Random Variables Practice

Kelvin Lee

December 4, 2020

1 Problems

Problem 1 (Sp19 Final). Given independent $X, Y \sim Bin(n, p)$, what is P(X + Y = i)?

Problem 2 (Sp18 Final). Given a binomial random variable X with parameters n and $p, (X \sim B(n, p))$ what is $P(X = \mathbb{E}[X])$?

Problem 3 (Sp19 Final). Consider throwing *n* balls into *n* bins uniformly at random. Let *X* be the number of balls in the first bin. What is $\mathbb{E}[X]$ and $\operatorname{Var}(X)$?

Problem 4 (Sp19 Final). Now let Y be the number of balls in the second bin. What the joint distribution of X, Y, i.e., what is P(X = i, Y = j)? What is P(X = i | Y = j)?

Problem 5 (Fa18 Final). Consider an urn with 3 blue balls and 1 red ball, and suppose you sample one ball at a time with replacement. Let X be the number of draws required until both of the colors, blue and red, have been observed at least once.

- (i) What is $P(X = n \mid \text{The first ball drawn is red})$, for $n \ge 2$?
- (ii) What is P(X = n), for $n \ge 2$?

Problem 6 (Sp18 Final). Consider $X \sim Geo(p)$, a geometric random variable X with parameter p. What is P(X > i | X > j) for $i \ge j$?

2 Answers

Answer 1. $\binom{2n}{i}p^{i}(1-p)^{2n-i}X + Y \sim Bin(2n,p).$ Answer 2. $\binom{n}{np}p^{np}(1-p)^{n-np}$

Answer 3. One can use linearity of expectation: $X_1 + \ldots + X_n$, where X_1 indicates that ball i falls into bin 1 and $\mathbb{E}[X_1] = \frac{1}{n}$. $\operatorname{Var}(X) = 1 - \frac{1}{n}$. Take $X = X_1 + \ldots + X_n$ where X_i is an indicator random variable for choosing ball i choosing bin 1. From the fact that each X_i has variance $\frac{1}{n}(1-\frac{1}{n})$ and the fact that X_i s are independent from each other, we get $n(\frac{1}{n}(1-\frac{1}{n})) = (1-1/n)$

Answer 4. $\binom{n}{i}\binom{n-i}{j}\left(\frac{1}{n}\right)^{i+j}\left(1-\frac{2}{n}\right)^{n-i-j}$. There are $\binom{n}{i}$ ways to choose which balls will go into the first bin, and $\binom{n-i}{j}$ ways to pick which balls go into the second bin. After picking, the probability that the *i* balls actually end up in the first bin is $\frac{1}{n^i}$, the probability that the *j* balls end up in the second bin is $\frac{1}{n^j}$ and the probability that the other n-i-j balls end up in not the first and second bins is $\left(1-\frac{2}{n}\right)^{n-i-j}$.

 $\binom{n-j}{i} \left(\frac{1}{n-1}\right)^{i} \left(\frac{n-2}{n-1}\right)^{n-i-j}$. We can pretend the second bin doesn't exist, since it will have j balls already. Then, there are n-j balls left, thrown into n-1 bins.

Answer 5.

- (i) $\left(\frac{1}{4}\right)^{n-2} \frac{3}{4}$. Given that we first drew a red ball, if we take *n* draws to observe both colors, then draws 2 to n-1 must also have been red and draw *n* must be blue. This occurs with probability $\left(\frac{1}{4}\right)^{n-2} \frac{3}{4}$. (Observe that we are following a geometric distribution)
- (ii) $\frac{3+3^{n-1}}{4^n}$. Let *R* denote the event that the first ball drawn is red and *B* denote the event that the first ball drawn is blue. Using a similar argument as in (i) we have $P(X = n \mid B) = \left(\frac{3}{4}\right)^{n-2} \frac{1}{4}$ Thus

$$P(X = n) = P(X = n \mid R) \cdot P(R) + P(X = n \mid B) \cdot P(B)$$
$$= \left(\frac{1}{4}\right)^{n-1} \cdot \frac{3}{4} + \left(\frac{3}{4}\right)^{n-1} \cdot \frac{1}{4} = \frac{3+3^{n-1}}{4^n}$$

Answer 6. $(1-p)^{i-j}$. This is the event that the first i-j trials fail after the j th trial.