CS70 Final Review (Concentration Inequalities)

Kelvin Lee

kelvinlee@berkeley.edu

December 8, 2020

Kelvin Lee (UC Berkeley)

Discrete Math and Probability Theory

December 8, 2020 1 /

Kelvin Lee (UC Berkeley)

Discrete Math and Probability Theory

December 8, 2020 2 / 4

3

イロト イヨト イヨト イヨト

Let's say that for some real $b \ge 1$ that a random variable X is *b*-reasonable if it satisfies:

$$\mathbb{E}[X^4] \leq b\left(\mathbb{E}[X^2]\right)^2.$$

Suppose X is *b*-reasonable and that $\mathbb{E}[X] = 0$ and $Var(X) = \sigma^2$. Our goal is to prove that

$$\mathbb{P}[|X| \ge t\sigma] \le \frac{b}{t^4}.$$

(a) Find an expression for σ in terms of $\mathbb{E}[X^2]$.

(b) Show that $\mathbb{P}[|X| \ge t\sigma] \le \frac{b}{t^4}$. (Hint: find an equivalent event for $|X| \ge t\sigma$.)

(a) Find an expression for σ in terms of $\mathbb{E}[X^2]$.

 $\mathsf{Var}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

$$\operatorname{Var}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

= $\mathbb{E}[X^2]$

$$Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$
$$= \mathbb{E}[X^2]$$
$$= \sigma^2$$

$$Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$
$$= \mathbb{E}[X^2]$$
$$= \sigma^2$$
$$\Rightarrow \sigma = \sqrt{\mathbb{E}[X^2]}.$$

Using the result from part(a), we have

Using the result from part(a), we have

$$\mathbb{P}[|X| \ge t\sigma] = \mathbb{P}\left[|X| \ge t\sqrt{\mathbb{E}[X^2]}
ight].$$

Using the result from part(a), we have

$$\mathbb{P}[|X| \ge t\sigma] = \mathbb{P}\left[|X| \ge t\sqrt{\mathbb{E}[X^2]}
ight].$$

Then we can take the fourth power on both sides to get the equivalent probability $\mathbb{P} \left[X^4 \ge t^4 \mathbb{E} [X^2]^2 \right]$.

Using the result from part(a), we have

$$\mathbb{P}[|X| \geq t\sigma] = \mathbb{P}\left[|X| \geq t\sqrt{\mathbb{E}[X^2]}
ight].$$

Using the result from part(a), we have

$$\mathbb{P}[|X| \geq t\sigma] = \mathbb{P}\left[|X| \geq t\sqrt{\mathbb{E}[X^2]}
ight].$$

Then we can take the fourth power on both sides to get the equivalent probability $\mathbb{P}[X^4 \ge t^4 \mathbb{E}[X^2]^2]$. Then apply the Markov's inequality to X^4 :

 $\mathbb{P}\left[X^4 \ge t^4 (\mathbb{E}[X^2])^2
ight]$

Using the result from part(a), we have

$$\mathbb{P}[|X| \geq t\sigma] = \mathbb{P}\left[|X| \geq t\sqrt{\mathbb{E}[X^2]}
ight].$$

$$\mathbb{P}\left[X^4 \ge t^4(\mathbb{E}[X^2])^2
ight] \le rac{\mathbb{E}[X^4]}{t^4(\mathbb{E}[X^2])^2}$$

Using the result from part(a), we have

$$\mathbb{P}[|X| \ge t\sigma] = \mathbb{P}\left[|X| \ge t\sqrt{\mathbb{E}[X^2]}
ight].$$

$$\mathbb{P}\left[X^4 \geq t^4(\mathbb{E}[X^2])^2\right] \leq \frac{\mathbb{E}[X^4]}{t^4(\mathbb{E}[X^2])^2} \leq \frac{b(\mathbb{E}[X^2])^2}{t^4(\mathbb{E}[X^2])^2}$$

Using the result from part(a), we have

$$\mathbb{P}[|X| \ge t\sigma] = \mathbb{P}\left[|X| \ge t\sqrt{\mathbb{E}[X^2]}
ight].$$

$$\mathbb{P}\left[X^4 \ge t^4 (\mathbb{E}[X^2])^2\right] \le \frac{\mathbb{E}[X^4]}{t^4 (\mathbb{E}[X^2])^2} \le \frac{b(\mathbb{E}[X^2])^2}{t^4 (\mathbb{E}[X^2])^2} = \frac{b}{t^4}.$$