.

Property 3 (Inversion Property). The transform MX(s) associated with a random variable X
uniquely determines the CDF of X, assuming that MX(s) is finite for all s in some interval
[−a, a], where a is a positive number.

Remark. In practice, transforms are usually inverted by ”pattern matching,” based on tables
of known distribution-transform pairs.
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Example 5.4. Suppose we have an MGF of MX(s) =
1

2
e−3s +

1

4
e200s +

1

4
es. Recall that

MX(s) =
∑
x

esxpX(x),

we can recover our PDF as

P (X = k) =


1/2 when k = −3

1/4 when k = 200

1/4 when k = 1.

5.2 Sums of Independent Random Variables

Transform methods are especially convenient when dealing with a sum of random variables. This
is because addition of independent random variables corresponds to multiplication of transforms
(providing a nice alternative to the convolution formula).

Suppose X and Y are independent random variables, and let Z = X + Y . The transform
associated with Z is

MZ(s) = E
[
esZ
]

= E
[
es(X+Y )

]
= E

[
esXesY

]
= MX(s)MY (s).

By the same argument, if X1, . . . , Xn is a collection of independent random variables and Z =∑n
i=1Xi, then

MZ(s) =
n∏
i=1

MXi(s), =⇒ E

[
exp

(
s

n∑
i=1

Xi

)]
=

n∏
i=1

E[esXi ].

Remark. In summary, the MGF of the sum of two random variables is the product of their
MGFs.

Example 5.5 (Sum of Independent Normal Random Variables is Normal). Suppose X ∼
N (µX , σ

2
X) and Y ∼ N (µY , µ

2
Y ). Then

MZ(s) = MX(s)MY (s) = exp

((
σ2
X + σ2

Y

2

)
s2 + (µX + µY )s

)
,

which is the transform associated with a normal random variable N (µx + µy, σ
2
x + σ2

y).
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Summary 5.1 (Transforms for Common Random Variables).
X ∼Bernoulli(p)
PMF:

pX(x) =

{
p, if x = 1
1− p, if x = 0

MGF:
MX(s) = 1− p+ pes.

X ∼ Binomial(n, p)
PMF:

pX(x) =

(
n

x

)
pk(1− p)n−x,

MGF:
MX(s) = (1− p+ pes)n .

X ∼ Geometric(p)
PMF:

pX(k) = p(1− p)x−1,

MGF:

MX(s) =
pes

1− (1− p)es
.

X ∼ Poisson(λ)
PMF:

pX(x) =
e−λλx

x!
,

MGF:
MX(s) = eλ(es−1).

X ∼ Uniform[a, b]
PMF:

pX(k) =
1

b− a+ 1
,

MGF:

MX(s) =
esa
(
es(b−a+1) − 1

)
(b− a+ 1) (es − 1)

.

PDF:

fX(x) =
1

b− a
,

MGF:

MX(s) =
esb − esa

s(b− a)
.

X ∼ Exponential(λ)
PDF:

fX(x) = λe−λx,

MGF:

MX(s) =
λ

λ− s
, (s < λ).

X ∼ Normal
(
µ, σ2

)
PDF:

fX(x) =
1√
2πσ

e−(x−µ)2/2σ2
,

MGF:
MX(s) = e(σ

2s2/2)+µs.
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6 Limit Theorems

6.1 Markov’s Inequality

Theorem 59 (Markov’s Inequality). For a non-negative random variable X with finite
mean,

P[X ≥ c] ≤ E[X]

c

for any positive constant c.

Proof.

E[X] = E[X|X ≤ c]P(X ≤ c) + E[X|X ≥ c]P(X ≥ c)
≥ 0 + cP(X ≥ c).

We lower bound by 0 since X is nonnegative and we lowerbound E[X|X ≥ c] by c since we’re
conditioning on X ≥ t.

6.2 Chebyshev’s Inequality

We have seen that the variance (or, more correctly the standard deviation) is a measure of spread,
or deviation from the mean. We can now make this intuition quantitatively precise:

Theorem 60 (Chebyshev’s Inequality). For a random variable X with finite expectation
E[X] = µ,

P[|X − µ| ≥ c] ≤ Var(X)

c2

and for any positive constant c.

Proof. Define Y = (X−µ)2 and note that E[Y ] = E
[
(X − µ)2

]
= Var(X). Also, notice that the

event that we are interested in, |X−µ| ≥ c, is exactly the same as the event Y = (X−µ)2 ≥ c2.
Therefore, P[|X −µ| ≥ c] = P

[
Y ≥ c2

]
. Moreover, Y is obviously nonnegative, so we can apply

Markov’s inequality to get

P[|X − µ| ≥ c] = P
[
Y ≥ c2

]
≤ E[Y ]

c2
=

Var(X)

c2
.

Remark. Chebyshev’s bound is tighter than Markov’s bound.

6.3 Chernoff Bounds

Theorem 61 (Chernoff Bound). For all s > 0,

P(X ≥ a) ≤ E[esX ]

esa
≤ min

s

(
e−saE

[
esX
])

Proof. Since s > 0 and ex is monotonic, using Markov’s inequality we have

P(X ≥ a) = P(esX ≥ esa) ≤ E[esX ]

esa
.

