# Random Variables Practice 

Kelvin Lee

December 4, 2020

## 1 Problems

Problem 1 (Sp19 Final). Given independent $X, Y \sim \operatorname{Bin}(n, p)$, what is $P(X+Y=i)$ ?
Problem 2 (Sp18 Final). Given a binomial random variable $X$ with parameters $n$ and $p,(X \sim$ $B(n, p))$ what is $P(X=\mathbb{E}[X])$ ?

Problem 3 (Sp19 Final). Consider throwing $n$ balls into $n$ bins uniformly at random. Let $X$ be the number of balls in the first bin. What is $\mathbb{E}[X]$ and $\operatorname{Var}(X)$ ?

Problem 4 (Sp19 Final). Now let $Y$ be the number of balls in the second bin. What the joint distribution of $X$, $Y$, i.e., what is $P(X=i, Y=j)$ ? What is $P(X=i \mid Y=j)$ ?

Problem 5 (Fa18 Final). Consider an urn with 3 blue balls and 1 red ball, and suppose you sample one ball at a time with replacement. Let $X$ be the number of draws required until both of the colors, blue and red, have been observed at least once.
(i) What is $P(X=n \mid$ The first ball drawn is red $)$, for $n \geq 2$ ?
(ii) What is $P(X=n)$, for $n \geq 2$ ?

Problem 6 (Sp18 Final). Consider $X \sim \operatorname{Geo}(p)$, a geometric random variable $X$ with parameter $p$. What is $P(X>i \mid X>j)$ for $i \geq j$ ?

## 2 Answers

Answer 1. $\binom{2 n}{i} p^{i}(1-p)^{2 n-i} \cdot X+Y \sim \operatorname{Bin}(2 n, p)$.
Answer 2. $\binom{n}{n p} p^{n p}(1-p)^{n-n p}$
Answer 3. One can use linearity of expectation: $X_{1}+\ldots+X_{n}$, where $X_{1}$ indicates that ball $i$ falls into bin 1 and $\mathbb{E}\left[X_{1}\right]=\frac{1}{n} . \operatorname{Var}(X)=1-\frac{1}{n}$. Take $X=X_{1}+\ldots+X_{n}$ where $X_{i}$ is an indicator random variable for choosing ball $i$ choosing bin 1. From the fact that each $X_{i}$ has variance $\frac{1}{n}\left(1-\frac{1}{n}\right)$ and the fact that $X_{i} \mathrm{~s}$ are independent from each other, we get $n\left(\frac{1}{n}\left(1-\frac{1}{n}\right)\right)=(1-1 / n)$
Answer 4. $\binom{n}{i}\binom{n-i}{j}\left(\frac{1}{n}\right)^{i+j}\left(1-\frac{2}{n}\right)^{n-i-j}$. There are $\binom{n}{i}$ ways to choose which balls will go into the first bin, and $\binom{n-i}{j}$ ways to pick which balls go into the second bin. After picking, the probability that the $i$ balls actually end up in the first bin is $\frac{1}{n^{i}}$, the probability that the $j$ balls end up in the second bin is $\frac{1}{n^{j}}$ and the probability that the other $n-i-j$ balls end up in not the first and second bins is $\left(1-\frac{2}{n}\right)^{n-i-j}$.
$\binom{n-j}{i}\left(\frac{1}{n-1}\right)^{i}\left(\frac{n-2}{n-1}\right)^{n-i-j}$. We can pretend the second bin doesn't exist, since it will have $j$ balls already. Then, there are $n-j$ balls left, thrown into $n-1$ bins.

## Answer 5.

(i) $\left(\frac{1}{4}\right)^{n-2} \frac{3}{4}$. Given that we first drew a red ball, if we take $n$ draws to observe both colors, then draws 2 to $n-1$ must also have been red and draw $n$ must be blue. This occurs with probability $\left(\frac{1}{4}\right)^{n-2} \frac{3}{4}$. (Observe that we are following a geometric distribution)
(ii) $\frac{3+3^{n-1}}{4^{n}}$. Let $R$ denote the event that the first ball drawn is red and $B$ denote the event that the first ball drawn is blue. Using a similar argument as in (i) we have $P(X=n \mid$ $B)=\left(\frac{3}{4}\right)^{n-2} \frac{1}{4}$ Thus

$$
\begin{aligned}
P(X=n) & =P(X=n \mid R) \cdot P(R)+P(X=n \mid B) \cdot P(B) \\
& =\left(\frac{1}{4}\right)^{n-1} \cdot \frac{3}{4}+\left(\frac{3}{4}\right)^{n-1} \cdot \frac{1}{4}=\frac{3+3^{n-1}}{4^{n}}
\end{aligned}
$$

Answer 6. $(1-p)^{i-j}$. This is the event that the first $i-j$ trials fail after the $j$ th trial.