30



EECS126: Probability Theory and Random Processes Kelvin Lee

Remark. We can optimize over s to get the tightest bound (set derivative to zero). Although
Chernoff’s uses all moments, it is not guaranteed that it is better than Markov’s or Chebyshev’s.

Example 6.1. Suppose X ∼ N (0, σ2). We have

P(X ≥ a) ≤ E[e−sX ]

esa
=
e−s

2σ2/2

esa
.

Optimizing over s gives

arg min
s

e−s
2σ2/2

esa
= arg min

s

s2σ2

2
− sa =⇒ s = t/σ2,

which gives P(X ≥ a) ≤ e−a2/2σ2
.

6.4 Weak Law of Large Numbers

The Weak Law of Large Numbers asserts that the sample mean of a large number of i.i.d.
random variables is very close to the true mean, with high probability. If X1, . . . , Xn is a
sequence of i.i.d. random variables with mean µ and variance σ2, then the sample mean is

Mn =
1

n

n∑
i=1

Xi.

The expectation is

E [Mn] =
1

n

n∑
i=1

E[Xi] =
nµ

n
= µ

and the variance of is

Var (Mn) =
1

n2
Var

(
n∑
i=1

Xi

)
=

1

n2

n∑
i=1

Var (Xi) =
nσ2

n2
=
σ2

n
.

Applying the Chebyshev’s inequality, we have

P (|Mn − µ| ≥ ε) ≤
σ2

nε2
for any ε > 0.

As n increases, the Chebyshev’s bound goes to 0! As a consequence, we obtain the formal
WLLN:

Theorem 62 (Weak Law of Large Numbers). Let X1, . . . , Xn be i.i.d. random variables with
mean µ. For every ε > 0, we have

P (|Mn − µ| ≥ ε) = P
(∣∣∣∣X1 + . . .+Xn

n
− µ

∣∣∣∣ ≥ ε)→ 0 as n→∞.

Remark. The WLLN suggests that for large n, the bulk of the distribution of Mn is concentrated
near µ. Essentially, the sample mean should converge to the true mean.
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6.5 Convergence in Probability

Definition 63 (Convergence of a Deterministic Sequence). Let a1, . . . , an be a sequence of real
numbers, and let a be another real number. We say that the sequence an converges to a, or
limn→∞ an = a, if for every ε > 0 there exists some n0 such that

|an − a| ≤ ε for all n ≥ n0.

Definition 64 (Convergence in Probability). Let X1, . . . , Xn be a sequence of random variables
(not necessarily independent), and let a be a real number. We say that the sequence Xn

converges to a in probability if, for every ε > 0, we have

lim
n→∞

P (|Yn − a| ≥ ε) = 0.

In other words, for every ε > 0 and every δ > 0, there exists some n0 such that

P (|Yn − a| ≥ ε) ≤ δ for all n ≥ n0

If we call ε the accuracy level and δ the confidence level, then Xn can be equal to a within any
level of accuracy and confidence provided n is sufficiently large.

Example 6.2. X1, . . . , Xn are i.i.d. U [−1, 1]. If Yn = Xn/n, does Yn converge in probability?
To what?

Solution. Yn should converge in probability to 0, since Xn is something between −1 and 1
while n will only get larger and larger. We have

Fn(y) = FX(ny) =⇒ fYn(y) = nfX(ny)

Then P (|Yn − 0| > ε) = 0 if 1
n < ε, or n > 1

ε .

Example 6.3. If X1, . . . , Xn are i.i.d. U [0, 1] and Yn = min (X1, . . . , Xn) , then

P (|Yn − 0| > ε) =
n∏
i=1

P (Xi > ε)

= (1− ε)n → 0 as n→∞,

which intuitively makes sense.
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Example 6.4. Suppose we have an arrival process where we divide the number line into
exponentially increasing sized intervals:

Ik =
{

2k, 2k + 1, . . . , 2k+1 − 1
}

And suppose we have exactly one arrival in each interval. So we let Yn = 1 if there is an
arrival at time n, and Yn = 0 if there is no arrivals. We then have that

P (Y1 = 1) = 1
P (Y2 = 1) = P (Y3 = 1) = 1/2
P (Yn = 1) = 1

2k
if n ∈ Ik

This implies that

lim
n→∞

P (|Yn − 0| ≥ ε) = lim
n→∞

P (Yn = 1) = lim
k→∞

1

2k
= 0,

which means that Yn converges in probability to 0 .

Remark. The above example highlights the weakness of WLLN. We can see of course that
for any finite n, there are certainly an infinite number of 1’s after n, yet it still converges in
probability.

Definition 65 (Convergence with Probability 1). LetX1, X2, . . . be a sequence of random variables
(not necessarily independent). We say that Xn converges to c with probability 1 (or almost
surely) if

P
(

lim
n→∞

Xn = c
)

= 1,

also denoted by Xn
a.s.−−→ c.

Remark. Convergence with probability 1 implies convergence in probability, but the converse
is not necessarily true.

Theorem 66 (Strong Law of Large Numbers). Let (Xn)n≥1 be a sequence of i.i.d. random
variables with mean µ. Then, the sequence of sample means Mn =

∑n
i=1Xi/n converges

to µ with probability 1, in the sense that

P
(

lim
n→∞

X1 + · · ·+Xn

n
= µ

)
= 1.

Remark. The difference between WLLN and SLLN is that WLLN states that the probability
P (|Mn − µ| ≥ ε) of a significant deviation of Mn from µ goes to zero as n → ∞. However, for
any finite n, this probability can be positive and it is conceivable that once in a while, even if
infrequently, Mn deviates significantly from µ. The WLLN provides no conclusive information
on the number of such deviations. On the other hand, the SLLN states that with probability
1 Mn converges to µ. This implies that for any given ε > 0, the probability that the difference
|Mn − µ| will exceed ε an infinite number of times is equal to zero.
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6.6 The Central Limit Theorem

Let X1, . . . , Xn be a sequence of i.i.d. random variables with mean µ and variance σ2. We define

Zn =
Sn − nµ
σ
√
n

=

∑n
i=1Xi − nµ
σ
√
n

We can see that

E [Zn] =

∑n
i=1 E [Xi]− nµ

σ
√
n

= 0

and

Var (Zn) =
Var (

∑n
i=1Xi)

σ2n
=

∑n
i=1 Var(Xi)

σ2n
=
nσ2

nσ2
= 1

which brings us to the central limit theorem:

Theorem 67 (Central Limit Theorem). Let X1, . . . , Xn be a sequence of i.i.d. random vari-
ables with common mean µ and variance σ2, and define

Zn =

∑n
i=1Xi − nµ
σ
√
n

.

Then the CDF of Zn converges to the standard normal CDF

Φ(z) =
1√
2π

∫ z

−∞
e−x

2/2dx

in the sense that
lim
n→∞

P (Zn ≤ z) = Φ(z) for every z.

Proof. If Y ∼ N (0, 1), MY (s) = E[esY ] = es
2/2. Then WLOG suppose X1, X2, . . . , Xn are i.i.d.

with mean 0 and variance 1. Let

Z =
X1 +X2 + · · ·+Xn√

n
=⇒ E[Z] = 0,Var(Z) = 1.

Then

MZ(s) = E[esZ ] = E

[
exp

(
s√
n

n∑
i=1

Xi

)]

=
n∏
i=1

E
[
e

sXi√
n

]
= E

[
e

sXi√
n

]n
=

[
MX

(
s√
n

)]n
Recall Taylor’s theorem: any infinitely differentiable function can be written as f(x) = f(a) +
f ′(a)(x− a) + · · ·+ f (n)(a)(x− a)n + · · · . Then we have

MX(s) = MX(0) +M ′X(0)s+M ′′X(0)
s2

2!
+M ′′′X (0)

s3

3!
+ . . .

= 1 + E[X]s+ E[X2]
s2

2
+ E[X3]

s3

6
+ . . .

= 1 +
1

2
s2 +

s3

6
E[X3] + . . .
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Hence, we get

MZ(s) =

[
MX

(
s√
n

)]n
=

[
1 +

s2

2n
+

s3

6n3/2
E[X3] + . . .

]n

=⇒ lim
n→∞

MZ(s) = lim
n→∞

[
1 +

s2

2n
+

s3

6n3/2
E[X3] + . . .

]n
,

which resembles the form limn→∞(1 + x
n)n = ex. We write can rewrite this as

lim
n→∞

MZ(s) = lim
n→∞

[
1 +

s2/2

n
+O

(
1

n

)]n
= es

2/2 = MY (s),

thus we have shown that Z converges in distribution to N (0, 1).

Example 6.5 (Polling). Suppose there are n randomly sampled voters who indicate if they
support candidate X. So Xi = 1 if yes, and Xi = 0 otherwise. Suppose we want a 95%
confidence interval that |Mn − p| < ε where p is the true probability that each voter supports
the candidate, and Mn = 1

n

∑
Xi is the empirical mean. Chebyshev’s states that

P (|Mn − p| ≥ a) ≤ Var (Mn)

a2
.

Since Var (Xi) = p(1 − p) ≤ 1/4, Var (Mn) = 1
n Var (Xi) ≤ 1

4n Suppose we want to know
the p value to within 0.1 with probability at least 95%. In math terms, we need

P (|Mn − p| ≥ 0.1) ≤ 0.05

and we have

P (|Mn − p| ≥ 0.1) ≤ Var (Mn)

0.12
≤ 1

4n(0.01)
=⇒ n ≥ 500.

On the other side, CLT states that

Mn − E [Mn]√
Var (Mn)

→ N (0, 1) =⇒ P
(
|Mn − p|
1/2
√
n
≥ 0.1

2
√
n

)
≤ 0.05.

Since this is roughly a standard normal, we use the fact that 95% of the probability mass
lies within 2 or 1.96 standard deviations. So we have

0.2
√
n ≥ 2⇒ n ≥ 100.

Remark. CLT provides a tighter bound that Chebyshev’s.
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7 Information Theory
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